Joint Acidosis and Acid-Sensing Receptors and Ion Channels in Osteoarthritis Pathobiology and Therapy
Abstract
1. Introduction
Osteoarthritis and the Overlooked Axis of Joint Acidosis
2. Physiological Basis of Joint pH
2.1. What Has Been Measured in OA vs. RA
2.2. Method/Compartment Considerations and Therapeutic Thresholds
3. Biological Sources of Acidosis in the Osteoarthritic Joint
3.1. Hypoxia-Driven Glycolysis in Articular Cartilage
3.2. Synovitis, Immune-Cell Metabolism, and Lactate Handling
3.3. Proton-Handling Systems in Joint Cells
3.4. Structural Contributors: Extracellular Matrix, Meniscus, and Subchondral Bone
4. Consequences of Acidosis for Joint Tissues
4.1. Cartilage: Matrix Catabolism, Loss of Anabolism, and Stress Responses
4.2. Synovium and Innate Immunity: Cytokine Programs, Fibroblast Behavior, and Angiogenesis
4.3. Nociception and Pain: Proton-Gated Channels in Joint Afferents
4.4. Subchondral Bone and Osteophyte Biology
4.5. What Is Established in RA vs. Still Emerging in OA
5. How Joint Cells Sense Acidity
5.1. Proton-Sensing G-Protein-Coupled Receptors (GPCRs)
5.1.1. Evidence in OA Tissues
5.1.2. Expression Landscape Across OA-Relevant Cell Types
5.2. Ion Channels and Other Proton-Sensitive Sensors
5.3. Downstream Signaling Programs and OA Readouts
5.4. Proton-Sensitive K2P Potassium Channels (TASK/TREK/TRAAK) in the Acid–Mechanics Interface
6. Therapeutic Implications of Joint Acidosis
6.1. Protease Axis: Cathepsin K and Acid-Enabled Matrix Degradation
6.2. Modulating Proton-Sensing GPCRs
6.3. Ion Channels: ASIC and TRPV1 Approaches
6.4. Metabolic and Transport Interventions to Reduce Acid Load
6.5. pH-Aware Delivery and Patient Selection
7. Knowledge Gaps and Research Priorities
7.1. Quantifying Joint Acidosis In Vivo (Where, When, and How Much?)
7.2. Connecting Acidosis to Cell Programs with Multi-Omics
7.3. Sensor Redundancy and Cross-Talk (GPCRs vs. Ion Channels)
7.4. Acid Sources and Flux: Transporters, Exchangers, and Buffering
7.5. Biomarkers and Endotypes for pH-Directed Therapy
7.6. Therapeutic Targeting: Selectivity, Delivery, and Safety
7.7. Experimental Standards and Clinical Trial Design
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.Z.; Liang, X.Z.; Sun, Y.Q.; Jia, H.F.; Li, J.C.; Li, G. Global, regional, and national burdens of osteoarthritis from 1990 to 2021: Findings from the 2021 global burden of disease study. Front. Med. 2024, 11, 1476853. [Google Scholar] [CrossRef]
- Ouyang, Y.; Dai, M. Global, regional, and national burden of knee osteoarthritis: Findings from the Global Burden of Disease study 2021 and projections to 2045. J. Orthop. Surg. Res. 2025, 20, 766. [Google Scholar] [CrossRef]
- Wu, R.; Guo, Y.; Chen, Y.; Zhang, J. Osteoarthritis burden and inequality from 1990 to 2021: A systematic analysis for the global burden of disease Study 2021. Sci. Rep. 2025, 15, 8305. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef] [PubMed]
- Oo, W.M. Prospects of Disease-Modifying Osteoarthritis Drugs. Rheum. Dis. Clin. N. Am. 2024, 50, 483–518. [Google Scholar] [CrossRef] [PubMed]
- Berenbaum, F.; Griffin, T.M.; Liu-Bryan, R. Review: Metabolic Regulation of Inflammation in Osteoarthritis. Arthritis Rheumatol. 2017, 69, 9–21. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Z.; Sheng, P.; Mobasheri, A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res. Rev. 2021, 66, 101249. [Google Scholar] [CrossRef]
- Jebens, E.H.; Monk-Jones, M.E. On the viscosity and pH of synovial fluid and the pH of blood. J. Bone Jt. Surg. Br. Vol. 1959, 41, 388–400. [Google Scholar] [CrossRef]
- Lombardi, A.F.; Ma, Y.; Jang, H.; Jerban, S.; Tang, Q.; Searleman, A.C.; Meyer, R.S.; Du, J.; Chang, E.Y. AcidoCEST-UTE MRI Reveals an Acidic Microenvironment in Knee Osteoarthritis. Int. J. Mol. Sci. 2022, 23, 4466. [Google Scholar] [CrossRef]
- Farr, M.; Garvey, K.; Bold, A.M.; Kendall, M.J.; Bacon, P.A. Significance of the hydrogen ion concentration in synovial fluid in rheumatoid arthritis. Clin. Exp. Rheumatol. 1985, 3, 99–104. [Google Scholar]
- Goldie, I.; Nachemson, A. Synovial pH in rheumatoid knee-joints. I. The effect of synovectomy. Acta Orthop. Scand. 1969, 40, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Goldie, I.; Nachemson, A. Synovial pH in rheumatoid knee joints. II. The effect of local corticosteroid treatment. Acta Orthop. Scand. 1970, 41, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.D.; Fleaca, R.S.; Boicean, A.; Bratu, D.; Birlutiu, V.; Rus, L.L.; Tantar, C.; Mitariu, S.I.C. Assesment of Synovial Fluid pH in Osteoarthritis of the HIP and Knee. Rev. Chim 2017, 68, 1242–1244. [Google Scholar] [CrossRef]
- High, R.A.; Ji, Y.; Ma, Y.J.; Tang, Q.; Murphy, M.E.; Du, J.; Chang, E.Y. In vivo assessment of extracellular pH of joint tissues using acidoCEST-UTE MRI. Quant. Imaging Med. Surg. 2019, 9, 1664–1673. [Google Scholar] [CrossRef]
- Konttinen, Y.T.; Mandelin, J.; Li, T.F.; Salo, J.; Lassus, J.; Liljeström, M.; Hukkanen, M.; Takagi, M.; Virtanen, I.; Santavirta, S. Acidic cysteine endoproteinase cathepsin K in the degeneration of the superficial articular hyaline cartilage in osteoarthritis. Arthritis Rheum. 2002, 46, 953–960. [Google Scholar] [CrossRef]
- Dai, B.; Zhu, F.; Chen, Y.; Zhou, R.; Wang, Z.; Xie, Y.; Wu, X.; Zu, S.; Li, G.; Ge, J.; et al. ASIC1a Promotes Acid-Induced Autophagy in Rat Articular Chondrocytes through the AMPK/FoxO3a Pathway. Int. J. Mol. Sci. 2017, 18, 2125. [Google Scholar] [CrossRef]
- Izumi, M.; Ikeuchi, M.; Ji, Q.; Tani, T. Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. J. Biomed. Sci. 2012, 19, 77. [Google Scholar] [CrossRef]
- Kelly, S.; Chapman, R.J.; Woodhams, S.; Sagar, D.R.; Turner, J.; Burston, J.J.; Bullock, C.; Paton, K.; Huang, J.; Wong, A.; et al. Increased function of pronociceptive TRPV1 at the level of the joint in a rat model of osteoarthritis pain. Ann. Rheum. Dis. 2015, 74, 252–259. [Google Scholar] [CrossRef]
- Ludwig, M.G.; Vanek, M.; Guerini, D.; Gasser, J.A.; Jones, C.E.; Junker, U.; Hofstetter, H.; Wolf, R.M.; Seuwen, K. Proton-sensing G-protein-coupled receptors. Nature 2003, 425, 93–98. [Google Scholar] [CrossRef]
- Sisignano, M.; Fischer, M.J.M.; Geisslinger, G. Proton-Sensing GPCRs in Health and Disease. Cells 2021, 10, 2050. [Google Scholar] [CrossRef]
- Coimbra, I.B.; Jimenez, S.A.; Hawkins, D.F.; Piera-Velazquez, S.; Stokes, D.G. Hypoxia inducible factor-1 alpha expression in human normal and osteoarthritic chondrocytes. Osteoarthr. Cartil. 2004, 12, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Pfander, D.; Swoboda, B.; Cramer, T. The role of HIF-1alpha in maintaining cartilage homeostasis and during the pathogenesis of osteoarthritis. Arthritis Res. Ther. 2006, 8, 104. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liyanage, C.; Plan, M.; Stark, T.; McCubbin, T.; Barrero, R.A.; Batra, J.; Crawford, R.; Xiao, Y.; Prasadam, I. Dysregulated energy metabolism impairs chondrocyte function in osteoarthritis. Osteoarthr. Cartil. 2023, 31, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Zhang, C.; Ni, L.; Huang, C.; Chen, D.; Shi, K.; Jin, H.; Zhang, K.; Li, Y.; Xie, L.; et al. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy. Cell Death Dis. 2020, 11, 481. [Google Scholar] [CrossRef]
- Murphy, C.L.; Thoms, B.L.; Vaghjiani, R.J.; Lafont, J.E. Hypoxia. HIF-mediated articular chondrocyte function: Prospects for cartilage repair. Arthritis Res. Ther. 2009, 11, 213. [Google Scholar] [CrossRef]
- Yang, S.; Kim, J.; Ryu, J.H.; Oh, H.; Chun, C.H.; Kim, B.J.; Min, B.H.; Chun, J.S. Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nat. Med. 2010, 16, 687–693. [Google Scholar] [CrossRef]
- Zeng, C.Y.; Wang, X.F.; Hua, F.Z. HIF-1α in Osteoarthritis: From Pathogenesis to Therapeutic Implications. Front. Pharmacol. 2022, 13, 927126. [Google Scholar] [CrossRef]
- Arra, M.; Abu-Amer, Y. Cross-talk of inflammation and chondrocyte intracellular metabolism in osteoarthritis. Osteoarthr. Cartil. 2023, 31, 1012–1021. [Google Scholar] [CrossRef]
- Defois, A.; Bon, N.; Charpentier, A.; Georget, M.; Gaigeard, N.; Blanchard, F.; Hamel, A.; Waast, D.; Armengaud, J.; Renoult, O.; et al. Osteoarthritic chondrocytes undergo a glycolysis-related metabolic switch upon exposure to IL-1b or TNF. Cell Commun. Signal. 2023, 21, 137. [Google Scholar] [CrossRef]
- Anderson, J.R.; Chokesuwattanaskul, S.; Phelan, M.M.; Welting, T.J.M.; Lian, L.Y.; Peffers, M.J.; Wright, H.L. (1)H NMR Metabolomics Identifies Underlying Inflammatory Pathology in Osteoarthritis and Rheumatoid Arthritis Synovial Joints. J. Proteome Res. 2018, 17, 3780–3790. [Google Scholar] [CrossRef]
- Arjun, A.; Chellamuthu, G.; Jeyaraman, N.; Jeyaraman, M.; Khanna, M. Metabolomics in Osteoarthritis Knee: A Systematic Review of Literature. Indian J. Orthop. 2024, 58, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Carlson, A.K.; Rawle, R.A.; Wallace, C.W.; Brooks, E.G.; Adams, E.; Greenwood, M.C.; Olmer, M.; Lotz, M.K.; Bothner, B.; June, R.K. Characterization of synovial fluid metabolomic phenotypes of cartilage morphological changes associated with osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1174–1184. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Yang, S.; Zhang, L.; Yang, T. V-ATPases and osteoclasts: Ambiguous future of V-ATPases inhibitors in osteoporosis. Theranostics 2018, 8, 5379–5399. [Google Scholar] [CrossRef] [PubMed]
- Fujii, W.; Kawahito, Y.; Nagahara, H.; Kukida, Y.; Seno, T.; Yamamoto, A.; Kohno, M.; Oda, R.; Taniguchi, D.; Fujiwara, H.; et al. Monocarboxylate transporter 4, associated with the acidification of synovial fluid, is a novel therapeutic target for inflammatory arthritis. Arthritis Rheumatol. 2015, 67, 2888–2896. [Google Scholar] [CrossRef]
- Arra, M.; Swarnkar, G.; Ke, K.; Otero, J.E.; Ying, J.; Duan, X.; Maruyama, T.; Rai, M.F.; O’Keefe, R.J.; Mbalaviele, G.; et al. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat. Commun. 2020, 11, 3427. [Google Scholar] [CrossRef]
- Tattersall, A.; Meredith, D.; Furla, P.; Shen, M.R.; Ellory, C.; Wilkins, R. Molecular and functional identification of the Na(+)/H(+) exchange isoforms NHE1 and NHE3 in isolated bovine articular chondrocytes. Cell. Physiol. Biochem. 2003, 13, 215–222. [Google Scholar] [CrossRef]
- Wilkins, R.J.; Browning, J.A.; Ellory, J.C. Surviving in a matrix: Membrane transport in articular chondrocytes. J. Membr. Biol. 2000, 177, 95–108. [Google Scholar] [CrossRef]
- Kim, J.H.; Parkkila, S.; Shibata, S.; Fujimiya, M.; Murakami, G.; Cho, B.H. Expression of carbonic anhydrase IX in human fetal joints, ligaments and tendons: A potential marker of mechanical stress in fetal development? Anat. Cell Biol. 2013, 46, 272–284. [Google Scholar] [CrossRef]
- Schultz, M.; Jin, W.; Waheed, A.; Moed, B.R.; Sly, W.; Zhang, Z. Expression profile of carbonic anhydrases in articular cartilage. Histochem. Cell Biol. 2011, 136, 145–151. [Google Scholar] [CrossRef]
- Mow, V.C.; Wang, C.C.; Hung, C.T. The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarthr. Cartil. 1999, 7, 41–58. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, X.; Wang, S.; Jing, Y.; Su, J. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 2021, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Löfvall, H.; Newbould, H.; Karsdal, M.A.; Dziegiel, M.H.; Richter, J.; Henriksen, K.; Thudium, C.S. Osteoclasts degrade bone and cartilage knee joint compartments through different resorption processes. Arthritis Res. Ther. 2018, 20, 67. [Google Scholar] [CrossRef] [PubMed]
- Troeberg, L.; Nagase, H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim. Biophys. Acta BBA Proteins Proteom. 2012, 1824, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Vinardell, T.; Dejica, V.; Poole, A.R.; Mort, J.S.; Richard, H.; Laverty, S. Evidence to suggest that cathepsin K degrades articular cartilage in naturally occurring equine osteoarthritis. Osteoarthr. Cartil. 2009, 17, 375–383. [Google Scholar] [CrossRef]
- Ben-Aderet, L.; Merquiol, E.; Fahham, D.; Kumar, A.; Reich, E.; Ben-Nun, Y.; Kandel, L.; Haze, A.; Liebergall, M.; Kosińska, M.K.; et al. Detecting cathepsin activity in human osteoarthritis via activity-based probes. Arthritis Res. Ther. 2015, 17, 69. [Google Scholar] [CrossRef]
- Dejica, V.M.; Mort, J.S.; Laverty, S.; Percival, M.D.; Antoniou, J.; Zukor, D.J.; Poole, A.R. Cleavage of type II collagen by cathepsin K in human osteoarthritic cartilage. Am. J. Pathol. 2008, 173, 161–169. [Google Scholar] [CrossRef]
- Das, R.H.; van Osch, G.J.; Kreukniet, M.; Oostra, J.; Weinans, H.; Jahr, H. Effects of individual control of pH and hypoxia in chondrocyte culture. J. Orthop. Res. 2010, 28, 537–545. [Google Scholar] [CrossRef]
- Cai, F.; Hong, X.; Tang, X.; Liu, N.C.; Wang, F.; Zhu, L.; Xie, X.H.; Xie, Z.Y.; Wu, X.T. ASIC1a activation induces calcium-dependent apoptosis of BMSCs under conditions that mimic the acidic microenvironment of the degenerated intervertebral disc. Biosci. Rep. 2019, 39, BSR20192708. [Google Scholar] [CrossRef]
- Zhou, R.P.; Dai, B.B.; Xie, Y.Y.; Wu, X.S.; Wang, Z.S.; Li, Y.; Wang, Z.Q.; Zu, S.Q.; Ge, J.F.; Chen, F.H. Interleukin-1β and tumor necrosis factor-α augment acidosis-induced rat articular chondrocyte apoptosis via nuclear factor-kappaB-dependent upregulation of ASIC1a channel. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2018, 1864, 162–177. [Google Scholar] [CrossRef]
- Ding, J.; Chen, Y.; Zhao, Y.J.; Chen, F.; Dong, L.; Zhang, H.L.; Hu, W.R.; Li, S.F.; Zhou, R.P.; Hu, W. Acid-sensitive ion channel 1a mediates osteoarthritis chondrocyte senescence by promoting Lamin B1 degradation. Biochem. Pharmacol. 2022, 202, 115107. [Google Scholar] [CrossRef]
- Kulkarni, P.; Srivastava, V.; Tootsi, K.; Electricwala, A.; Kharat, A.; Bhonde, R.; Koks, S.; Martson, A.; Harsulkar, A. Synovial Fluid in Knee Osteoarthritis Extends Proinflammatory Niche for Macrophage Polarization. Cells 2022, 11, 4415. [Google Scholar] [CrossRef]
- Yin, X.; Wang, Q.; Tang, Y.; Wang, T.; Zhang, Y.; Yu, T. Research progress on macrophage polarization during osteoarthritis disease progression: A review. J. Orthop. Surg. Res. 2024, 19, 584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, M.; Zhan, W.; Chen, Y.; Wang, T.; Chen, Z.; Fu, Y.; Zhao, G.; Mao, D.; Ruan, J.; et al. Acid-sensing ion channel 1a modulation of apoptosis in acidosis-related diseases: Implications for therapeutic intervention. Cell Death Discov. 2023, 9, 330. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Ryu, H.J.; Baek, H.M.; Shin, D.M.; Hong, J.H. Dynamic synovial fibroblasts are modulated by NBCn1 as a potential target in rheumatoid arthritis. Exp. Mol. Med. 2022, 54, 503–517. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Zhang, Y.; Tao, J.; Niu, R.; Song, S.; Wang, C.; Peng, X.; Chen, F. Acidosis induces synovial fibroblasts to release vascular endothelial growth factor via acid-sensitive ion channel 1a. Lab. Investig. 2021, 101, 280–291. [Google Scholar] [CrossRef]
- Jacquot, F.; Khoury, S.; Labrum, B.; Delanoe, K.; Pidoux, L.; Barbier, J.; Delay, L.; Bayle, A.; Aissouni, Y.; Barriere, D.A.; et al. Lysophosphatidylcholine 16:0 mediates chronic joint pain associated to rheumatic diseases through acid-sensing ion channel 3. Pain 2022, 163, 1999–2013. [Google Scholar] [CrossRef]
- Chen, C.; Yang, F.; Chen, R.; Yang, C.; Xiao, H.; Geng, B.; Xia, Y. TRPV Channels in Osteoarthritis: A Comprehensive Review. Biomolecules 2024, 14, 292. [Google Scholar] [CrossRef]
- Lv, Z.; Xu, X.; Sun, Z.; Yang, Y.X.; Guo, H.; Li, J.; Sun, K.; Wu, R.; Xu, J.; Jiang, Q.; et al. TRPV1 alleviates osteoarthritis by inhibiting M1 macrophage polarization via Ca(2+)/CaMKII/Nrf2 signaling pathway. Cell Death Dis. 2021, 12, 504. [Google Scholar] [CrossRef]
- Zhu, S.; Zhu, J.; Zhen, G.; Hu, Y.; An, S.; Li, Y.; Zheng, Q.; Chen, Z.; Yang, Y.; Wan, M.; et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Investig. 2019, 129, 1076–1093. [Google Scholar] [CrossRef]
- Conaghan, P.G.; Bowes, M.A.; Kingsbury, S.R.; Brett, A.; Guillard, G.; Rizoska, B.; Sjögren, N.; Graham, P.; Jansson, Å.; Wadell, C.; et al. Disease-Modifying Effects of a Novel Cathepsin K Inhibitor in Osteoarthritis: A Randomized Controlled Trial. Ann. Intern. Med. 2020, 172, 86–95. [Google Scholar] [CrossRef]
- Lindström, E.; Rizoska, B.; Tunblad, K.; Edenius, C.; Bendele, A.M.; Maul, D.; Larson, M.; Shah, N.; Yoder Otto, V.; Jerome, C.; et al. The selective cathepsin K inhibitor MIV-711 attenuates joint pathology in experimental animal models of osteoarthritis. J. Transl. Med. 2018, 16, 56. [Google Scholar] [CrossRef]
- Chen, A.; Dong, L.; Leffler, N.R.; Asch, A.S.; Witte, O.N.; Yang, L.V. Activation of GPR4 by acidosis increases endothelial cell adhesion through the cAMP/Epac pathway. PLoS ONE 2011, 6, e27586. [Google Scholar] [CrossRef]
- Dong, L.; Li, Z.; Leffler, N.R.; Asch, A.S.; Chi, J.T.; Yang, L.V. Acidosis activation of the proton-sensing GPR4 receptor stimulates vascular endothelial cell inflammatory responses revealed by transcriptome analysis. PLoS ONE 2013, 8, e61991. [Google Scholar] [CrossRef] [PubMed]
- Justus, C.R.; Marie, M.A.; Sanderlin, E.J.; Yang, L.V. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes 2024, 15, 1151. [Google Scholar] [CrossRef] [PubMed]
- Murakami, N.; Yokomizo, T.; Okuno, T.; Shimizu, T. G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine. J. Biol. Chem. 2004, 279, 42484–42491. [Google Scholar] [CrossRef] [PubMed]
- Radu, C.G.; Nijagal, A.; McLaughlin, J.; Wang, L.; Witte, O.N. Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc. Natl. Acad. Sci. USA 2005, 102, 1632–1637. [Google Scholar] [CrossRef]
- Khan, N.M.; Diaz-Hernandez, M.E.; Martin, W.N.; Patel, B.; Chihab, S.; Drissi, H. pH-sensing G protein-coupled orphan receptor GPR68 is expressed in human cartilage and correlates with degradation of extracellular matrix during OA progression. PeerJ 2023, 11, e16553. [Google Scholar] [CrossRef]
- Wei, W.C.; Bianchi, F.; Wang, Y.K.; Tang, M.J.; Ye, H.; Glitsch, M.D. Coincidence Detection of Membrane Stretch and Extracellular pH by the Proton-Sensing Receptor OGR1 (GPR68). Curr. Biol. 2018, 28, 3815–3823.e3814. [Google Scholar] [CrossRef]
- Li, R.; Guan, Z.; Bi, S.; Wang, F.; He, L.; Niu, X.; You, Y.; Liu, Y.; Ding, Y.; Siwko, S.; et al. The proton-activated G protein-coupled receptor GPR4 regulates the development of osteoarthritis via modulating CXCL12/CXCR7 signaling. Cell Death Dis. 2022, 13, 152. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Chen, B. Antagonism of GPR4 with NE 52-QQ57 and the Suppression of AGE-Induced Degradation of Type II Collagen in Human Chondrocytes. Chem. Res. Toxicol. 2020, 33, 1915–1921. [Google Scholar] [CrossRef]
- Pattison, L.A.; Rickman, R.H.; Hilton, H.; Dannawi, M.; Wijesinghe, S.N.; Ladds, G.; Yang, L.V.; Jones, S.W.; Smith, E.S.J. Activation of the proton-sensing GPCR, GPR65 on fibroblast-like synoviocytes contributes to inflammatory joint pain. Proc. Natl. Acad. Sci. USA 2024, 121, e2410653121. [Google Scholar] [CrossRef]
- Hohmann, S.W.; Angioni, C.; Tunaru, S.; Lee, S.; Woolf, C.J.; Offermanns, S.; Geisslinger, G.; Scholich, K.; Sisignano, M. The G2A receptor (GPR132) contributes to oxaliplatin-induced mechanical pain hypersensitivity. Sci. Rep. 2017, 7, 446. [Google Scholar] [CrossRef]
- Nanus, D.E.; Badoume, A.; Wijesinghe, S.N.; Halsey, A.M.; Hurley, P.; Ahmed, Z.; Botchu, R.; Davis, E.T.; Lindsay, M.A.; Jones, S.W. Synovial tissue from sites of joint pain in knee osteoarthritis patients exhibits a differential phenotype with distinct fibroblast subsets. EBioMedicine 2021, 72, 103618. [Google Scholar] [CrossRef]
- Croft, A.P.; Campos, J.; Jansen, K.; Turner, J.D.; Marshall, J.; Attar, M.; Savary, L.; Wehmeyer, C.; Naylor, A.J.; Kemble, S.; et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 2019, 570, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Huang, C.W.; Lin, C.S.; Chang, W.H.; Sun, W.H. Expression and function of proton-sensing G-protein-coupled receptors in inflammatory pain. Mol. Pain 2009, 5, 39. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.F.; Xu, Y.Y.; Ge, J.F.; Chen, F.H. Inhibition of acid-sensing ion channel 1a attenuates acid-induced activation of autophagy via a calcium signaling pathway in articular chondrocytes. Int. J. Mol. Med. 2019, 43, 1778–1788. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Rannou, F.; Ivanavicius, S.; Conaghan, P.G. Targeting the TRPV1 pain pathway in osteoarthritis of the knee. Expert Opin. Ther. Targets 2024, 28, 843–856. [Google Scholar] [CrossRef]
- Yu, X.; Huang, X.P.; Kenakin, T.P.; Slocum, S.T.; Chen, X.; Martini, M.L.; Liu, J.; Jin, J. Design, Synthesis, and Characterization of Ogerin-Based Positive Allosteric Modulators for G Protein-Coupled Receptor 68 (GPR68). J. Med. Chem. 2019, 62, 7557–7574. [Google Scholar] [CrossRef]
- Ozkan, A.D.; Gettas, T.; Sogata, A.; Phaychanpheng, W.; Zhou, M.; Lacroix, J.J. Mechanical and chemical activation of GPR68 probed with a genetically encoded fluorescent reporter. J. Cell Sci. 2021, 134, jcs255455. [Google Scholar] [CrossRef]
- Fan, X.; Lu, Y.; Du, G.; Liu, J. Advances in the Understanding of Two-Pore Domain TASK Potassium Channels and Their Potential as Therapeutic Targets. Molecules 2022, 27, 8296. [Google Scholar] [CrossRef]
- Hall, P.R.; Jouen-Tachoire, T.; Schewe, M.; Proks, P.; Baukrowitz, T.; Carpenter, E.P.; Newstead, S.; Rödström, K.E.J.; Tucker, S.J. Structures of TASK-1 and TASK-3 K2P channels provide insight into their gating and dysfunction in disease. Structure 2025, 33, 115–122.e4. [Google Scholar] [CrossRef]
- Cid, L.P.; Roa-Rojas, H.A.; Niemeyer, M.I.; González, W.; Araki, M.; Araki, K.; Sepúlveda, F.V. TASK-2: A K2P K(+) channel with complex regulation and diverse physiological functions. Front. Physiol. 2013, 4, 198. [Google Scholar] [CrossRef] [PubMed]
- Honoré, E.; Maingret, F.; Lazdunski, M.; Patel, A.J. An intracellular proton sensor commands lipid- and mechano-gating of the K(+) channel TREK-1. EMBO J. 2002, 21, 2968–2976. [Google Scholar] [CrossRef] [PubMed]
- Noël, J.; Sandoz, G.; Lesage, F. Molecular regulations governing TREK and TRAAK channel functions. Channels 2011, 5, 402–409. [Google Scholar] [CrossRef]
- Sandoz, G.; Douguet, D.; Chatelain, F.; Lazdunski, M.; Lesage, F. Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue. Proc. Natl. Acad. Sci. USA 2009, 106, 14628–14633. [Google Scholar] [CrossRef]
- Barrett-Jolley, R.; Lewis, R.; Fallman, R.; Mobasheri, A. The emerging chondrocyte channelome. Front. Physiol. 2010, 1, 135. [Google Scholar] [CrossRef]
- Mobasheri, A.; Lewis, R.; Ferreira-Mendes, A.; Rufino, A.; Dart, C.; Barrett-Jolley, R. Potassium channels in articular chondrocytes. Channels 2012, 6, 416–425. [Google Scholar] [CrossRef]
- Ponce, A.; Ogazon Del Toro, A.; Jimenez, L.; Roldan, M.L.; Shoshani, L. Osmotically Sensitive TREK Channels in Rat Articular Chondrocytes: Expression and Functional Role. Int. J. Mol. Sci. 2024, 25, 7848. [Google Scholar] [CrossRef]
- Bihlet, A.R.; Byrjalsen, I.; Andersen, J.R.; Öberg, F.; Herder, C.; Bowes, M.A.; Conaghan, P.G. Symptomatic and structural benefit of cathepsin K inhibition by MIV-711 in a subgroup with unilateral pain: Post-hoc analysis of a randomised phase 2a clinical trial. Clin. Exp. Rheumatol. 2022, 40, 1034–1037. Available online: https://www.clinexprheumatol.org/abstract.asp?a=17836 (accessed on 13 October 2025).
- Mercier, V.; Boucher, G.; Devost, D.; Bourque, K.; Alikashani, A.; Beauchamp, C.; Bitton, A.; Foisy, S.; Goyette, P.; Charron, G.; et al. IBD-associated G protein-coupled receptor 65 variant compromises signalling and impairs key functions involved in inflammation. Cell. Signal. 2022, 93, 110294. [Google Scholar] [CrossRef]
- Garami, A.; Shimansky, Y.P.; Rumbus, Z.; Vizin, R.C.L.; Farkas, N.; Hegyi, J.; Szakacs, Z.; Solymar, M.; Csenkey, A.; Chiche, D.A.; et al. Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: Insights from mathematical modeling and meta-analysis. Pharmacol. Ther. 2020, 208, 107474. [Google Scholar] [CrossRef] [PubMed]
- Gavva, N.R.; Treanor, J.J.; Garami, A.; Fang, L.; Surapaneni, S.; Akrami, A.; Alvarez, F.; Bak, A.; Darling, M.; Gore, A.; et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 2008, 136, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Quiding, H.; Jonzon, B.; Svensson, O.; Webster, L.; Reimfelt, A.; Karin, A.; Karlsten, R.; Segerdahl, M. TRPV1 antagonistic analgesic effect: A randomized study of AZD1386 in pain after third molar extraction. Pain 2013, 154, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Leiman, D.; Minkowitz, H.; Levitt, R.; Solanki, D.; Horn, D.; Janfaza, D.; Sarno, D.; Albores-Ibarra, N.; Bai, X.; Takeshita, K.; et al. Preliminary results from a phase 1b double-blind study to assess the safety, tolerability and efficacy of intra-articular administration of resiniferatoxin or placebo for the treatment of moderate to severe pain due to osteoarthritis of the knee. Osteoarthr. Cartil. 2020, 28, S138. [Google Scholar] [CrossRef]
- Fisel, P.; Schaeffeler, E.; Schwab, M. Clinical and Functional Relevance of the Monocarboxylate Transporter Family in Disease Pathophysiology and Drug Therapy. Clin. Transl. Sci. 2018, 11, 352–364. [Google Scholar] [CrossRef]
- Noble, R.A.; Bell, N.; Blair, H.; Sikka, A.; Thomas, H.; Phillips, N.; Nakjang, S.; Miwa, S.; Crossland, R.; Rand, V.; et al. Inhibition of monocarboxyate transporter 1 by AZD3965 as a novel therapeutic approach for diffuse large B-cell lymphoma and Burkitt lymphoma. Haematologica 2017, 102, 1247–1257. [Google Scholar] [CrossRef]
- Wen, J.; Li, H.; Dai, H.; Hua, S.; Long, X.; Li, H.; Ivanovski, S.; Xu, C. Intra-articular nanoparticles based therapies for osteoarthritis and rheumatoid arthritis management. Mater. Today Bio 2023, 19, 100597. [Google Scholar] [CrossRef]
- Xiong, F.; Qin, Z.; Chen, H.; Lan, Q.; Wang, Z.; Lan, N.; Yang, Y.; Zheng, L.; Zhao, J.; Kai, D. pH-responsive and hyaluronic acid-functionalized metal-organic frameworks for therapy of osteoarthritis. J. Nanobiotechnol. 2020, 18, 139. [Google Scholar] [CrossRef]
- Ye, Q.; Zhang, M.; Li, S.; Liu, W.; Xu, C.; Li, Y.; Xie, R. Controlled Stimulus-Responsive Delivery Systems for Osteoarthritis Treatment. Int. J. Mol. Sci. 2024, 25, 11799. [Google Scholar] [CrossRef]
Study (Year) | Condition | Compartment | Method (Brief) | Mean pH | Range | Notes | Refs. |
---|---|---|---|---|---|---|---|
Jebens and Monk-Jones (1959) | Normal | Synovial fluid (knee) | Aspirated fluid; pH electrode (ex vivo) | 7.768 ± 0.044 | ≈6.5–8.9 (histogram) | Venous blood in same cohort ~7.38; SF > blood on average | [8] |
Jebens and Monk-Jones (1959) | OA (knee) | Synovial fluid | Aspirated fluid; pH electrode (ex vivo) | 7.549 ± 0.040 | Histogram reported | Modest acid shift vs. normal SF | [8] |
Roman et al. (2017) | Severe OA (K/L IV; hip/knee) | Synovial fluid | Aspirated at arthroplasty; bench pH meter | 7.35 | 6.80–7.68 | Values clustered 7.24–7.50 in most samples | [13] |
High et al. (2019) | Mixed knee cohort | Cartilage | acidoCEST-UTE MRI (in vivo) | ≈6.60 ± 0.17 p = 0.043 | NA | Cartilage more acidic than meniscus | [14] |
High et al. (2019) | Mixed knee cohort | Meniscus | acidoCEST-UTE MRI (in vivo) | ≈6.72 ± 0.16 | NA | Meniscus slightly higher pH than cartilage | [14] |
High et al. (2019) | Mixed knee cohort | Intra-articular fluid (post-contrast) | acidoCEST-UTE MRI vs. electrode | ≈7.22 (iopamidol); ≈7.65 (iohexol) | NA | Agent-dependent fluid estimates | [14] |
Lombardi et al. (2022) | Knee OA vs. no-OA | Combined ROIs (cartilage, meniscus, fluid) | acidoCEST-UTE MRI (in vivo) | OA 6.40 ± 0.08; no-OA 7.01 ± 0.26 | NA | Each ROI lower in OA; OA meniscus > OA cartilage | [9] |
Konttinen et al. | Hip OA (intraoperative) | Articular cartilage (graded) | Microelectrode (surgical) | Normal 7.1 ± 0.4; G1 6.2 ± 0.9; G2 5.7 ± 1.0; G3 5.5 ± 1.0 | NA | Acidity increases with damage. G1, G2, and G3 are cartilage damage grades with increasing structural damage | [15] |
Goldie and Nachemson (1969) | RA (knee) | Intra-articular cavity (in vivo) | Antimony microelectrode | ≈6.6 (down to ≈6.0) | ≈6.0–7.3 across individuals | Demonstrates strong in vivo acidosis in RA | [11] |
Therapy Class | Molecular Target(s) | Rationale (OA/Acidosis Link) | Stage of Evidence | OA Outcome Signal | Key Limitations/Risks | Example Agent(s) | Refs. |
---|---|---|---|---|---|---|---|
Protease inhibition | Cathepsin K (CTSK) | Acid-enabled collagenolysis; cathepsin K degrades type II collagen/aggrecan. | Human phase 2a + preclinical | † Slowed structural progression (qMRI) without clear pain benefit (26 wks). | Structure–symptom dissociation; bone remodeling effects; safety. | MIV-711 | [43,60,89] |
Proton-sensing GPCR modulation | GPR4 (Gs–cAMP/EPAC) | Acidosis→GPR4 induces endothelial adhesion and inflammatory genes; antagonism suppresses. | Preclinical | GPR4 modulation alters cartilage/synovitis/osteophytes/pain in models. | Vascular/immune effects; specificity; no OA clinical data. | GPR4 antagonists (tool compounds) | [62,63,69] |
Proton-sensing GPCR modulation | GPR4 (Gs–cAMP/EPAC) | Acidosis→GPR4, which regulates CXCL12/CXCR7 signaling in chondrocytes | cell/explant/animal | GPR4 antagonism inhibits NF-κB, suppresses collagen degradation. | In vitroSW1353 chondrocyte cell line | NE 52-QQ57 | [70] |
Proton-sensing GPCR modulation | GPR68/OGR1 (Gq/11, G12/13) | Ogerin (PAM) suppresses IL-1β-induced MMP13 in human OA chondrocytes. | Preclinical (cells; medicinal chemistry) | Hypothesized chondroprotection via reduced MMP13/catabolism. | Cell-type differences; mechanosensitivity; delivery. | Ogerin and analogs | [20,67,78] |
Proton-sensing GPCR modulation | GPR65/TDAG8 (Gs–cAMP) | Anti-inflammatory signaling in immune cells; may temper synovitis in acidic niches. | Preclinical | † OA-specific efficacy unknown. | Limited OA pharmacology; immunomodulation risks. | Tool compounds | [64,66] |
Proton-sensing GPCR modulation | GPR132/G2A | Proton/lysophospholipid-responsive; sensitizes TRPV1 (pain link). | Preclinical | † Pain-axis modulation plausible; limited OA data. | Ligand ambiguity; cross-talk. | Tool ligands | [20,65,72] |
ASIC channel inhibition | ASIC3 (nociceptors) | Proton-driven joint pain via ASIC3; blockade reduces pain and early damage. | Preclinical (rodent OA) | Analgesia and structure-sparing when dosed early. | Peptide delivery; selectivity; human data needed. | APETx2 | [17] |
ASIC channel inhibition | ASIC1a (chondrocytes) | Acid-induced Ca2+ overload and apoptosis; blockade is chondroprotective in vitro. | Preclinical (cells/tissue) | Protects chondrocytes from acid injury. | CNS expression; peptide tools; selectivity. | PcTx-1; early small molecules | [16,50,76] |
Proton-sensitive K2P channels | TASK-1/3/2; TREK-1/2; TRAAK | pH- and mechano-modulated K+ conductances → membrane potential/Ca2+; cartilage mechanobiology | Mechanistic (cartilage cells), emergent OA target class | Candidate chondroprotection via electrophysiology tuning. † | Early stage; pharmacology maturity; specificity | TREK/TASK tool ligands † | [80,81,82,85,86,87] |
TRPV1 targeting | TRPV1 (nociceptors; synovium) | Acidic niches sensitize TRPV1; analgesia possible but systemic antagonists cause hyperthermia. | Clinical (antagonists safety) + early OA trials (RTX) | IA RTX shows analgesic signals; systemic antagonists limited by hyperthermia. | Thermoregulation; local ablation risks. | AZD1386; Resiniferatoxin (RTX) | [91,92,93,94] |
Metabolic control | LDHA (glycolysis leading to lactate) | LDHA drives lactate/ROS; inhibition reduces OA pathology in vivo. | Preclinical (rodent OA) | Cartilage protection; reduced inflammation. | Systemic effects; delivery. | FX11 (tool) | [35] |
Lactate/proton export blockade | MCT1/4 (SLC16A1/A3) | MCTs co-transport lactate + H+; inhibition could reduce acid load. | Clinical (oncology) + preclinical (mechanism) | Conceptual; no OA trials yet. | Systemic toxicity; compensations; delivery. | AZD3965 | [95,96] |
pH-responsive delivery | Stimulus-responsive carriers (intra-articular) | Low pH triggers release; prolongs joint residence; targets acidic niches. | Preclinical (multiple OA models) | Improved cartilage protection/synovial control. | Manufacturing; regulatory path; payload constraints. | pH-responsive HA-MOF NPs; hydrogels | [98,99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, W.N.; Hyde, C.; Yung, A.; Taffe, R.; Patel, B.; Premkumar, A.; Bhattaram, P.; Drissi, H.; Khan, N.M. Joint Acidosis and Acid-Sensing Receptors and Ion Channels in Osteoarthritis Pathobiology and Therapy. Cells 2025, 14, 1605. https://doi.org/10.3390/cells14201605
Martin WN, Hyde C, Yung A, Taffe R, Patel B, Premkumar A, Bhattaram P, Drissi H, Khan NM. Joint Acidosis and Acid-Sensing Receptors and Ion Channels in Osteoarthritis Pathobiology and Therapy. Cells. 2025; 14(20):1605. https://doi.org/10.3390/cells14201605
Chicago/Turabian StyleMartin, William N., Colette Hyde, Adam Yung, Ryan Taffe, Bhakti Patel, Ajay Premkumar, Pallavi Bhattaram, Hicham Drissi, and Nazir M. Khan. 2025. "Joint Acidosis and Acid-Sensing Receptors and Ion Channels in Osteoarthritis Pathobiology and Therapy" Cells 14, no. 20: 1605. https://doi.org/10.3390/cells14201605
APA StyleMartin, W. N., Hyde, C., Yung, A., Taffe, R., Patel, B., Premkumar, A., Bhattaram, P., Drissi, H., & Khan, N. M. (2025). Joint Acidosis and Acid-Sensing Receptors and Ion Channels in Osteoarthritis Pathobiology and Therapy. Cells, 14(20), 1605. https://doi.org/10.3390/cells14201605