Biological Nanoparticles for Enhancing Chronic Wound Regeneration
Highlights
- Biological nanoparticles (BNPs), demonstrate efficacy in chronic wound models by promoting immunomodulation, angiogenesis, and cell proliferation, while enabling targeted drug delivery.
- Advanced delivery platforms significantly enhance the stability, sustained release, and functional activity of BNPs in the challenging wound microenvironment, overcoming key limitations of current wound therapy.
- BNPs represent a therapeutic strategy with the potential to overcome the limitations of conventional chronic wound treatments, offering a biocompatible and multifunctional approach for managing complex, non-healing wounds.
- The ongoing clinical trials and development of engineered BNPs pave the way for standardized, scalable production, bringing nanotherapies closer to clinical reality and revolutionizing personalized wound care.
Abstract
1. Introduction
2. Mechanisms of BNP Effect on Wound Healing (Figure 2)
2.1. Immunomodulation

2.2. Regeneration
- (1)
- Modulation of the inflammatory response by suppressing pro-inflammatory cytokines: M2 macrophage exosomes (MEs) and exosome-like nanoparticles (ELNs) from a cockroach (Periplaneta americana) (PA-ELNs) reduce TNF-α, IL-6, and IFN-γ levels, thereby mitigating chronic inflammation in diabetic wounds. MEs and PA-ELNs also promote macrophage polarization by upregulating CD206 and arginase-1 (Arg1) expression [62,63].
- (2)
- Stimulation of angiogenesis by increased expression of angiogenic factors: MEs activate the Wnt/β-catenin pathway, increasing VEGF-A and CD31 levels to promote the formation of new blood vessels [62]. PA-ELNs regulate the signaling pathways of TGF-β and mTOR, enhancing VEGF and CD31 expression [63]. MSCs stimulate angiogenesis by activating the AKT/eNOS signaling pathway through an increase in the level of miR221-3p, which enhances the proliferation, migration, and tubule formation of endothelial cells, as well as the secretion of angiogenic factors (VEGF, PDGF, bFGF, ANG1) [64]. Studying adipose-tissue-derived stem cells (ASCs) also showed positive results on the relationship of PDGF and bFGF signaling pathways and angiogenesis [65].
- (3)
- Acceleration of cell proliferation and migration: PA-ELNs increase the proliferation of fibroblasts (L929) and endothelial cells (HUVECs) by 50–60% [63]. Exosomes derived from 4T1 mouse breast carcinoma cells (TEXs), as well as ginseng-derived nanoparticles (GDNPs), also showed positive effects. TEXs enhance the proliferation of fibroblasts and endothelial cells through activation of the PI3K/Akt pathway, and GDNPs increase the proliferation of keratinocytes, fibroblasts, and endothelial cells by 20–40%, and accelerate the S-phase of the cell cycle [66,67].
- (4)
- Extracellular Matrix (ECM) remodeling: BNPs help rebuild the structural scaffold of the skin. They promote healthy tissue turnover by regulating processes like autophagy and, crucially, by inhibiting enzymes that would otherwise break down the newly formed matrix. This ensures the rapid and strong development of granulation tissue [63].
- (5)
2.3. Antibacterial Activity
2.4. Delivery of Therapeutic Agents
3. Innovative Technologies for Delivering NPs to the Wound Area
4. Models for CW Research
5. Modern Research on BNPs in CW Treatment
6. Clinical Trials
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, S.K.; Mattke, S.; Gordon, H.; Sheridan, M.; Ennis, W. Development of a Model to Predict Healing of Chronic Wounds Within 12 Weeks. Adv. Wound Care 2020, 9, 516. [Google Scholar] [CrossRef] [PubMed]
- Burgess, J.L.; Wyant, W.A.; Abujamra, B.A.; Kirsner, R.S.; Jozic, I. Diabetic Wound-Healing Science. Medicina 2021, 57, 1072. [Google Scholar] [CrossRef] [PubMed]
- Wolny, D.; Štěpánek, L.; Horáková, D.; Thomas, J.; Zapletalová, J.; Patel, M.S. Risk Factors for Non-Healing Wounds—A Single-Centre Study. J. Clin. Med. 2024, 13, 1003. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.M.; Kimball, A.; Boniakowski, A.; Gallagher, K. Dysfunctional Wound Healing in Diabetic Foot Ulcers: New Crossroads. Curr. Diabetes Rep. 2018, 18, 2. [Google Scholar] [CrossRef]
- Sen, C.K. Wound Healing Essentials: Let There Be Oxygen. Wound Repair Regen. 2009, 17, 1. [Google Scholar] [CrossRef]
- Packer, C.F.; Ali, S.A.; Manna, B. Diabetic Foot Ulcer; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Depta, J.; Małkowska, P.; Wysokińska, M.; Todorska, K.; Sierawska, O.; Hrynkiewicz, R.; Bębnowska, D.; Niedźwiedzka-Rystwej, P. Therapeutic Role of Antimicrobial Peptides in Diabetes Mellitus. Biologics 2022, 2, 92–106. [Google Scholar] [CrossRef]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. Rev. 2019, 14, 50. [Google Scholar] [CrossRef]
- Guan, H.; Dong, W.; Lu, Y.; Jiang, M.; Zhang, D.; Aobuliaximu, Y.; Dong, J.; Niu, Y.; Liu, Y.; Guan, B.; et al. Distribution and Antibiotic Resistance Patterns of Pathogenic Bacteria in Patients with Chronic Cutaneous Wounds in China. Front. Med. 2021, 8, 609584. [Google Scholar] [CrossRef]
- Guo, J.; Cao, Y.; Wu, Q.Y.; Zhou, Y.M.; Cao, Y.H.; Cen, L.S. Implications of pH and Ionic Environment in Chronic Diabetic Wounds: An Overlooked Perspective. Clin. Cosmet. Investig. Dermatol. 2024, 17, 2669. [Google Scholar] [CrossRef]
- Schreml, S.; Szeimies, R.M.; Prantl, L.; Karrer, S.; Landthaler, M.; Babilas, P. Oxygen in acute and chronic wound healing. Br. J. Dermatol. 2010, 163, 257–268. [Google Scholar] [CrossRef]
- Ivory, J.D.; Perrier, L.; Vellinga, A.; Sezgin, D.; Hobbs, C.M.; Ffrench, C.; Coutts, P.M.; O’Gara, J.P.; Gethin, G. A Scoping Review to Identify Clinical Signs, Symptoms and Biomarkers Reported in the Literature to Be Indicative of Biofilm in Chronic Wounds. Int. Wound J. 2025, 22, e70181. [Google Scholar] [CrossRef] [PubMed]
- Eckert, K.A.; Fife, C.E.; Carter, M.J. The Impact of Underlying Conditions on Quality-of-Life Measurement Among Patients with Chronic Wounds, as Measured by Utility Values: A Review with an Additional Study. Adv. Wound Care 2023, 12, 680. [Google Scholar] [CrossRef] [PubMed]
- Frykberg, R.G.; Banks, J. Challenges in the Treatment of Chronic Wounds. Adv. Wound Care 2015, 4, 560. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Ceilley, R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017, 34, 599–610. [Google Scholar] [CrossRef]
- Manna, B.; Nahirniak, P.; Morrison, C.A. Wound Debridement; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Chronic Wounds: Learn More—What Are the Treatment Options for Chronic Wounds? Institute for Quality and Efficiency in Health Care (IQWiG): Cologne, Germany, 2022.
- Liu, S.; Zhao, Y.; Xu, M.; Wen, J.; Wang, H.; Yan, H.; Gao, X.; Niu, B.; Li, W. Antibacterial photodynamic properties of silver nanoparticles-loaded curcumin composite material in chitosan-based films. Int. J. Biol. Macromol. 2024, 256 Pt 1, 128014. [Google Scholar] [CrossRef]
- Nagaiah, H.P.; Samsudeen, M.B.; Augustus, A.R.; Shunmugiah, K.P. In vitro evaluation of silver-zinc oxide-eugenol nanocomposite for enhanced antimicrobial and wound healing applications in diabetic conditions. Discov. Nano 2025, 20, 14. [Google Scholar] [CrossRef]
- Ermini, M.L.; Voliani, V. Antimicrobial Nano-Agents: The Copper Age. ACS Nano 2021, 15, 6008. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Z.; Wang, J.; Sun, X.; Yang, X.; Liu, G. Mussel-inspired electroactive, antibacterial and antioxidative composite membranes with incorporation of gold nanoparticles and antibacterial peptides for enhancing skin wound healing. J. Biol. Eng. 2024, 18, 3. [Google Scholar] [CrossRef]
- Manuja, A.; Raguvaran, R.; Kumar, B.; Kalia, A.; Tripathi, B.N. Accelerated healing of full thickness excised skin wound in rabbits using single application of alginate/acacia based nanocomposites of ZnO nanoparticles. Int. J. Biol. Macromol. 2020, 155, 823–833. [Google Scholar] [CrossRef]
- Hikmat, S.; Tarawneh, O.; Hamadneh, L.; Hamed, R.; Alhusban, A.A.; Hailat, M.; Abu Mahfouz, H.; Shraim, S.; Al-Shammari, A.; Aljariri, A.; et al. Strontium nitrate-dopped zinc oxide-loaded alginate gels with gentamicin for improved wound healing. J. Mater. Sci. Mater. Med. 2025, 36, 2. [Google Scholar] [CrossRef]
- Tayyeb, J.Z.; Guru, A.; Kandaswamy, K.; Jain, D.; Manivannan, C.; Mat, K.B.; Shah, M.A.; Arockiaraj, J. Synergistic effect of zinc oxide-cinnamic acid nanoparticles for wound healing management: In vitro and zebrafish model studies. BMC Biotechnol. 2024, 24, 78. [Google Scholar] [CrossRef]
- Dai, F.; Zhang, J.; Chen, F.; Chen, X.; Lee, C.J.; Liang, H.; Zhao, L.; Tan, H. A Multi-Responsive Hydrogel Combined with Mild Heat Stimulation Promotes Diabetic Wound Healing by Regulating Inflammatory and Enhancing Angiogenesis. Adv. Sci. 2024, 11, 2408783. [Google Scholar] [CrossRef]
- Sun, T.; Zhan, B.; Zhang, W.; Qin, D.; Xia, G.; Zhang, H.; Peng, M.; Li, S.A.; Zhang, Y.; Gao, Y.; et al. Carboxymethyl chitosan nanoparticles loaded with bioactive peptide OH-CATH30 benefit nonscar wound healing. Int. J. Nanomed. 2018, 13, 5771. [Google Scholar] [CrossRef] [PubMed]
- Ashoori, Y.; Mohkam, M.; Heidari, R.; Abootalebi, S.N.; Mousavi, S.M.; Hashemi, S.A.; Golkar, N.; Gholami, A. Development and In Vivo Characterization of Probiotic Lysate-Treated Chitosan Nanogel as a Novel Biocompatible Formulation for Wound Healing. BioMed Res. Int. 2020, 2020, 8868618. [Google Scholar] [CrossRef] [PubMed]
- Nurhasni, H.; Cao, J.; Choi, M.; Kim, I.; Lee, B.L.; Jung, Y.; Yoo, J.W. Nitric oxide-releasing poly(lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity. Int. J. Nanomed. 2015, 10, 3065. [Google Scholar] [CrossRef]
- Silva, C.N.S.; Cruz, M.V.; Fernandes, K.F.; Batista, K.A. Production of anti-inflammatory films based on cashew gum polysaccharide and polyvinyl alcohol for wound dressing applications. 3 Biotech 2023, 13, 299. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Y.; Liu, M.; Wang, Y.; He, W.; Shi, G.; Hu, X.; Zhan, R.; Luo, G.; Xing, M.; et al. Synthesis of graphene oxide-quaternary ammonium nanocomposite with synergistic antibacterial activity to promote infected wound healing. Burns Trauma 2018, 6, 16. [Google Scholar] [CrossRef]
- Masotti, A.; Miller, M.R.; Celluzzi, A.; Rose, L.; Micciulla, F.; Hadoke, P.W.F.; Bellucci, S.; Caporali, A. Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes. Nanomedicine 2016, 12, 1511. [Google Scholar] [CrossRef]
- Yang, H.; Lv, D.; Qu, S.; Xu, H.; Li, S.; Wang, Z.; Cao, X.; Rong, Y.; Li, X.; Wu, H.; et al. A ROS-Responsive Lipid Nanoparticles Release Multifunctional Hydrogel Based on Microenvironment Regulation Promotes Infected Diabetic Wound Healing. Adv. Sci. 2024, 11, 2403219. [Google Scholar] [CrossRef]
- Li, Z.; Liu, M.; Wang, H.; Du, S. Increased cutaneous wound healing effect of biodegradable liposomes containing madecassoside: Preparation optimization, in vitro dermal permeation, and in vivo bioevaluation. Int. J. Nanomed. 2016, 11, 2995. [Google Scholar] [CrossRef]
- Albright, V.; Xu, M.; Palanisamy, A.; Cheng, J.; Stack, M.; Zhang, B.; Jayaraman, A.; Sukhishvili, S.A.; Wang, H. Micelle-coated, Hierarchically Structured Nanofibers with Dual-release Capability for Accelerated Wound Healing and Infection Control. Adv. Healthc. Mater. 2018, 7, e1800132. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, D.; Li, L.; Wu, P.; Sun, Y.; Zhang, X.; Ji, C.; Xu, W.; Qian, H.; Shi, H. A Dual Role of Mesenchymal Stem Cell Derived Small Extracellular Vesicles on TRPC6 Protein and Mitochondria to Promote Diabetic Wound Healing. ACS Nano 2024, 18, 4871–4885. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.L.; Ogura, S.; Ma, H.; Liang, R.B.; Fang, S.Y.; Wang, Y.M.; Wo, Y.; Wang, W.J.; Liu, D.W. Adipose-derived stem cells extracellular vesicles enhance diabetic wound healing via CCN2/PI3K/AKT pathway: Therapeutic potential and mechanistic insights. Stem Cell Res. Ther. 2025, 16, 304. [Google Scholar] [CrossRef] [PubMed]
- Back, F.; Barras, A.; Nyam-Erdene, A.; Yang, J.C.; Melinte, S.; Rumipamba, J.; Burnouf, T.; Boukherroub, R.; Szunerits, S.; Chuang, E.Y. Platelet Extracellular Vesicles Loaded Gelatine Hydrogels for Wound Care. Adv. Healthc. Mater. 2024, 14, 2401914. [Google Scholar] [CrossRef]
- Wang, Y.; Jing, L.; Lei, X.; Ma, Z.; Li, B.; Shi, Y.; Zhang, W.; Li, Y.; Zhou, H.; Hu, K.; et al. Umbilical cord mesenchymal stem cell-derived apoptotic extracellular vesicles ameliorate cutaneous wound healing in type 2 diabetic mice via macrophage pyroptosis inhibition. Stem Cell Res. Ther. 2023, 14, 257. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, B.; Wang, W.; Bu, Q.; Li, Y.; Zhang, P.; Zeng, L. Plant-Derived Exosome-Like Nanovesicles in Chronic Wound Healing. Int. J. Nanomed. 2024, 19, 11293. [Google Scholar] [CrossRef]
- Tao, S.C.; Rui, B.Y.; Wang, Q.Y.; Zhou, D.; Zhang, Y.; Guo, S.C. Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds. Drug Deliv. 2018, 25, 241. [Google Scholar] [CrossRef]
- Brezgin, S.; Kostyusheva, A.; Ponomareva, N.; Bayurova, E.; Kondrashova, A.; Frolova, A.; Slatinskaya, O.; Fatkhutdinova, L.; Maksimov, G.; Zyuzin, M. Hydroxychloroquine enhances cytotoxic properties of extracellular vesicles and extracellular vesicle—Mimetic nanovesicles loaded with chemotherapeutics. Pharmaceutics 2023, 15, 534. [Google Scholar] [CrossRef]
- Ponomareva, N.; Brezgin, S.; Karandashov, I.; Kostyusheva, A.; Demina, P.; Slatinskaya, O.; Bayurova, E.; Silachev, D.; Pokrovsky, V.S.; Gegechkori, V.; et al. Swelling, Rupture and Endosomal Escape of Biological Nanoparticles Per Se and Those Fused with Liposomes in Acidic Environment. Pharmaceutics 2024, 16, 667. [Google Scholar] [CrossRef]
- Kostyusheva, A.; Brezgin, S.; Ponomareva, N.; Frolova, A.; Lunin, A.; Bayurova, E.; Tikhonov, A.; Slatinskaya, O.; Demina, P.; Kachanov, A.; et al. Biologics-based technologies for highly efficient and targeted RNA delivery. Mol. Ther. 2025, 33, 168–183. [Google Scholar] [CrossRef]
- Tikhonov, A.; Kachanov, A.; Yudaeva, A.; Danilik, O.; Ponomareva, N.; Karandashov, I.; Kostyusheva, A.; Zamyatnin, A.A.; Parodi, A.; Chulanov, V.; et al. Biomimetic Nanoparticles for Basic Drug Delivery. Pharmaceutics 2024, 16, 1306. [Google Scholar] [CrossRef] [PubMed]
- Faghani, G.; Azarniya, A. Emerging nanomaterials for novel wound dressings: From metallic nanoparticles and MXene nanosheets to metal-organic frameworks. Heliyon 2024, 10, e39611. [Google Scholar] [CrossRef] [PubMed]
- Mamun, A.A.; Shao, C.; Geng, P.; Wang, S.; Xiao, J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front. Immunol. 2024, 15, 1395479. [Google Scholar] [CrossRef] [PubMed]
- Brezgin, S.; Parodi, A.; Kostyusheva, A.; Ponomareva, N.; Lukashev, A.; Sokolova, D.; Pokrovsky, V.S.; Slatinskaya, O.; Maksimov, G.; Zamyatnin, A.A., Jr. Technological aspects of manufacturing and analytical control of biological nanoparticles. Biotechnol. Adv. 2023, 64, 108122. [Google Scholar] [CrossRef]
- Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal. 2021, 19, 47. [Google Scholar] [CrossRef]
- Kostyusheva, A.; Romano, E.; Yan, N.; Lopus, M.; Zamyatnin, A.A.J.; Parodi, A. Breaking barriers in targeted Therapy: Advancing exosome Isolation, Engineering, and imaging. Adv. Drug Deliv. Rev. 2025, 218, 115522. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Z.; Pan, D.; Li, H.; Shen, J. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration. Int. J. Nanomed. 2020, 15, 5911. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, W.; Liu, Z.; Lu, G.; Zhang, X.; Yang, J.; Huang, Y.; Hu, X.; Chen, C.; Shang, R.; et al. Exosomes derived from fibroblasts enhance skin wound angiogenesis by regulating HIF-1α/VEGF/VEGFR pathway. Burns Trauma 2025, 13, tkae071. [Google Scholar] [CrossRef]
- Verma, N.; Khare, D.; Poe, A.J.; Amador, C.; Ghiam, S.; Fealy, A.; Ebrahimi, S.; Shadrokh, O.; Song, X.Y.; Santiskulvong, C.; et al. MicroRNA and Protein Cargos of Human Limbal Epithelial Cell-Derived Exosomes and Their Regulatory Roles in Limbal Stromal Cells of Diabetic and Non-Diabetic Corneas. Cells 2023, 12, 2524. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, L.; Liu, P.; Yu, T.; Lin, C.; Yan, C.; Hu, Y.; Zhou, W.; Sun, Y.; Panayi, A.C.; et al. All-in-One: Multifunctional Hydrogel Accelerates Oxidative Diabetic Wound Healing through Timed-Release of Exosome and Fibroblast Growth Factor. Small 2022, 18, 2104229. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef]
- Ambrosone, A.; Barbulova, A.; Cappetta, E.; Cillo, F.; De Palma, M.; Ruocco, M.; Pocsfalvi, G. Plant Extracellular Vesicles: Current Landscape and Future Directions. Plants 2023, 12, 4141. [Google Scholar] [CrossRef]
- Nasiri Kenari, A.; Cheng, L.; Hill, A.F. Methods for loading therapeutics into extracellular vesicles and generating extracellular vesicles mimetic-nanovesicles. Methods 2020, 177, 103–113. [Google Scholar] [CrossRef]
- Gangadaran, P.; Ahn, B.C. Extracellular Vesicle- and Extracellular Vesicle Mimetics-Based Drug Delivery Systems: New Perspectives, Challenges, and Clinical Developments. Pharmaceutics 2020, 12, 442. [Google Scholar] [CrossRef]
- Gao, K.; Jin, J.; Huang, C.; Li, J.; Luo, H.; Li, L.; Huang, Y.; Jiang, Y. Exosomes derived from septic mouse serum modulate immune responses via exosome-associated cytokines. Front. Immunol. 2019, 10, 1560. [Google Scholar] [CrossRef]
- Liu, L.; Liu, D. Bioengineered mesenchymal stem cell-derived exosomes: Emerging strategies for diabetic wound healing. Burns Trauma 2024, 12, tkae030. [Google Scholar] [CrossRef]
- Lu, D.; Jiao, X.; Jiang, W.; Yang, L.; Gong, Q.; Wang, X.; Wei, M.; Gong, S. Mesenchymal stem cells influence monocyte/macrophage phenotype: Regulatory mode and potential clinical applications. Biomed. Pharmacother. 2023, 165, 115042. [Google Scholar] [CrossRef]
- Tan, D.; Zhu, W.; Liu, L.; Pan, Y.; Xu, Y.; Huang, Q.; Li, L.; Rao, L. In situ formed scaffold with royal jelly-derived extracellular vesicles for wound healing. Theranostics 2023, 13, 2811. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Sun, Z.; Zeng, F.; Gu, C.; Chen, X. M2 macrophage-derived exosome-encapsulated microneedles with mild photothermal therapy for accelerated diabetic wound healing. Mater. Today Bio 2023, 20, 100649. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Su, L.; Pang, L.; Li, J.; Li, H.; Li, J.; Liu, Y.; Zhang, J. Natural exosome-like nanoparticles derived from ancient medicinal insect Periplaneta americana L. as a novel diabetic wound healing accelerator. J. Nanobiotechnol. 2023, 21, 169. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Liu, W.; Li, J.; Lu, J.; Lu, H.; Jia, W.; Liu, F. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Res. Ther. 2020, 11, 350. [Google Scholar] [CrossRef]
- Gehmert, S.; Gehmert, S.; Hidayat, M.; Sultan, M.; Berner, A.; Klein, S.; Zellner, J.; Müller, M.; Prantl, L. Angiogenesis: The role of PDGF-BB on adipose-tissue derived stem cells (ASCs). Clin. Hemorheol. Microcirc. 2011, 48, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xiao, W.; Wang, H.; Li, L.; Yang, Y.; Hao, Y.; Xu, Z.; Chen, H.; Nan, W. Exosomes Derived from Mouse Breast Carcinoma Cells Facilitate Diabetic Wound Healing. Tissue Eng. Regen. Med. 2024, 21, 571. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lu, S.; Ren, L.; Bian, S.; Zhao, D.; Liu, M.; Wang, J. Ginseng-derived nanoparticles induce skin cell proliferation and promote wound healing. J. Ginseng Res. 2022, 47, 133. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, J.; Tang, K.; Liao, H.; Xu, Y.; Wang, L.; Niu, C. Multi-Modal Imaging Monitored M2 Macrophage Targeting Sono-Responsive Nanoparticles to Combat MRSA Deep Infections. Int. J. Nanomed. 2022, 17, 4525. [Google Scholar] [CrossRef]
- Shi, Q.; Qian, Z.; Liu, D.; Sun, J.; Wang, X.; Liu, H.; Xu, J.; Guo, X. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Front. Physiol. 2017, 8, 904. [Google Scholar] [CrossRef]
- Brezgin, S.; Danilik, O.; Yudaeva, A.; Kachanov, A.; Kostyusheva, A.; Karandashov, I.; Ponomareva, N.; Zamyatnin, A.A.; Parodi, A.; Chulanov, V.; et al. Basic Guide for Approaching Drug Delivery with Extracellular Vesicles. Int. J. Mol. Sci. 2024, 25, 10401. [Google Scholar] [CrossRef]
- Nakamura, Y.; Mochida, A.; Choyke, P.L.; Kobayashi, H. Nano-drug delivery: Is the enhanced permeability and retention (EPR) effect sufficient for curing cancer? Bioconjug. Chem. 2016, 27, 2225. [Google Scholar] [CrossRef]
- Armstrong, J.P.K.; Stevens, M.M. Strategic design of extracellular vesicle drug delivery systems. Adv. Drug Deliv. Rev. 2018, 130, 12. [Google Scholar] [CrossRef]
- Headland, S.E.; Jones, H.R.; Norling, L.V.; Kim, A.; Souza, P.R.; Corsiero, E.; Gil, C.D.; Nerviani, A.; Dell’accio, F.; Pitzalis, C.; et al. Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Sci. Transl. Med. 2015, 7, 315ra190. [Google Scholar] [CrossRef]
- Xu, M.; Yang, Q.; Sun, X.; Wang, Y. Recent Advancements in the Loading and Modification of Therapeutic Exosomes. Front. Bioeng. Biotechnol. 2020, 8, 586130. [Google Scholar] [CrossRef] [PubMed]
- Curley, N.; Levy, D.; Do, M.A.; Brown, A.; Stickney, Z.; Marriott, G.; Lu, B. Sequential deletion of CD63 identifies topologically distinct scaffolds for surface engineering of exosomes in living human cells. Nanoscale 2020, 12, 12014–12026. [Google Scholar] [CrossRef] [PubMed]
- Dooley, K.; McConnell, R.E.; Xu, K.; Lewis, N.D.; Haupt, S.; Youniss, M.R.; Martin, S.; Sia, C.L.; McCoy, C.; Moniz, R.J.; et al. A versatile platform for generating engineered extracellular vesicles with defined therapeutic properties. Mol. Ther. 2021, 29, 1729–1743. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Duan, L.; Lu, J.; Xia, J. Engineering exosomes for targeted drug delivery. Theranostics 2021, 11, 3183. [Google Scholar] [CrossRef]
- Kolesova, E.; Pulone, S.; Kostyushev, D.; Tasciotti, E. CRISPR/Cas bioimaging: From whole body biodistribution to single-cell dynamics. Adv. Drug Deliv. Rev. 2025, 224, 115619. [Google Scholar] [CrossRef]
- S, B.R.; Dhar, R.; Devi, A. Exosomes-mediated CRISPR/Cas delivery: A cutting-edge frontier in cancer gene therapy. Gene 2025, 944, 149296. [Google Scholar] [CrossRef]
- Nakase, I.; Futaki, S. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci. Rep. 2015, 5, 10112. [Google Scholar] [CrossRef]
- Piffoux, M.; Silva, A.K.A.; Wilhelm, C.; Gazeau, F.; Tareste, D. Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS Nano 2018, 12, 6830–6842. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, J.; Gu, W.; Huang, Y.; Tong, Z.; Huang, L.; Tan, J. Exosome–Liposome Hybrid Nanoparticles Deliver CRISPR/Cas9 System in MSCs. Adv. Sci. 2018, 5, 1700611. [Google Scholar] [CrossRef]
- Li, W.; Wu, S.; Ren, L.; Feng, B.; Chen, Z.; Li, Z.; Cheng, B.; Xia, J. Development of an Antiswelling Hydrogel System Incorporating M2-Exosomes and Photothermal Effect for Diabetic Wound Healing. ACS Nano 2023, 17, 22106–22120. [Google Scholar] [CrossRef]
- Guan, M.; Liu, C.; Zheng, Q.; Chu, G.; Wang, H.; Jin, J.; Wu, H.; Chen, J.; Huang, Q.; Deng, Z.; et al. Exosome-laden injectable self-healing hydrogel based on quaternized chitosan and oxidized starch attenuates disc degeneration by suppressing nucleus pulposus senescence. Int. J. Biol. Macromol. 2023, 232, 123479. [Google Scholar] [CrossRef]
- Xu, Q.; Sigen, A.; Gao, Y.; Guo, L.; Creagh-Flynn, J.; Zhou, D.; Greiser, U.; Dong, Y.; Wang, F.; Tai, H.; et al. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater. 2018, 75, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; You, Y.; Xu, X.; Lu, J.; Huang, X.; Zhang, J.; Zhu, L.; Hu, J.; Wu, X.; Xu, X.; et al. Adipose-Derived Mesenchymal Stem Cell-Derived Exosomes Biopotentiated Extracellular Matrix Hydrogels Accelerate Diabetic Wound Healing and Skin Regeneration. Adv. Sci. 2023, 10, 2304023. [Google Scholar] [CrossRef]
- Luo, Y.; Kang, K.B.; Sartaj, R.; Sun, M.G.; Zhou, Q.; Guaiquil, V.H.; Rosenblatt, M.I. Silk films with nanotopography and extracellular proteins enhance corneal epithelial wound healing. Sci. Rep. 2021, 11, 8168. [Google Scholar] [CrossRef]
- Wang, B.; Li, W.; Harrison, J. An Evaluation of Wound Healing Efficacy of a Film Dressing Made from Polymer-integrated Amnion Membrane. Organogenesis 2020, 16, 126. [Google Scholar] [CrossRef]
- Xu, M.; Qin, M.; Cheng, Y.; Niu, X.; Kong, J.; Zhang, X.; Huang, D.; Wang, H. Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine. Carbohydr. Polym. 2021, 266, 118128. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, J.; Ao, Q. Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine. Mar. Drugs 2021, 19, 264. [Google Scholar] [CrossRef]
- Gounden, V.; Singh, M. Hydrogels and Wound Healing: Current and Future Prospects. Gels 2024, 10, 43. [Google Scholar] [CrossRef]
- Gan, J.; Zhang, X.; Ma, W.; Zhao, Y.; Sun, L. Antibacterial, adhesive, and MSC exosomes encapsulated microneedles with spatio-temporal variation functions for diabetic wound healing. Nano Today 2022, 47, 101630. [Google Scholar] [CrossRef]
- Yao, W.D.; Zhou, J.N.; Tang, C.; Zhang, J.L.; Chen, Z.Y.; Li, Y.; Gong, X.J.; Qu, M.Y.; Zeng, Q.; Jia, Y.L.; et al. Hydrogel Microneedle Patches Loaded with Stem Cell Mitochondria-Enriched Microvesicles Boost the Chronic Wound Healing. ACS Nano 2024, 18, 26733. [Google Scholar] [CrossRef]
- Binaymotlagh, R.; Hajareh Haghighi, F.; Chronopoulou, L.; Palocci, C. Liposome–Hydrogel Composites for Controlled Drug Delivery Applications. Gels 2024, 10, 284. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, H.I.; Sheraton, V.M.; Bumbuc, R.V.; Li, M.; Pijpe, A.; Mulder, P.P.G.; Boekema, B.K.H.L.; de Jong, E.; Papendorp, S.G.F.; Brands, R.; et al. An in silico modeling approach to understanding the dynamics of the post-burn immune response. Front. Immunol. 2024, 15, 1303776. [Google Scholar] [CrossRef] [PubMed]
- Scianna, M.; Bassino, E.; Munaron, L. A cellular Potts model analyzing differentiated cell behavior during in vivo vascularization of a hypoxic tissue. Comput. Biol. Med. 2015, 63, 143–156. [Google Scholar] [CrossRef] [PubMed]
- BMC Ophthalmology, L.; Bao, Y.; Li, B. Protective effects of pituitary adenylate cyclase-activating peptide (PACAP) on high glucose-induced damage in human corneal epithelial cell. BMC Ophthalmol. 2025, 25, 462. [Google Scholar] [CrossRef]
- Stamm, A.; Reimers, K.; Strauß, S.; Vogt, P.; Scheper, T.; Pepelanova, I. In vitro wound healing assays—State of the art. BioNanoMaterials 2016, 17, 79–87. [Google Scholar] [CrossRef]
- Singh, V.; Ravindranath, S.K.; Verma, H.; Shukla, S.; Rai, A.; Patani, T.; Mishra, T.; Mishra, A.; Gupta, R.K. Harnessing traditional chinese medicine for wound healing and modern wound models: An overview. Pharmacol. Res.-Mod. Chin. Med. 2025, 16, 100664. [Google Scholar] [CrossRef]
- Yen, B.L.; Hsieh, C.C.; Hsu, P.J.; Chang, C.C.; Wang, L.T.; Yen, M.L. Three-Dimensional Spheroid Culture of Human Mesenchymal Stem Cells: Offering Therapeutic Advantages and In Vitro Glimpses of the In Vivo State. Stem Cells Transl. Med. 2023, 12, 235–244. [Google Scholar] [CrossRef]
- Maione, A.G.; Brudno, Y.; Stojadinovic, O.; Park, L.K.; Smith, A.; Tellechea, A.; Leal, E.C.; Kearney, C.J.; Veves, A.; Tomic-Canic, M.; et al. Three-Dimensional Human Tissue Models That Incorporate Diabetic Foot Ulcer-Derived Fibroblasts Mimic In Vivo Features of Chronic Wounds. Tissue Eng. Part C Methods 2015, 21, 499. [Google Scholar] [CrossRef]
- Hu, Q.; Peng, X.; Yang, Y.; Liu, Z. Hair follicle transplantation promotes skin ulcer healing in a mouse model of experimental diabetes. Sci. Rep. 2025, 15, 29717. [Google Scholar] [CrossRef]
- Jara, C.P.; Nogueira, G.; Morari, J.; do Prado, T.P.; de Medeiros Bezerra, R.; Velloso, L.A.; Velander, W.; de Araújo, E.P. An older diabetes-induced mice model for studying skin wound healing. PLoS ONE 2023, 18, e0281373. [Google Scholar] [CrossRef]
- Hu, Y.; Xiong, Y.; Tao, R.; Xue, H.; Chen, L.; Lin, Z.; Panayi, A.C.; Mi, B.; Liu, G. Advances and perspective on animal models and hydrogel biomaterials for diabetic wound healing. Biomater. Transl. 2022, 3, 188. [Google Scholar] [CrossRef]
- Moor, A.N.; Tummel, E.; Prather, J.L.; Jung, M.; Lopez, J.J.; Connors, S.; Gould, L.J. Consequences of age on ischemic wound healing in rats: Altered antioxidant activity and delayed wound closure. Age 2014, 36, 733. [Google Scholar] [CrossRef] [PubMed]
- Pignet, A.L.; Schellnegger, M.; Hecker, A.; Kamolz, L.P.; Kotzbeck, P. Modeling Wound Chronicity In Vivo: The Translational Challenge to Capture the Complexity of Chronic Wounds. J. Investig. Dermatol. 2024, 144, 1454–1470. [Google Scholar] [CrossRef] [PubMed]
- Garrido, V.; Piñero-Lambea, C.; Rodriguez-Arce, I.; Paetzold, B.; Ferrar, T.; Weber, M.; Garcia-Ramallo, E.; Gallo, C.; Collantes, M.; Peñuelas, I.; et al. Engineering a genome-reduced bacterium to eliminate Staphylococcus aureus biofilms in vivo. Mol. Syst. Biol. 2021, 17, e10145. [Google Scholar] [CrossRef]
- Ganesh, K.; Sinha, M.; Mathew-Steiner, S.S.; Das, A.; Roy, S.; Sen, C.K. Chronic Wound Biofilm Model. Adv. Wound Care 2015, 4, 382. [Google Scholar] [CrossRef]
- Duarte Campos, D.F.; Lindsay, C.D.; Roth, J.G.; LeSavage, B.L.; Seymour, A.J.; Krajina, B.A.; Ribeiro, R.; Costa, P.F.; Blaeser, A.; Heilshorn, S.C. Bioprinting Cell- and Spheroid-Laden Protein-Engineered Hydrogels as Tissue-on-Chip Platforms. Front. Bioeng. Biotechnol. 2020, 8, 529581. [Google Scholar] [CrossRef]
- Agarwal, A.; Goss, J.A.; Cho, A.; McCain, M.L.; Parker, K.K. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 2013, 13, 3599. [Google Scholar] [CrossRef]
- Jang, K.J.; Mehr, A.P.; Hamilton, G.A.; McPartlin, L.A.; Chung, S.; Suh, K.Y.; Ingber, D.E. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 2013, 5, 1119–1129. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Z.; Zhang, M.; Song, F.; Feng, C.; Liu, H. Simple and robust 3D bioprinting of full-thickness human skin tissue. Bioengineered 2022, 13, 10087. [Google Scholar] [CrossRef]
- Olejnik, A.; Semba, J.A.; Kulpa, A.; Dańczak-Pazdrowska, A.; Rybka, J.D.; Gornowicz-Porowska, J. 3D Bioprinting in Skin Related Research: Recent Achievements and Application Perspectives. ACS Synth. Biol. 2021, 11, 26. [Google Scholar] [CrossRef]
- Cui, X.; Boland, T.; D’Lima, D.D.; Lotz, M.K. Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine. Recent Pat. Drug Deliv. Formul. 2012, 6, 149. [Google Scholar] [CrossRef]
- Axpe, E.; Oyen, M.L. Applications of Alginate-Based Bioinks in 3D Bioprinting. Int. J. Mol. Sci. 2016, 17, 1976. [Google Scholar] [CrossRef]
- You, F.; Eames, B.F.; Chen, X. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering. Int. J. Mol. Sci. 2017, 18, 1597. [Google Scholar] [CrossRef]
- Ma, X.; Liu, J.; Zhu, W.; Tang, M.; Lawrence, N.; Yu, C.; Gou, M.; Chen, S. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv. Drug Deliv. Rev. 2018, 132, 235. [Google Scholar] [CrossRef] [PubMed]
- Gou, M.; Qu, X.; Zhu, W.; Xiang, M.; Yang, J.; Zhang, K.; Wei, Y.; Chen, S. Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat. Commun. 2014, 5, 3774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Soman, P.; Meggs, K.; Qu, X.; Chen, S. Tuning the Poisson’s Ratio of Biomaterials for Investigating Cellular Response. Adv. Funct. Mater. 2013, 23, 3226–3232. [Google Scholar] [CrossRef]
- Balachandran, A.; Choi, S.B.; Beata, M.M.; Małgorzata, J.; Froemming, G.R.A.; Lavilla, C.A.; Billacura, M.P.; Siyumbwa, S.N.; Okechukwu, P.N. Antioxidant, Wound Healing Potential and In Silico Assessment of Naringin, Eicosane and Octacosane. Molecules 2023, 28, 1043. [Google Scholar] [CrossRef]
- Mandale, V.; Thomas, A.; Wavhale, R.; Chitlange, S. In-silico Screening of Phytoconstituents on Wound Healing Targets—Approaches and Current Status. Curr. Drug Discov. Technol. 2021, 19, 26–39. [Google Scholar] [CrossRef]
- Strong, A.L.; Bowles, A.C.; MacCrimmon, C.P.; Lee, S.J.; Frazier, T.P.; Katz, A.J.; Gawronska-Kozak, B.; Bunnell, B.A.; Gimble, J.M. Characterization of a Murine Pressure Ulcer Model to Assess Efficacy of Adipose-derived Stromal Cells. Plast. Reconstr. Surg. Glob. Open 2015, 3, e334. [Google Scholar] [CrossRef]
- Peirce, S.M.; Skalak, T.C.; Rodeheaver, G.T. Ischemia-reperfusion injury in chronic pressure ulcer formation: A skin model in the rat. Wound Repair Regen. 2000, 8, 68–76. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Ueno, K.; Mizoguchi, T.; Samura, M.; Harada, T.; Oga, A.; Murata, T.; Hosoyama, T.; Morikage, N.; Hamano, K. Development of Novel Mouse Model of Ulcers Induced by Implantation of Magnets. Sci. Rep. 2017, 7, 4843. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.; Sultan, D.L.; Waqas, B.; Ellison, T.; Kwong, J.; Kim, C.; Hassan, A.; Rabbani, P.S.; Ceradini, D.J. Nrf2-activating Therapy Accelerates Wound Healing in a Model of Cutaneous Chronic Venous Insufficiency. Plast. Reconstr. Surg. Glob. Open 2020, 8, e3006. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Li, Z.; Xie, L.; Lin, R.; Yan, B.; Li, B.; Luo, L.; Xv, Y.; Wen, H.; Liang, Y.; et al. Biomimetic gene delivery system coupled with extracellular vesicle–encapsulated AAV for improving diabetic wound through promoting vascularization and remodeling of inflammatory microenvironment. J. Nanobiotechnol. 2025, 23, 242. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Ma, X.; Li, F. Dedifferentiated fat cells-derived exosomes (DFATs-Exos) loaded in GelMA accelerated diabetic wound healing through Wnt/β-catenin pathway. Stem Cell Res. Ther. 2025, 16, 103. [Google Scholar] [CrossRef]
- Song, P.; Liang, Q.; Ge, X.; Zhou, D.; Yuan, M.; Chu, W.; Xu, J. Adipose-Derived Stem Cell Exosomes Promote Scar-Free Healing of Diabetic Wounds via miR-204-5p/TGF-β1/Smad Pathway. Stem Cells Int. 2025, 2025, 6344844. [Google Scholar] [CrossRef]
- Wu, J.; Li, S.; Wang, H.; Qi, Y.; Tao, S.; Tang, P.; Liu, D. High-yield BMSC-derived exosomes by the 3D culture system to enhance the skin wound repair. Regen. Biomater. 2025, 12, rbaf022. [Google Scholar] [CrossRef]
- Maroto, R.; Zhao, Y.; Jamaluddin, M.; Popov, V.L.; Wang, H.; Kalubowilage, M.; Zhang, Y.; Luisi, J.; Sun, H.; Culbertson, C.T. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J. Extracell. Vesicles 2017, 6, 1359478. [Google Scholar] [CrossRef]
- Park, S.J.; Jeon, H.; Yoo, S.-M.; Lee, M.-S. The effect of storage temperature on the biological activity of extracellular vesicles for the complement system. Vitr. Cell. Dev. Biol. 2018, 54, 423–429. [Google Scholar] [CrossRef]
- Lee, M.; Ban, J.-J.; Im, W.; Kim, M. Influence of storage condition on exosome recovery. Biotechnol. Bioprocess Eng. 2016, 21, 299–304. [Google Scholar] [CrossRef]
- Ezati, M.; Hashemi, A.; Zumberg, I.; Nasr, M.P.; Fohlerova, Z.; Ezati, M.; Hashemi, A.; Zumberg, I.; Nasr, M.P.; Fohlerova, Z. In Vitro Assessment of Chitosan-PEG Hydrogels Enriched with MSCs-Exosomes for Enhancing Wound Healing. Macromol. Biosci. 2025, 25, 2400609. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, L.; Li, W.; Zhao, W.; Chen, W.; AlQranei, M.S.; Bi, J.; Huang, P. GelMA hydrogel-loaded extracellular vesicles derived from keratinocytes promote skin microvasculature regeneration and wound healing in diabetic mice through activation of the PDGF-induced PI3K/AKT pathway. Cell Biol. Toxicol. 2025, 41, 103. [Google Scholar] [CrossRef]
- Liu, H.; Hao, F.; Chen, B. Hypoxic adipose-derived stem cell exosomes as carriers of miR-100-5p to enhance angiogenesis and suppress inflammation in diabetic foot ulcers. J. Cell Commun. Signal. 2025, 19, e70018. [Google Scholar] [CrossRef]
- Lunavat, T.R.; Jang, S.C.; Nilsson, L.; Park, H.T.; Repiska, G.; Lässer, C.; Nilsson, J.A.; Gho, Y.S.; Lötvall, J. RNAi delivery by exosome-mimetic nanovesicles—Implications for targeting c-Myc in cancer. Biomaterials 2016, 102, 231–238. [Google Scholar] [CrossRef]
- Study Details|Pilot Study of Human Adipose Tissue Derived Exosomes Promoting Wound Healing|ClinicalTrials.gov [Electronic Resource]. Available online: https://clinicaltrials.gov/study/NCT05475418?cond=Wound&intr=Exosomes&rank=2 (accessed on 29 June 2025).
- Study Details|Therapeutic Potential of Stem Cell Conditioned Medium on Chronic Ulcer Wounds|ClinicalTrials.gov [Electronic Resource]. Available online: https://clinicaltrials.gov/study/NCT04134676 (accessed on 29 June 2025).
- Study Details|Effect of Plasma Derived Exosomes on Cutaneous Wound Healing|ClinicalTrials.gov [Electronic Resource]. Available online: https://clinicaltrials.gov/study/NCT02565264?cond=Wound&intr=Exosomes&rank=1 (accessed on 29 June 2025).
- Study Details|Randomized, Controlled, Multicenter Study of Extracellular Vesicles from Human Adipose Tissue Promoting Wound Healing|ClinicalTrials.gov [Electronic Resource]. Available online: https://clinicaltrials.gov/study/NCT06253975?term=(%22ExtracellularVesicles%22ORExosomesORNanoparticles)AND(%22chronicwound%22ORulcerORwoundOR%22woundregeneration%22)NOTCovid19NOTCancer&rank=10 (accessed on 6 July 2025).
- Study Details|Use of Extracellular Vesicles (EV) for Diabetic Foot Ulcers|ClinicalTrials.gov [Electronic Resource]. Available online: https://clinicaltrials.gov/study/NCT06825884?term=(%22ExtracellularVesicles%22ORExosomesORNanoparticles)AND(%22chronicwound%22ORulcerORwoundOR%22woundregeneration%22)NOTCovid19NOTCancer&rank=3 (accessed on 6 July 2025).


| Type | Description | Advantages | Disadvantages | References |
|---|---|---|---|---|
| Hydrogels | 3D polymer networks retaining high water content (up to 99%). Serve as scaffolds for NP delivery |
|
| [37,83,84,85,86,94] |
| Films | Thin polymer matrices for local NP delivery. NPs are encapsulated during film formation, released via diffusion/degradation. |
|
| [29,87,88] |
| Alginates | Natural polysaccharides (from algae/bacteria) processed into hydrogels, films, or sponges for NP/drug delivery. |
|
| [89,90] |
| Microneedles | Miniature needles (100–1000 μm) on patches/hydrogels. Penetrate epidermis/dermis to deliver NPs (e.g., exosomes, MSCs) to deep layers. |
|
| [92,93] |
| Model Name | Characterizes | Advantages | Disadvantages | Ref. | |
|---|---|---|---|---|---|
| In silico | Agent-Based Model based on Glazier–Graner–Hogeweg method, also known as Cellular Potts Model | The model is a spatiotemporal simulation of the immune response after a burn | (1) Allows modeling of localized interactions and concentration gradients (2) New cell types, cytokines, and interaction rules can be added (3) Parameters are tuned based on real biological data | (1) Requires significant resources with a large number of agents (2) Many processes (e.g., apoptosis, proliferation) are specified probabilistically or omitted (3) Does not take into account the three-dimensional structure of the tissue and the depth of the wound (4) The model focuses only on the innate immune response | [95,96] |
| Molecular docking and ADME prediction | Using AutoDock 4.2, pkCMS, SwissTargetPrediction software, AutoDock, iGemdock, and modeling | (1) Fast and low cost (2) Prediction of mechanisms of action at the molecular level (3) Ability to screen thousands of compounds virtually | (1) Does not replace experimental data (2) Does not take into account complex biochemical contexts in vivo | [120,121] | |
| In vitro | 2D cell model | A method in which a cell monolayer is mechanically damaged, after which the rate of healing of the resulting lesion, simulating a wound, is measured | (1) Ease of implementation and availability of equipment (2)Low cost and high speed of experiments | (1) Low reproducibility due to the subjectivity of damage application (2) Short-term nature of the model (3) Does not take into account the three-dimensional architecture and intercellular interactions typical of in vivo conditions Does not involve immune mechanisms? | [97,98] |
| 3D cell culture (spheroids) | Mesenchymal stromal/stem cells from various sources cultured under low adhesion conditions, resulting in self-assembly of cells into multicellular aggregates—spheroids. | (1) Reproduces cell-cell and cell-matrix interactions. (2) Suitable for studying in vivo-like processes: modeling hypoxia and metabolic changes in the center of the spheroid. (3) Can be used in regenerative medicine and for wound healing | (1) Labor-intensive and expensive compared to 2D culture. (2) Cells in the center may already undergo cell death due to ischemia and lack of nutrients. (3) Risk of necrosis in the center of large spheroids due to a lack of oxygen | [100,101] | |
| In vivo | Diabetic wound model | The model involves artificial induction of diabetes in various ways, like a combination of a high-fat diet and low doses of streptozotocin | (1) Possibility of studying long-term wound healing in diabetic conditions. (2) Suitable for screening therapeutic interventions | (1) STZ toxicity may affect animal health and survival. (2) Limited translation to humans due to species differences in wound healing and metabolism. | [102,103,104] |
| Ischemic wound model | Ischemic wound models allow studying the mechanisms of impaired healing under conditions of hypoxia, oxidative stress, and age-related changes | (1) It is possible to study ischemic and non-ischemic wounds simultaneously on one animal (2) The model allows for isolating the effect of hypoxia from other factors. | (1) The model requires surgical intervention, which may affect the general condition of the animal (2) Despite physiological similarities, the response to ischemia in humans may differ | [105,106] | |
| Biofilm-infected wound model | The model represents a long-term polymicrobial biofilm infection of full-thickness burn wounds in different animals | (1) Takes into account the immune response and systemic factors (2) The ability to assess the dynamics of infection and treatment in real time. | (1) High cost and labor intensity. (2) Possible variability between animals. | [107,108] | |
| Pressure wound model | Model reproduces the key mechanism of pressure ulcer formation in humans—repeated cycles of ischemia and subsequent reperfusion | (1) The most accurate simulation of the mechanism of pressure ulcer formation in humans (2) Does not require surgical intervention (3) Allows tracking all stages of the process—from injury to complete healing | (1) The model creates an acute injury, while clinical pressure ulcers are often the result of long-term chronic pressure. (2) The model was tested on young and healthy animals, while in humans, pressure ulcers are more likely to occur due to old age, diabetes, circulatory problems, and immobility | [122,123] | |
| Ulcer wound model | A model based on subcutaneous iron administration to induce hemosiderin deposits, oxidative stress, and delayed wound healing mimicking human chronic venous insufficiency | (1) Better reproduces the pathology of chronic ulcers in humans due to abundant exudation, inflammation, and disruption of TGF-β signaling (2) The model allows for to study of disruption in signaling pathways | (1) Requires surgical intervention and the use of magnets, which provides technical complexity (2) Unlike refractory human ulcers, this model heals over time (3) Inflammation can be partially caused by a foreign body (magnet) | [124,125] |
| BNPs | The Types of Cells | Production of NPs | Dosage Form | Degradation Period | Models | Results | Ref. |
|---|---|---|---|---|---|---|---|
| EV-AAV/MSC-Exo | HEK293T/hUC-MSCs | Density gradient ultracentrifugation-based on iodixanol (EV-AAV), Ultracentrifugation (MSC-Exo) | Thermosensitive hydrogel, FHCCgel | Up to 10–14 days | Analysis of 2D in vitro models: 1. Anti-inflammatory model (H2O2-treated HUVECs); 2. Cell scratch assay (HUVECs) | 1. ↓ 8-OHDG level (p < 0.001), ↑ mPTP level (p < 0.001); 2. ↑ proliferative and migratory effects (p < 0.001) | [15] |
| In vivo: Diabetic wound model (type 2 diabetic mice and male C57 mice) | ↑ VEGF level (p < 0.001), ↓ wound healing time (p < 0.001), and ↑ collagen index (p < 0.001) | ||||||
| DFATs-Exos | DFATs | Ultracentrifugation | Hydrogel based on gelatin methacrylate, GelMA | Within 14 days | Analysis on 2D in vitro models: 1. Tube formation assay (HUVECs) 2. Proliferation and migration assays in a high-glucose environment (HDFs) | 1. ↑ tube formation (p < 0.01), ↑ VEGF and HGF levels (p < 0.001); 2. ↑ proliferation (p < 0.001), ↑ migration (p < 0.0001) | [24] |
| In vivo: Diabetic wound model (BALB/c mice) | ↑ wound closure rate (no statistics available), ↑ angiogenesis (evaluated CD31, p < 0.0001), ↑ proliferation (p < 0.05) | ||||||
| ADSC-Exos | ADSCs | Differential ultracentrifugation | Injectable form for subcutaneous administration | No data | Analysis on 2D in vitro models: 1. Proliferation and migration assays in a high-glucose environment (HG RSF) | ↑ proliferation (p < 0.05), ↑ migration (p < 0.05) | [7] |
| In vivo: Diabetic wound model (SD rats) | ↑ wound closure rate (p < 0.05) after 14 days, ↓ scar widths (p < 0.001), ↑ surface area and thickness of epithelial coverage (p < 0.001) | ||||||
| MSCs-derived Exos | ADMSCs | Differential ultracentrifugation | Chitosan-PEG Hydrogel | Within 14 days | Analysis on 2D in vitro models: Only Exos: 1. Scratch wound assay (NIH/3T3) 2. Tube formation assay (HUVECs) CS-PEG-Exos: Proliferation assay using MTT (NIH/3T3) | 1. ↑migration (p < 0.05), ↓ ROS level (p < 0.05) 2. ↑ loop formation (p < 0.05), tube length (p < 0.01), tube width (p < 0.001) ↑ proliferation (3 day: p <0.05, 5 day: p < 0.01) | [46] |
| FB-Exos | Dermal fibroblasts | Differential ultracentrifugation | Injectable form for subcutaneous administration | No data | Analysis on 2D in vitro models: 1. Tube formation assay (vECs) 2. Proliferation assay (vECs) 3. Apoptosis assay (vECs) 4. Scratch wound assay (vECs) 5. Transwell assays (vECs) | 1. ↑tubulogenesis (p < 0.05), ↑ tubule formation (p < 0.001) 2. ↑ proliferation (immunofluorescence: p < 0.05, flow cytometry: p < 0.001) 3. ↓ apoptosis (immunofluorescence: p <0.001, flow cytometry: p < 0.001) 4. ↑ migration (p < 0.001) 5. ↑ migration (p < 0.01) | [31] |
| In vivo: 1. Full-thickness excision wound model with GW4869 (C57BL/6 mice) 2. Diabetic wound model (C57BL/6 mice) | 1. ↑ wound healing rate (p < 0.01), ↑ neovascularization (p < 0.001), and ↑ perfusion (p < 0.01) compared to GW4869-treated cells 2. ↑ wound healing rate (p < 0.001), ↑ neovascularization (p < 0.01), ↑ perfusion (p < 0.01) | ||||||
| H-ADSCs-Exo | HypoxicADSCs | Differential ultracentrifugation | Injectable form for subcutaneous administration | No data | Analysis on 2D in vitro models: 1. CCK-8 assay (HUVEC and FR) 2. Transwell assays (HUVEC and FR) 3. Western blot analysis (HUVEC) 4. Tube formation assay (HUVEC) | H-ADSCs-Exo vs. PBS: 1.↑ proliferation (p < 0.001) 2.↑ migration (p < 0.001) 3. ↑ expression levels of VEGF, angiopoietin 1, collagen I, and fibronectin proteins (p < 0.001) 4.↑ length, number, and junction tubes (p < 0.001) | [50] |
| In vivo: Diabetic wound model (SD rats) | H-ADSCs-Exo vs. PBS: ↓ ulcer size (p < 0.001), ↑ skin thickness (p < 0.001),↑ VEGF and CD31 (p < 0.001), ↓ TNF-α and IL-6 (p < 0.01) | ||||||
| GelMA-EVs | HaCaT | Differential ultracentrifugation | Hydrogel based on gelatin methacrylate, GelMA | No data, but GelMA-EVs can be released approximately 14 days | Analysis on 2D in vitro models: 1. CCK-8 assay (HUVEC) 2. Transwell assays (HUVEC) 3. Wound healing assay (HUVEC) 4. Tube formation assay (HUVEC) 5. RT-qPCR (HUVEC) | GelMA-EVs vs. HaCaT-Evs: 1. ↑ proliferation (p < 0.05) 2. ↑ migration (p < 0.05) 3. ↑ wound closure rate (p < 0.05) 4. ↑ tube formation (p < 0.05) 5. ↑ mRNA expression levels of CD31 (p < 0.01), ANG-1(p < 0.05), and VEGF(p < 0.05) | [38] |
| In vivo: Diabetic wound model (C57BL/6 mice) | GelMA-EVs vs. HaCaT-Evs: ↑ wound closure rate (p < 0.05), ↑ re-epithelialization (p < 0.05), and ↑ collagen deposition (p < 0.01) | ||||||
| EMNVs transporting LncRNA-H19 | HEK293 cells were transfected with an H19-OE lentiviral vector or an empty vector | Serial extrusion with two-step purification: ultrafiltration and density gradient ultracentrifugation based on a 30% sucrose/D2O cushion | Sodium Alginate Hydrogel, SAH | No data | Analysis on 2D in vitro models: 1. CCK-8 assay (HMEC-1) 2. Cell proliferation assay (HMEC-1) 3. Transwell assays (HMEC-1) 4. Tube formation assay (HMEC-1) | 1. ↑ proliferation (p < 0.05) 2. ↑ proliferation (p < 0.05) 3. ↑ migration (p < 0.05) 4. ↑ percent of tube numbers and branch points (p < 0.05) | [40] |
| In vivo: Diabetic wound model (SD rats) | ↑ wound closure rate (p < 0.05),↑ length of renascent skin (p < 0.05), ↑ percentage of vessel area and vessel number (p < 0.05), and ↑ mature blood vessels (p < 0.05) |
| Trial ID | Brief Title | Therapy | Delivery Method | Trial Phase | Results |
|---|---|---|---|---|---|
| NCT05475418 | Pilot Study of Human Adipose Tissue-Derived Exosomes Promoting Wound Healing | Extracellular vesicles from adipose tissue | Sterile hydrogel + inert protective dressing | Not Applicable | No results posted |
| NCT04134676 | Therapeutic Potential of Stem Cell Conditioned Medium on Chronic Ulcer Wounds | Wharton’s Jelly MSC Conditioned Medium (secretomes/exosomes) | Topical gel + transparent dressing | Phase 1 | No results posted |
| NCT02565264 | Effect of Plasma-Derived Exosomes on Cutaneous Wound Healing | Autologous plasma-derived exosomes | Direct application (exosome-rich buffer) | Early Phase 1 | No results posted |
| NCT06812637 | Efficacy and Safety of Wharton’s Jelly-Derived MSC Exosomes for Diabetic Foot Ulcers | WJ-MSC-derived exosomes | CMC-based gel | Phase 1 | No results posted (Study completed 2024) |
| NCT06253975 | Randomized Study of Extracellular Vesicles From Human Adipose Tissue Promoting Wound Healing | Adipose tissue-derived extracellular vesicles (AT-EVs) | HA hydrogel | Not Applicable | No results posted (Ongoing) |
| NCT06825884 | Use of Extracellular Vesicles (EV) for Diabetic Foot Ulcers | Extracellular microvesicles (EV) from platelets | Perilesional injection (5 mL weekly) + exofiber dressing | Phase 1 | No results posted (Ongoing) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zotikov, D.; Ponomareva, N.; Brezgin, S.; Kostyusheva, A.; Frolova, A.; Chulanov, V.; Lukashev, A.; Timashev, P.; Kostyushev, D. Biological Nanoparticles for Enhancing Chronic Wound Regeneration. Cells 2025, 14, 1637. https://doi.org/10.3390/cells14201637
Zotikov D, Ponomareva N, Brezgin S, Kostyusheva A, Frolova A, Chulanov V, Lukashev A, Timashev P, Kostyushev D. Biological Nanoparticles for Enhancing Chronic Wound Regeneration. Cells. 2025; 14(20):1637. https://doi.org/10.3390/cells14201637
Chicago/Turabian StyleZotikov, Daniil, Natalia Ponomareva, Sergey Brezgin, Anastasiia Kostyusheva, Anastasiya Frolova, Vladimir Chulanov, Alexander Lukashev, Peter Timashev, and Dmitry Kostyushev. 2025. "Biological Nanoparticles for Enhancing Chronic Wound Regeneration" Cells 14, no. 20: 1637. https://doi.org/10.3390/cells14201637
APA StyleZotikov, D., Ponomareva, N., Brezgin, S., Kostyusheva, A., Frolova, A., Chulanov, V., Lukashev, A., Timashev, P., & Kostyushev, D. (2025). Biological Nanoparticles for Enhancing Chronic Wound Regeneration. Cells, 14(20), 1637. https://doi.org/10.3390/cells14201637

