The Yin and Yang of Heartbeats: Magnesium–Calcium Antagonism Is Essential for Cardiac Excitation–Contraction Coupling
Abstract
1. Introduction
2. The Basis of the Antagonistic Actions by Ca2+ and Mg2+
3. Ca2+-Driven ECC Runs Across Multiple Cellular Landscapes
3.1. Structural Aspects of Cardiac ECC
3.2. Functional Aspects of Cardiac ECC
3.3. Mg2+ Shapes the Kinetics of Contraction and Relaxation
4. Mg2+/Ca2+ Crosstalk Across ECC Key Cytosolic Compartments
4.1. Effects on Cellular Excitability
4.1.1. Main Depolarizing (Inward) Currents
4.1.2. Main Repolarizing (Outward) Currents
4.1.3. Other Repolarizing Currents
4.1.4. Na+/Ca2+ Exchange
4.2. Effect on Cellular Contractile Response
4.3. Effect on Relaxation
5. The Core of CICR: Ryanodine Receptor Type 2 (RyR2)
5.1. Mg2+’s Effect on the Ultrastructure of the Dyad
5.2. Cytosolic Modulation of RyR2
5.2.1. The A-Site
5.2.2. The I1-Site
5.2.3. The I2-Site
5.2.4. The Channel Pore
5.2.5. The ATP-Binding Pocket
5.2.6. The Ca2+/Mg2+-Sensitive Cytosolic Interactome of RyR2
5.3. Luminal Modulation of RyR2
5.3.1. Mg2+ Direct Binding at RyR2 Luminal Site(s) Cooperates with Ca2+ Activation
5.3.2. RyR2 Inhibition by Luminal Mg2+ Is Mediated by IDR-Containing Proteins
5.3.3. CASQ2
5.3.4. TRDN and JNT
5.3.5. The Functional Relevance of Luminal IDRs in the RyR2 Complex
6. Pathological Dysregulation of Mg2+ and Therapeutic Implications
6.1. Hypomagnesemia and Associated Disorders
- Heart Failure (HF): Chronic heart failure is often associated with reduced intracellular free Mg2+. In a canine pacing-induced HF model, [Mg2+]i was reduced by ~50% in failing cardiomyocytes [156], leading to enhanced Ca2+ influx, slower inactivation, and increased susceptibility to Ca2+ overload, hypertrophy, and arrhythmias [52]. Beyond Ca2+ handling, Mg2+ deficiency alters action potential dynamics. Depending on cell type and repolarization mechanisms, low [Mg2+]i levels can prolong AP duration by inhibiting K+ or prolonging Ca2+ currents [7,10]. These effects facilitate early (EADs) and delayed (DADs) afterdepolarizations, especially under β-adrenergic stimulation. Disease progression in HF is also due to the negative consequences of low Mg2+ on mitochondria (oxidative stress, inflammation, and metabolic dysfunction), partly through upregulation of the TRPM7 kinase-channel [5].
- Arrhythmias: Mg2+ deficiency prolongs AP duration by affecting K+ and Ca2+ currents and, as shown in Section 5, increases RyR2 diastolic leak (Figure 3) [1]. These changes increase susceptibility to EADs and DADs, Torsades de pointes [60], atrial fibrillation and CPVT [48]. In CPVT, defective regulation of RyR2—often due to mutations in calsequestrin (CASQ2)—is compounded by low Mg2+ levels, worsening the arrhythmic phenotype [157].
6.2. Ischemia-Associated Hypermagnesemia
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | Action Potential |
ATP | Adenosine Triphosphate |
CaM | Calmodulin |
CaMK2d | Ca2+/Calmodulin-Dependent Protein Kinase II Delta Isoform |
CASQ2 | Calsequestrin 2 |
Cav1.2 | L-Type Calcium Channel Isoform |
CICR | Calcium-Induced Calcium Release |
CPVT | Catecholaminergic Polymorphic Ventricular Tachycardia |
cTnC | Cardiac Troponin C |
ECC | Excitation–Contraction Coupling |
EC50 | Half Maximal Effective Concentration |
EF-hand | Helix–Loop–Helix Structural Domain (Calcium-Binding Motif) |
HF | Heart Failure |
IC50 | Half Maximal Inhibitory Concentration |
ICaL | L-Type Calcium Current |
IK1 | Inward Rectifier Potassium Current |
IKr | Rapid Delayed Rectifier Potassium Current |
IKs | Slow Delayed Rectifier Potassium Current |
INa | Rapid Depolarizing Sodium Current |
Ito | Transient Outward Potassium Current |
JNT | Junctin |
JPH2 | Junctophilin 2 |
jSR | Junctional Sarcoplasmic Reticulum |
Kir2.1 | Potassium Channel Isoform Underlying IK1 |
Kv4.2 | Potassium Channel Isoform Underlying Ito |
Mg-ATP | Magnesium–ATP Complex |
Nav1.5 | Cardiac Sodium Channel Isoform |
NCX | Sodium–Calcium Exchanger |
PKA | Protein Kinase A |
PLB | Phospholamban |
Po | Open Probability |
PtdIns(3,4,5)P3 | Phosphatidylinositol (3,4,5)-Trisphosphate |
RyR1 | Ryanodine Receptor Type 1 |
RyR2 | Ryanodine Receptor Type 2 |
SERCA | Sarco/Endoplasmic Reticulum Ca2+-ATPase |
SR | Sarcoplasmic Reticulum |
SUMOylase | Small Ubiquitin-Like Modifier enzyme |
TRDN | Triadin |
References
- Bers, D.M. Excitation-Contraction Coupling and Cardiac Contractile Force, 2nd ed.; Developments in cardiovascular medicine; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA, 2001; ISBN 978-0-7923-7157-1. [Google Scholar]
- Laver, D.R. Coupled Calcium Release Channels and Their Regulation by Luminal and Cytosolic Ions. Eur. Biophys. J. 2005, 34, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Bers, D.M. Cardiac Excitation-Contraction Coupling. Nature 2002, 415, 198–205. [Google Scholar] [CrossRef] [PubMed]
- White, R.E.; Hartzell, H.C. Magnesium Ions in Cardiac Function. Biochem. Pharmacol. 1989, 38, 859–867. [Google Scholar] [CrossRef]
- Liu, M.; Dudley, S.C. Beyond Ion Homeostasis: Hypomagnesemia, Transient Receptor Potential Melastatin Channel 7, Mitochondrial Function, and Inflammation. Nutrients 2023, 15, 3920. [Google Scholar] [CrossRef]
- Michailova, A.P.; Belik, M.E.; McCulloch, A.D. Effects of Magnesium on Cardiac Excitation-Contraction Coupling. J. Am. Coll. Nutr. 2004, 23, 514S–517S. [Google Scholar] [CrossRef]
- Agus, Z.S.; Morad, M. Modulation of cardiac ion channels by magnesium. Annu. Rev. Physiol. 1991, 53, 299–307. [Google Scholar] [CrossRef]
- Wang, M.; Berlin, J.R. Channel Phosphorylation and Modulation of L-Type Ca2+ Currents by Cytosolic Mg2+ Concentration. Am. J. Physiol. Cell Physiol. 2006, 291, C83–C92. [Google Scholar] [CrossRef]
- Rios, F.J.; Montezano, A.C.; Antunes, T.T.; Touyz, R.M. Chapter 29—Magnesium, Vascular Function, and Hypertension. In Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals; Collins, J.F., Ed.; Academic Press: Boston, MA, USA, 2017; pp. 353–364. ISBN 978-0-12-802168-2. [Google Scholar]
- Fritzen, R.; Davies, A.; Veenhuizen, M.; Campbell, M.; Pitt, S.J.; Ajjan, R.A.; Stewart, A.J. Magnesium Deficiency and Cardiometabolic Disease. Nutrients 2023, 15, 2355. [Google Scholar] [CrossRef]
- Murphy, R.M.; Larkins, N.T.; Mollica, J.P.; Beard, N.A.; Lamb, G.D. Calsequestrin Content and SERCA Determine Normal and Maximal Ca2+ Storage Levels in Sarcoplasmic Reticulum of Fast- and Slow-Twitch Fibres of Rat. J. Physiol. 2009, 587, 443–460. [Google Scholar] [CrossRef]
- Walweel, K.; Li, J.; Molenaar, P.; Imtiaz, M.S.; Quail, A.; Dos Remedios, C.G.; Beard, N.A.; Dulhunty, A.F.; Van Helden, D.F.; Laver, D.R. Differences in the Regulation of RyR2 from Human, Sheep, and Rat by Ca2+ and Mg2+ in the Cytoplasm and in the Lumen of the Sarcoplasmic Reticulum. J. Gen. Physiol. 2014, 144, 263–271. [Google Scholar] [CrossRef]
- Wang, M.; Tashiro, M.; Berlin, J.R. Regulation of L-type Calcium Current by Intracellular Magnesium in Rat Cardiac Myocytes. J. Physiol. 2004, 555, 383–396. [Google Scholar] [CrossRef]
- Zocchi, M.; Bartolini, M.; Maier, J.A.; Castiglioni, S. Low Extracellular Magnesium Induces Phenotypic and Metabolic Alterations in C2C12-Derived Myotubes. Sci. Rep. 2023, 13, 19425. [Google Scholar] [CrossRef]
- Pilchova, I.; Klacanova, K.; Tatarkova, Z.; Kaplan, P.; Racay, P. The Involvement of Mg2+ in Regulation of Cellular and Mitochondrial Functions. Oxid. Med. Cell. Longev. 2017, 2017, 6797460. [Google Scholar] [CrossRef] [PubMed]
- Grauffel, C.; Dudev, T.; Lim, C. Why Cellular Di/Triphosphates Preferably Bind Mg2+ and Not Ca2+. J. Chem. Theory Comput. 2019, 15, 6992–7003. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.T.F.; Balaraman, J.; Zhou, F.; Matthies, D. Cryo-EM Structures of Human Magnesium Channel MRS2 Reveal Gating and Regulatory Mechanisms. Nat. Commun. 2023, 14, 7207. [Google Scholar] [CrossRef] [PubMed]
- Azzam, A.M. Theoretical studies on solvation: Part II. New theory for evaluation of ionic solvation number for divalent ions at 25 °C. Can. J. Chem. 1960, 38, 993–1002. [Google Scholar] [CrossRef]
- Maguire, M.E.; Cowan, J.A. Magnesium Chemistry and Biochemistry. Biometals 2002, 15, 203–210. [Google Scholar] [CrossRef]
- Ohki, S.; Ikura, M.; Zhang, M. Identification of Mg2+-Binding Sites and the Role of Mg2+ on Target Recognition by Calmodulin. Biochemistry 1997, 36, 4309–4316. [Google Scholar] [CrossRef]
- Rayani, K.; Hantz, E.R.; Haji-Ghassemi, O.; Li, A.Y.; Spuches, A.M.; Van Petegem, F.; Solaro, R.J.; Lindert, S.; Tibbits, G.F. The Effect of Mg2+ on Ca2+ Binding to Cardiac Troponin C in Hypertrophic Cardiomyopathy Associated TNNC1 Variants. FEBS J. 2022, 289, 7446–7465. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Gifford, J.L.; Walsh, M.P.; Vogel, H.J. Structures and Metal-Ion-Binding Properties of the Ca2+-Binding Helix-Loop-Helix EF-Hand Motifs. Biochem. J. 2007, 405, 199–221. [Google Scholar] [CrossRef]
- Eisner, D.A.; Caldwell, J.L.; Kistamás, K.; Trafford, A.W. Calcium and Excitation-Contraction Coupling in the Heart. Circ. Res. 2017, 121, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Rog-Zielinska, E.A.; Moss, R.; Kaltenbacher, W.; Greiner, J.; Verkade, P.; Seemann, G.; Kohl, P.; Cannell, M.B. Nano-Scale Morphology of Cardiomyocyte t-Tubule/Sarcoplasmic Reticulum Junctions Revealed by Ultra-Rapid High-Pressure Freezing and Electron Tomography. J. Mol. Cell. Cardiol. 2021, 153, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Lamb, G. Excitation–Contraction Coupling In Skeletal Muscle: Comparisons with Cardiac Muscle. Clin. Exp. Pharmacol. Physiol. 2000, 27, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Sylvester, P.L.; Porta, M.; Copello, J.A. Modulation of Cardiac Ryanodine Receptor Channels by Alkaline Earth Cations. PLoS ONE 2011, 6, e26693. [Google Scholar] [CrossRef]
- Bers, D.M. Macromolecular Complexes Regulating Cardiac Ryanodine Receptor Function. J. Mol. Cell. Cardiol. 2004, 37, 417–429. [Google Scholar] [CrossRef]
- Choi, R.H.; Koenig, X.; Launikonis, B.S. Dantrolene Requires Mg2+ to Arrest Malignant Hyperthermia. Proc. Natl. Acad. Sci. USA 2017, 114, 4811–4815. [Google Scholar] [CrossRef]
- Zahradníková, A.; Dura, M.; Györke, I.; Escobar, A.L.; Zahradník, I.; Györke, S. Regulation of Dynamic Behavior of Cardiac Ryanodine Receptor by Mg2+ under Simulated Physiological Conditions. Am. J. Physiol. Cell Physiol. 2003, 285, C1059–C1070. [Google Scholar] [CrossRef]
- Santiago, D.J.; Curran, J.W.; Bers, D.M.; Lederer, W.J.; Stern, M.D.; Ríos, E.; Shannon, T.R. Ca Sparks Do Not Explain All Ryanodine Receptor-Mediated SR Ca Leak in Mouse Ventricular Myocytes. Biophys. J. 2010, 98, 2111–2120. [Google Scholar] [CrossRef]
- Macquaide, N.; Tuan, H.-T.M.; Hotta, J.; Sempels, W.; Lenaerts, I.; Holemans, P.; Hofkens, J.; Jafri, M.S.; Willems, R.; Sipido, K.R. Ryanodine Receptor Cluster Fragmentation and Redistribution in Persistent Atrial Fibrillation Enhance Calcium Release. Cardiovasc. Res. 2015, 108, 387–398. [Google Scholar] [CrossRef]
- Guo, T.; Wang, H.; Wu, F.; Lu, W.; Zhu, M.; Ma, S.; Zhang, Y.; Yan, Y.; Zhou, M.; Talanaite, D.; et al. Functional Analysis of JPH2-Knockout Cardiomyocytes Identifies ECCD as a Novel Indicator in a Human Cardiac modelJPH2. Stem Cell Res. Ther. 2025, 16, 234. [Google Scholar] [CrossRef]
- Soeller, C.; Cannell, M.B. Numerical Simulation of Local Calcium Movements during L-Type Calcium Channel Gating in the Cardiac Diad. Biophys. J. 1997, 73, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Gyorke, S.; Terentyev, D. Modulation of Ryanodine Receptor by Luminal Calcium and Accessory Proteins in Health and Cardiac Disease. Cardiovasc. Res. 2007, 77, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Biesmans, L.; Macquaide, N.; Heinzel, F.R.; Bito, V.; Smith, G.L.; Sipido, K.R. Subcellular Heterogeneity of Ryanodine Receptor Properties in Ventricular Myocytes with Low T-Tubule Density. PLoS ONE 2011, 6, e25100. [Google Scholar] [CrossRef]
- Venetucci, L.A.; Trafford, A.W.; Eisner, D.A. Increasing Ryanodine Receptor Open Probability Alone Does Not Produce Arrhythmogenic Calcium Waves: Threshold Sarcoplasmic Reticulum Calcium Content Is Required. Circ. Res. 2007, 100, 105–111. [Google Scholar] [CrossRef]
- Baylor, S.M.; Hollingworth, S. Model of Sarcomeric Ca2+ Movements, Including ATP Ca2+ Binding and Diffusion, during Activation of Frog Skeletal Muscle. J. Gen. Physiol. 1998, 112, 297–316. [Google Scholar] [CrossRef]
- Woldeyes, R.A.; Nishiga, M.; Roest, A.S.V.; Engel, L.; Giri, P.; Montenegro, G.C.; Dunn, A.R.; Spudich, J.A.; Bernstein, D.; Schmid, M.F.; et al. Structure of the Thin Filament in Human iPSC-Derived Cardiomyocytes and Its Response to Heart Disease. bioRxiv 2025. [CrossRef]
- Wang, X.; An, P.; Gu, Z.; Luo, Y.; Luo, J. Mitochondrial Metal Ion Transport in Cell Metabolism and Disease. Int. J. Mol. Sci. 2021, 22, 7525. [Google Scholar] [CrossRef]
- Franzini-Armstrong, C. ER-Mitochondria Communication. How Privileged? Physiology 2007, 22, 261–268. [Google Scholar] [CrossRef]
- Drum, B.M.; Yuan, C.; De La Mata, A.; Grainger, N.; Santana, L.F. Junctional Sarcoplasmic Reticulum Motility in Adult Mouse Ventricular Myocytes. Am. J. Physiol. Cell Physiol. 2020, 318, C598–C604. [Google Scholar] [CrossRef]
- Maack, C.; O’Rourke, B. Excitation-Contraction Coupling and Mitochondrial Energetics. Basic Res. Cardiol. 2007, 102, 369–392. [Google Scholar] [CrossRef] [PubMed]
- Csernoch, L.; Bernengo, J.C.; Szentesi, P.; Jacquemond, V. Measurements of Intracellular Mg2+ Concentration in Mouse Skeletal Muscle Fibers with the Fluorescent Indicator Mag-Indo-1. Biophys. J. 1998, 75, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Steele, D.S.; Duke, A.M. Defective Mg2+ Regulation of RyR1 as a Causal Factor in Malignant Hyperthermia. Arch. Biochem. Biophys. 2007, 458, 57–64. [Google Scholar] [CrossRef]
- Romani, A.M.P. Effect of Acute and Prolonged Alcohol Administration on Mg2+ Homeostasis in Cardiac Cells. Alcohol 2015, 49, 265–273. [Google Scholar] [CrossRef]
- Liguori, S.; Moretti, A.; Paoletta, M.; Gimigliano, F.; Iolascon, G. Role of Magnesium in Skeletal Muscle Health and Neuromuscular Diseases: A Scoping Review. Int. J. Mol. Sci. 2024, 25, 11220. [Google Scholar] [CrossRef]
- Mubagwa, K.; Gwanyanya, A.; Zakharov, S.; Macianskiene, R. Regulation of Cation Channels in Cardiac and Smooth Muscle Cells by Intracellular Magnesium. Arch. Biochem. Biophys. 2007, 458, 73–89. [Google Scholar] [CrossRef]
- Zhang, S.; Sawanobori, T.; Adaniya, H.; Hirano, Y.; Hiraoka, M. Dual Effects of External Magnesium on Action Potential Duration in Guinea Pig Ventricular Myocytes. Am. J. Physiol. 1995, 268, H2321–H2328. [Google Scholar] [CrossRef]
- Albitz, R.; Magyar, J.; Nilius, B. Block of Single Cardiac Sodium Channels by Intracellular Magnesium. Eur. Biophys. J. 1990, 19, 19–23. [Google Scholar] [CrossRef]
- Brunet, S.; Scheuer, T.; Klevit, R.; Catterall, W.A. Modulation of CaV1.2 Channels by Mg2+ Acting at an EF-Hand Motif in the COOH-Terminal Domain. J. Gen. Physiol. 2005, 126, 311–323. [Google Scholar] [CrossRef]
- Brunet, S.; Scheuer, T.; Catterall, W.A. Cooperative Regulation of Cav1.2 Channels by Intracellular Mg2+, the Proximal C-Terminal EF-Hand, and the Distal C-Terminal Domain. J. Gen. Physiol. 2009, 134, 81–94. [Google Scholar] [CrossRef]
- Brunet, S.; Scheuer, T.; Catterall, W.A. Increased Intracellular Magnesium Attenuates β-Adrenergic Stimulation of the Cardiac CaV1.2 Channel. J. Gen. Physiol. 2013, 141, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, D.; Chen, H.; Fill, M. Is Ryanodine Receptor a Calcium or Magnesium Channel? Roles of K+ and Mg2+ during Ca2+ Release. Cell Calcium 2012, 51, 427–433. [Google Scholar] [CrossRef]
- Treinys, R.; Kanaporis, G.; Fischmeister, R.; Jurevičius, J. Metabolic Inhibition Induces Transient Increase of L-Type Ca2+ Current in Human and Rat Cardiac Myocytes. Int. J. Mol. Sci. 2019, 20, 1501. [Google Scholar] [CrossRef]
- Shimaoka, T.; Wang, Y.; Morishima, M.; Miyamoto, S.; Ono, K. Magnesium Deficiency Causes Transcriptional Downregulation of Kir2.1 and Kv4.2 Channels in Cardiomyocytes Resulting in QT Interval Prolongation. Circ. J. 2020, 84, 1244–1253. [Google Scholar] [CrossRef]
- Sudo, G.Z.; Sanguinetti, M.C. Intracellular [Mg++] Determines Specificity of K+ Channel Block by a Class III Antiarrhythmic Drug. J. Pharmacol. Exp. Ther. 1996, 276, 951–957. [Google Scholar] [CrossRef]
- Hirahara, K.; Matsubayashi, T.; Matsuura, H.; Ehara, T. Intracellular Mg2+ Depletion Depresses the Delayed Rectifier K+ Current in Guinea Pig Ventricular Myocytes. Jpn. J. Physiol. 1998, 48, 81–89. [Google Scholar] [CrossRef]
- Huang, C.-W.; Kuo, C.-C. A Synergistic Blocking Effect of Mg2+ and Spermine on the Inward Rectifier K+ (Kir2.1) Channel Pore. Sci. Rep. 2016, 6, 21493. [Google Scholar] [CrossRef]
- Ishihara, K.; Sarai, N.; Asakura, K.; Noma, A.; Matsuoka, S. Role of Mg2+ Block of the Inward Rectifier K+ Current in Cardiac Repolarization Reserve: A Quantitative Simulation. J. Mol. Cell. Cardiol. 2009, 47, 76–84. [Google Scholar] [CrossRef]
- Grandi, E.; Pasqualini, F.S.; Bers, D.M. A Novel Computational Model of the Human Ventricular Action Potential and Ca Transient. J. Mol. Cell. Cardiol. 2010, 48, 112–121. [Google Scholar] [CrossRef]
- Dyckner, T.; Wester, P.O. Relation between Potassium, Magnesium and Cardiac Arrhythmias. Acta Med. Scand. Suppl. 1981, 647, 163–169. [Google Scholar] [CrossRef]
- Wei, S.; Quigley, J.F.; Hanlon, S.U.; O’Rourke, B.; Haigney, M.C.P. Cytosolic Free Magnesium Modulates Na/Ca Exchange Currents in Pig Myocytes. Cardiovasc. Res. 2002, 53, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.A.; Vandenberg, J.I.; Freestone, N.S.; Dixon, H.B.F. The Effect of Mg2+ on Cardiac Muscle Function: Is CaATP the Substrate for Priming Myofibril Cross-Bridge Formation and Ca2+ Reuptake by the Sarcoplasmic Reticulum? Biochem. J. 2001, 354, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Stewart, B.D.; Kucharski, A.N.; Kekenes-Huskey, P.M. Thermodynamics of Cation Binding to the Sarcoendoplasmic Reticulum Calcium ATPase Pump and Impacts on Enzyme Function. J. Chem. Theory Comput. 2019, 15, 2692–2705. [Google Scholar] [CrossRef] [PubMed]
- Mahaney, J.E.; Albers, R.W.; Waggoner, J.R.; Kutchai, H.C.; Froehlich, J.P. Intermolecular Conformational Coupling and Free Energy Exchange Enhance the Catalytic Efficiency of Cardiac Muscle SERCA2a Following the Relief of Phospholamban Inhibition. Biochemistry 2005, 44, 7713–7724. [Google Scholar] [CrossRef]
- Kho, C.; Lee, A.; Jeong, D.; Oh, J.G.; Chaanine, A.H.; Kizana, E.; Park, W.J.; Hajjar, R.J. SUMO1-Dependent Modulation of SERCA2a in Heart Failure. Nature 2011, 477, 601–605. [Google Scholar] [CrossRef]
- Pan, X.; Li, Z.; Jin, X.; Zhao, Y.; Huang, G.; Huang, X.; Shen, Z.; Cao, Y.; Dong, M.; Lei, J.; et al. Comparative Structural Analysis of Human Nav1.1 and Nav1.5 Reveals Mutational Hotspots for Sodium Channelopathies. Proc. Natl. Acad. Sci. USA 2021, 118, e2100066118. [Google Scholar] [CrossRef]
- Kise, Y.; Kasuya, G.; Okamoto, H.H.; Yamanouchi, D.; Kobayashi, K.; Kusakizako, T.; Nishizawa, T.; Nakajo, K.; Nureki, O. Structural Basis of Gating Modulation of Kv4 Channel Complexes. Nature 2021, 599, 158–164. [Google Scholar] [CrossRef]
- Gao, S.; Yao, X.; Chen, J.; Huang, G.; Fan, X.; Xue, L.; Li, Z.; Wu, T.; Zheng, Y.; Huang, J.; et al. Structural Basis for Human Cav1.2 Inhibition by Multiple Drugs and the Neurotoxin Calciseptine. Cell 2023, 186, 5363–5374.e16. [Google Scholar] [CrossRef]
- Wang, W.; MacKinnon, R. Cryo-EM Structure of the Open Human Ether-à-Go-Go-Related K+ Channel hERG. Cell 2017, 169, 422–430.e10. [Google Scholar] [CrossRef]
- Fernandes, C.A.H.; Zuniga, D.; Fagnen, C.; Kugler, V.; Scala, R.; Péhau-Arnaudet, G.; Wagner, R.; Perahia, D.; Bendahhou, S.; Vénien-Bryan, C. Cryo-Electron Microscopy Unveils Unique Structural Features of the Human Kir2.1 Channel. Sci. Adv. 2022, 8, eabq8489. [Google Scholar] [CrossRef]
- Dong, Y.; Yu, Z.; Li, Y.; Huang, B.; Bai, Q.; Gao, Y.; Chen, Q.; Li, N.; He, L.; Zhao, Y. Structural Insight into the Allosteric Inhibition of Human Sodium-Calcium Exchanger NCX1 by XIP and SEA0400. EMBO J. 2024, 43, 14–31. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, Y.; Yan, R.; Huang, B.; Ye, F.; Wu, L.; Chi, X.; Shi, Y.; Zhou, Q. Cryo-EM Structures of Recombinant Human Sodium-Potassium Pump Determined in Three Different States. Nat. Commun. 2022, 13, 3957. [Google Scholar] [CrossRef] [PubMed]
- Beard, N.A.; Wei, L.; Dulhunty, A.F. Control of Muscle Ryanodine Receptor Calcium Release Channels by Proteins in the Sarcoplasmic Reticulum Lumen. Clin. Exp. Pharmacol. Physiol. 2009, 36, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Hadiatullah, H.; He, Z.; Yuchi, Z. Structural Insight Into Ryanodine Receptor Channelopathies. Front. Pharmacol. 2022, 13, 897494. [Google Scholar] [CrossRef]
- Bäuerlein, F.J.B.; Renner, M.; Chami, D.E.; Lehnart, S.E.; Pastor-Pareja, J.C.; Fernández-Busnadiego, R. Cryo-Electron Tomography of Large Biological Specimens Vitrified by Plunge Freezing. bioRxiv 2023. [Google Scholar] [CrossRef]
- Asghari, P.; Scriven, D.R.L.; Sanatani, S.; Gandhi, S.K.; Campbell, A.I.M.; Moore, E.D.W. Nonuniform and Variable Arrangements of Ryanodine Receptors Within Mammalian Ventricular Couplons. Circ. Res. 2014, 115, 252–262. [Google Scholar] [CrossRef]
- Asghari, P.; Scriven, D.R.L.; Shahrasebi, S.; Valdivia, H.H.; Alsina, K.M.; Valdivia, C.R.; Navarro-Garcia, J.A.; Wehrens, X.H.T.; Moore, E.D.W. Phosphorylation of RyR2 Simultaneously Expands the Dyad and Rearranges the Tetramers. J. Gen. Physiol. 2024, 156, e202213108. [Google Scholar] [CrossRef]
- Li, J.; Imtiaz, M.S.; Beard, N.A.; Dulhunty, A.F.; Thorne, R.; vanHelden, D.F.; Laver, D.R. SS-Adrenergic Stimulation Increases RyR2 Activity via Intracellular Ca2+ and Mg2+ Regulation. PLoS ONE 2013, 8, e58334. [Google Scholar] [CrossRef]
- Fu, Y.; Shaw, S.A.; Naami, R.; Vuong, C.L.; Basheer, W.A.; Guo, X.; Hong, T. Isoproterenol Promotes Rapid Ryanodine Receptor Movement to Bridging Integrator 1 (BIN1)–Organized Dyads. Circulation 2016, 133, 388–397. [Google Scholar] [CrossRef]
- Bennett, H.J.; Davenport, J.B.; Collins, R.F.; Trafford, A.W.; Pinali, C.; Kitmitto, A. Human Junctophilin-2 Undergoes a Structural Rearrangement upon Binding PtdIns(3,4,5)P3 and the S101R Mutation Identified in Hypertrophic Cardiomyopathy Obviates This Response. Biochem. J. 2013, 456, 205–217. [Google Scholar] [CrossRef]
- Miotto, M.C.; Reiken, S.; Wronska, A.; Yuan, Q.; Dridi, H.; Liu, Y.; Weninger, G.; Tchagou, C.; Marks, A.R. Structural Basis for Ryanodine Receptor Type 2 Leak in Heart Failure and Arrhythmogenic Disorders. Nat. Commun. 2024, 15, 8080. [Google Scholar] [CrossRef]
- Nayak, A.R.; Rangubpit, W.; Will, A.H.; Hu, Y.; Castro-Hartmann, P.; Lobo, J.J.; Dryden, K.; Lamb, G.D.; Sompornpisut, P.; Samsó, M. Interplay between Mg2+ and Ca2+ at Multiple Sites of the Ryanodine Receptor. Nat. Commun. 2024, 15, 4115. [Google Scholar] [CrossRef]
- Laver, D.R. Regulation of the RyR Channel Gating by Ca2+ and Mg2+. Biophys. Rev. 2018, 10, 1087–1095. [Google Scholar] [CrossRef]
- Laver, D.R.; Honen, B.N. Luminal Mg2+, a Key Factor Controlling RYR2-Mediated Ca2+ Release: Cytoplasmic and Luminal Regulation Modeled in a Tetrameric Channel. J. Gen. Physiol. 2008, 132, 429–446. [Google Scholar] [CrossRef] [PubMed]
- Sitsapesan, R.; Williams, A.J. Regulation of the Gating of the Sheep Cardiac Sarcoplasmic Reticulum Ca2+-Release Channel by Luminal Ca2+. J. Membr. Biol. 1994, 137, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Laver, D.R.; Roden, L.D.; Ahern, G.P.; Eager, K.R.; Junankar, P.R.; Dulhunty, A.F. Cytoplasmic Ca2+ Inhibits the Ryanodine Receptor from Cardiac Muscle. J. Membr. Biol. 1995, 147, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Iaparov, B.; Baglaeva, I.; Zahradník, I.; Zahradníková, A. Magnesium Ions Moderate Calcium-Induced Calcium Release in Cardiac Calcium Release Sites by Binding to Ryanodine Receptor Activation and Inhibition Sites. Front. Physiol. 2022, 12, 805956. [Google Scholar] [CrossRef]
- Cannell, M.B.; Kong, C.H.T.; Imtiaz, M.S.; Laver, D.R. Control of Sarcoplasmic Reticulum Ca2+ Release by Stochastic RyR Gating within a 3D Model of the Cardiac Dyad and Importance of Induction Decay for CICR Termination. Biophys. J. 2013, 104, 2149–2159. [Google Scholar] [CrossRef]
- Guo, W.; Sun, B.; Estillore, J.P.; Wang, R.; Chen, S.R.W. The Central Domain of Cardiac Ryanodine Receptor Governs Channel Activation, Regulation, and Stability. J. Biol. Chem. 2020, 295, 15622–15635. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, X.; Yamaguchi, N.; Morad, M. Point Mutations in RyR2 Ca2+-Binding Residues of Human Cardiomyocytes Cause Cellular Remodelling of Cardiac Excitation Contraction-Coupling. Cardiovasc. Res. 2024, 120, 44–55. [Google Scholar] [CrossRef]
- Zahradníková, A.; Pavelková, J.; Sabo, M.; Baday, S.; Zahradník, I. Structure-Based Mechanism of RyR Channel Operation by Calcium and Magnesium Ions. PLoS Comput. Biol. 2025, 21, e1012950. [Google Scholar] [CrossRef]
- Des Georges, A.; Clarke, O.B.; Zalk, R.; Yuan, Q.; Condon, K.J.; Grassucci, R.A.; Hendrickson, W.A.; Marks, A.R.; Frank, J. Structural Basis for Gating and Activation of RyR1. Cell 2016, 167, 145–157.e17. [Google Scholar] [CrossRef] [PubMed]
- Walweel, K.; Molenaar, P.; Imtiaz, M.S.; Denniss, A.; Dos Remedios, C.; Van Helden, D.F.; Dulhunty, A.F.; Laver, D.R.; Beard, N.A. Ryanodine Receptor Modification and Regulation by Intracellular Ca2+ and Mg2+ in Healthy and Failing Human Hearts. J. Mol. Cell. Cardiol. 2017, 104, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Walweel, K.; Laver, D.R. Mechanisms of SR Calcium Release in Healthy and Failing Human Hearts. Biophys. Rev. 2015, 7, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Laver, D.R.; Owen, V.J.; Junankar, P.R.; Taske, N.L.; Dulhunty, A.F.; Lamb, G.D. Reduced Inhibitory Effect of Mg2+ on Ryanodine Receptor-Ca2+ Release Channels in Malignant Hyperthermia. Biophys. J. 1997, 73, 1913–1924. [Google Scholar] [CrossRef]
- Laver, D.R. Ca2+ Stores Regulate Ryanodine Receptor Ca2+ Release Channels via Luminal and Cytosolic Ca2+ Sites. Clin. Exp. Pharmacol. Physiol. 2007, 34, 889–896. [Google Scholar] [CrossRef]
- Kermode, H.; Williams, A.J.; Sitsapesan, R. The Interactions of ATP, ADP, and Inorganic Phosphate with the Sheep Cardiac Ryanodine Receptor. Biophys. J. 1998, 74, 1296–1304. [Google Scholar] [CrossRef]
- Magyar, Z.É.; Bauer, J.; Bauerová-Hlinková, V.; Jóna, I.; Gaburjakova, J.; Gaburjakova, M.; Almássy, J. Eu3+ Detects Two Functionally Distinct Luminal Ca2+ Binding Sites in Ryanodine Receptors. Biophys. J. 2023, 122, 3516–3531. [Google Scholar] [CrossRef]
- Gaburjakova, J.; Gaburjakova, M. Cardiac Ryanodine Receptor: Selectivity for Alkaline Earth Metal Cations Points to the EF-Hand Nature of Luminal Binding Sites. Bioelectrochemistry 2016, 109, 49–56. [Google Scholar] [CrossRef]
- Chen, W.; Wang, R.; Chen, B.; Zhong, X.; Kong, H.; Bai, Y.; Zhou, Q.; Xie, C.; Zhang, J.; Guo, A.; et al. The Ryanodine Receptor Store Sensing Gate Controls Ca2+ Waves and Ca2+ Triggered Arrhythmias. Nat. Med. 2014, 20, 184–192. [Google Scholar] [CrossRef]
- Qin, J.; Valle, G.; Nani, A.; Nori, A.; Rizzi, N.; Priori, S.G.; Volpe, P.; Fill, M. Luminal Ca2+ Regulation of Single Cardiac Ryanodine Receptors: Insights Provided by Calsequestrin and Its Mutants. J. Gen. Physiol. 2008, 131, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Handhle, A.; Ormonde, C.E.; Thomas, N.L.; Bralesford, C.; Williams, A.J.; Lai, F.A.; Zissimopoulos, S. Calsequestrin Interacts Directly with the Cardiac Ryanodine Receptor Luminal Domain. J. Cell Sci. 2016, 129, 3983–3988. [Google Scholar] [CrossRef] [PubMed]
- Goonasekera, S.A.; Beard, N.A.; Groom, L.; Kimura, T.; Lyfenko, A.D.; Rosenfeld, A.; Marty, I.; Dulhunty, A.F.; Dirksen, R.T. Triadin Binding to the C-Terminal Luminal Loop of the Ryanodine Receptor Is Important for Skeletal Muscle Excitation–Contraction Coupling. J. Gen. Physiol. 2007, 130, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Rho, S.-H.; Shin, D.W.; Cho, C.; Park, W.J.; Eom, S.H.; Ma, J.; Kim, D.H. Negatively Charged Amino Acids within the Intraluminal Loop of Ryanodine Receptor Are Involved in the Interaction with Triadin. J. Biol. Chem. 2004, 279, 6994–7000. [Google Scholar] [CrossRef]
- Beard, N.A.; Laver, D.R.; Dulhunty, A.F. Calsequestrin and the Calcium Release Channel of Skeletal and Cardiac Muscle. Prog. Biophys. Mol. Biol. 2004, 85, 33–69. [Google Scholar] [CrossRef]
- Chen, H.; Valle, G.; Furlan, S.; Nani, A.; Gyorke, S.; Fill, M.; Volpe, P. Mechanism of Calsequestrin Regulation of Single Cardiac Ryanodine Receptor in Normal and Pathological Conditions. J. Gen. Physiol. 2013, 142, 127–136. [Google Scholar] [CrossRef]
- Crotti, L.; Johnson, C.N.; Graf, E.; Ferrari, G.M.D.; Cuneo, B.F.; Ovadia, M.; Papagiannis, J.; Feldkamp, M.D.; Rathi, S.; Kunic, J.D.; et al. Calmodulin Mutations Associated with Recurrent Cardiac Arrest in Infants. Circulation 2013, 127, 1009–1017. [Google Scholar] [CrossRef]
- Kushnir, A.; Shan, J.; Betzenhauser, M.J.; Reiken, S.; Marks, A.R. Role of CaMKIIdelta Phosphorylation of the Cardiac Ryanodine Receptor in the Force Frequency Relationship and Heart Failure. Proc. Natl. Acad. Sci. USA 2010, 107, 10274–10279. [Google Scholar] [CrossRef]
- Witcher, D.R.; Kovacs, R.J.; Schulman, H.; Cefali, D.C.; Jones, L.R. Unique Phosphorylation Site on the Cardiac Ryanodine Receptor Regulates Calcium Channel Activity. J. Biol. Chem. 1991, 266, 11144–11152. [Google Scholar] [CrossRef]
- Grimm, M.; Ling, H.; Willeford, A.; Pereira, L.; Gray, C.B.B.; Erickson, J.R.; Sarma, S.; Respress, J.L.; Wehrens, X.H.T.; Bers, D.M.; et al. CaMKIIδ Mediates β-Adrenergic Effects on RyR2 Phosphorylation and SR Ca2+ Leak and the Pathophysiological Response to Chronic β-Adrenergic Stimulation. J. Mol. Cell. Cardiol. 2015, 85, 282–291. [Google Scholar] [CrossRef]
- Ji, Y.; Zhao, W.; Li, B.; Desantiago, J.; Picht, E.; Kaetzel, M.A.; Schultz, J.E.J.; Kranias, E.G.; Bers, D.M.; Dedman, J.R. Targeted Inhibition of Sarcoplasmic Reticulum CaMKII Activity Results in Alterations of Ca2+ Homeostasis and Cardiac Contractility. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H599–H606. [Google Scholar] [CrossRef] [PubMed]
- Wood, B.M.; Simon, M.; Galice, S.; Alim, C.C.; Ferrero, M.; Pinna, N.N.; Bers, D.M.; Bossuyt, J. Cardiac CaMKII Activation Promotes Rapid Translocation to Its Extra-Dyadic Targets. J. Mol. Cell. Cardiol. 2018, 125, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Erickson, J.R. Mechanisms of CaMKII Activation in the Heart. Front. Pharmacol. 2014, 5, 59. [Google Scholar] [CrossRef] [PubMed]
- Kool, M.J.; Bodde, H.E.; Elgersma, Y.; Van Woerden, G.M. Bidirectional Changes in Excitability upon Loss of Both CAMK2A and CAMK2B. bioRxiv 2022. [Google Scholar] [CrossRef]
- Knape, M.J.; Ahuja, L.G.; Bertinetti, D.; Burghardt, N.C.G.; Zimmermann, B.; Taylor, S.S.; Herberg, F.W. Divalent Metal Ions Mg2+ and Ca2+ Have Distinct Effects on Protein Kinase A Activity and Regulation. ACS Chem. Biol. 2015, 10, 2303–2315. [Google Scholar] [CrossRef]
- Uehara, A.; Murayama, T.; Yasukochi, M.; Fill, M.; Horie, M.; Okamoto, T.; Matsuura, Y.; Uehara, K.; Fujimoto, T.; Sakurai, T.; et al. Extensive Ca2+ Leak through K4750Q Cardiac Ryanodine Receptors Caused by Cytosolic and Luminal Ca2+ Hypersensitivity. J. Gen. Physiol. 2017, 149, 199–218. [Google Scholar] [CrossRef]
- Wehrens, X.H.T.; Lehnart, S.E.; Reiken, S.; Vest, J.A.; Wronska, A.; Marks, A.R. Ryanodine Receptor/Calcium Release Channel PKA Phosphorylation: A Critical Mediator of Heart Failure Progression. Proc. Natl. Acad. Sci. USA 2006, 103, 511–518. [Google Scholar] [CrossRef]
- Carter, S.; Pitt, S.J.; Colyer, J.; Sitsapesan, R. Ca2+-Dependent Phosphorylation of RyR2 Can Uncouple Channel Gating from Direct Cytosolic Ca2+ Regulation. J. Membr. Biol. 2011, 240, 21–33. [Google Scholar] [CrossRef]
- Meissner, G. The Structural Basis of Ryanodine Receptor Ion Channel Function. J. Gen. Physiol. 2017, 149, 1065–1089. [Google Scholar] [CrossRef]
- Wei, J.; Guo, W.; Wang, R.; Paul Estillore, J.; Belke, D.; Chen, Y.-X.; Vallmitjana, A.; Benitez, R.; Hove-Madsen, L.; Chen, S.R.W. RyR2 Serine-2030 PKA Site Governs Ca2+ Release Termination and Ca2+ Alternans. Circ. Res. 2023, 132, e59–e77. [Google Scholar] [CrossRef]
- Cefaratti, C.; Romani, A.M.P. Functional Characterization of Two Distinct Mg2+ Extrusion Mechanisms in Cardiac Sarcolemmal Vesicles. Mol. Cell. Biochem. 2007, 303, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Miotto, M.C.; Weninger, G.; Dridi, H.; Yuan, Q.; Liu, Y.; Wronska, A.; Melville, Z.; Sittenfeld, L.; Reiken, S.; Marks, A.R. Structural Analyses of Human Ryanodine Receptor Type 2 Channels Reveal the Mechanisms for Sudden Cardiac Death and Treatment. Sci. Adv. 2022, 8, eabo1272. [Google Scholar] [CrossRef] [PubMed]
- Titus, E.W.; Deiter, F.H.; Shi, C.; Wojciak, J.; Scheinman, M.; Jura, N.; Deo, R.C. The Structure of a Calsequestrin Filament Reveals Mechanisms of Familial Arrhythmia. Nat. Struct. Mol. Biol. 2020, 27, 1142–1151. [Google Scholar] [CrossRef] [PubMed]
- Györke, I.; Hester, N.; Jones, L.R.; Györke, S. The Role of Calsequestrin, Triadin, and Junctin in Conferring Cardiac Ryanodine Receptor Responsiveness to Luminal Calcium. Biophys. J. 2004, 86, 2121–2128. [Google Scholar] [CrossRef]
- Dulhunty, A.F.; Wium, E.; Li, L.; Hanna, A.D.; Mirza, S.; Talukder, S.; Ghazali, N.A.; Beard, N.A. Proteins within the Intracellular Calcium Store Determine Cardiac RyR Channel Activity and Cardiac Output. Clin. Exp. Pharmacol. Physiol. 2012, 39, 477–484. [Google Scholar] [CrossRef]
- Park, H.; Wu, S.; Dunker, A.K.; Kang, C. Polymerization of Calsequestrin. Implications for Ca2+ Regulation. J. Biol. Chem. 2003, 278, 16176–16182. [Google Scholar] [CrossRef]
- Park, H.; Park, I.Y.; Kim, E.; Youn, B.; Fields, K.; Dunker, A.K.; Kang, C. Comparing Skeletal and Cardiac Calsequestrin Structures and Their Calcium Binding: A Proposed Mechanism for Coupled Calcium Binding and Protein Polymerization. J. Biol. Chem. 2004, 279, 18026–18033. [Google Scholar] [CrossRef]
- Marabelli, C.; Santiago, D.J.; Priori, S.G. The Structural-Functional Crosstalk of the Calsequestrin System: Insights and Pathological Implications. Biomolecules 2023, 13, 1693. [Google Scholar] [CrossRef]
- Bal, N.C.; Jena, N.; Sopariwala, D.; Balaraju, T.; Shaikh, S.; Bal, C.; Sharon, A.; Gyorke, S.; Periasamy, M. Probing Cationic Selectivity of Cardiac Calsequestrin and Its CPVT Mutants. Biochem. J. 2011, 435, 391–399. [Google Scholar] [CrossRef]
- Kilimann, M.; Heilmeyer, L.M.G. The Effect of Mg2+ on the Ca2+-Binding Properties of Non-Activated Phosphorylase Kinase. Eur. J. Biochem. 1977, 73, 191–197. [Google Scholar] [CrossRef]
- Ng, K.; Titus, E.W.; Lieve, K.V.; Roston, T.M.; Mazzanti, A.; Deiter, F.H.; Denjoy, I.; Ingles, J.; Till, J.; Robyns, T.; et al. An International Multicenter Evaluation of Inheritance Patterns, Arrhythmic Risks, and Underlying Mechanisms of CASQ2 -Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation 2020, 142, 932–947. [Google Scholar] [CrossRef] [PubMed]
- Bal, N.C.; Jena, N.; Chakravarty, H.; Kumar, A.; Chi, M.; Balaraju, T.; Rawale, S.V.; Rawale, J.S.; Sharon, A.; Periasamy, M. The C-Terminal Calcium-Sensitive Disordered Motifs Regulate Isoform-Specific Polymerization Characteristics of Calsequestrin. Biopolymers 2015, 103, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Beard, N.A.; Dulhunty, A.F. C-Terminal Residues of Skeletal Muscle Calsequestrin Are Essential for Calcium Binding and for Skeletal Ryanodine Receptor Inhibition. Skelet. Muscle 2015, 5, 6. [Google Scholar] [CrossRef]
- Boncompagni, S.; Pozzer, D.; Viscomi, C.; Ferreiro, A.; Zito, E. Physical and Functional Cross Talk Between Endo-Sarcoplasmic Reticulum and Mitochondria in Skeletal Muscle. Antioxid. Redox Signal. 2020, 32, 873–883. [Google Scholar] [CrossRef] [PubMed]
- Manno, C.; Figueroa, L.C.; Gillespie, D.; Fitts, R.; Kang, C.; Franzini-Armstrong, C.; Rios, E. Calsequestrin Depolymerizes When Calcium Is Depleted in the Sarcoplasmic Reticulum of Working Muscle. Proc. Natl. Acad. Sci. USA 2017, 114, E638–E647. [Google Scholar] [CrossRef]
- Ramay, H.R.; Fabris, F.; Noel, O.; Sarkar, A. An Il-lumen-ating Look at Ryanodine Receptor Modulation by Disruption in Triadin and Calsequestrin Interactions in Cardiac Myocytes. J. Physiol. 2008, 586, 697–699. [Google Scholar] [CrossRef]
- Zhang, L.; Kelley, J.; Schmeisser, G.; Kobayashi, Y.M.; Jones, L.R. Complex Formation between Junctin, Triadin, Calsequestrin, and the Ryanodine Receptor. Proteins of the Cardiac Junctional Sarcoplasmic Reticulum Membrane. J. Biol. Chem. 1997, 272, 23389–23397. [Google Scholar] [CrossRef]
- Shin, D.W.; Ma, J.; Kim, D.H. The Asp-Rich Region at the Carboxyl-Terminus of Calsequestrin Binds to Ca2+ and Interacts with Triadin. FEBS Lett. 2000, 486, 178–182. [Google Scholar] [CrossRef]
- Cai, W.-F.; Pritchard, T.; Florea, S.; Lam, C.-K.; Han, P.; Zhou, X.; Yuan, Q.; Lehnart, S.E.; Allen, P.D.; Kranias, E.G. Ablation of Junctin or Triadin Is Associated with Increased Cardiac Injury Following Ischaemia/Reperfusion. Cardiovasc. Res. 2012, 94, 333–341. [Google Scholar] [CrossRef]
- Marty, I. Triadin: A Multi-Protein Family for Which Purpose? Cell. Mol. Life Sci. 2004, 61, 1850–1853. [Google Scholar] [CrossRef]
- Oddoux, S.; Brocard, J.; Schweitzer, A.; Szentesi, P.; Giannesini, B.; Brocard, J.; Fauré, J.; Pernet-Gallay, K.; Bendahan, D.; Lunardi, J.; et al. Triadin Deletion Induces Impaired Skeletal Muscle Function. J. Biol. Chem. 2009, 284, 34918–34929. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Valle, G.; Nani, A.; Chen, H.; Ramos-Franco, J.; Nori, A.; Volpe, P.; Fill, M. Ryanodine Receptor Luminal Ca2+ Regulation: Swapping Calsequestrin and Channel Isoforms. Biophys. J. 2009, 97, 1961–1970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Franzini-Armstrong, C.; Ramesh, V.; Jones, L.R. Structural Alterations in Cardiac Calcium Release Units Resulting from Overexpression of Junctin. J. Mol. Cell. Cardiol. 2001, 33, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Chopra, N.; Yang, T.; Asghari, P.; Moore, E.D.; Huke, S.; Akin, B.; Cattolica, R.A.; Perez, C.F.; Hlaing, T.; Knollmann-Ritschel, B.E.C.; et al. Ablation of Triadin Causes Loss of Cardiac Ca2+ Release Units, Impaired Excitation–Contraction Coupling, and Cardiac Arrhythmias. Proc. Natl. Acad. Sci. USA 2009, 106, 7636–7641. [Google Scholar] [CrossRef]
- Clemens, D.J.; Ye, D.; Wang, L.; Kim, C.S.J.; Zhou, W.; Dotzler, S.M.; Tester, D.J.; Marty, I.; Knollmann, B.C.; Ackerman, M.J. Cellular and Electrophysiological Characterization of Triadin Knockout Syndrome Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cell Rep. 2023, 18, 1075–1089. [Google Scholar] [CrossRef]
- Manno, C.; Tammineni, E.; Figueroa, L.; Marty, I.; Ríos, E. Quantification of the Calcium Signaling Deficit in Muscles Devoid of Triadin. PLoS ONE 2022, 17, e0264146. [Google Scholar] [CrossRef]
- di Barletta, M.R.; Viatchenko-Karpinski, S.; Nori, A.; Memmi, M.; Terentyev, D.; Turcato, F.; Valle, G.; Rizzi, N.; Napolitano, C.; Gyorke, S.; et al. Clinical Phenotype and Functional Characterization of CASQ2 Mutations Associated with Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation 2006, 114, 1012–1019. [Google Scholar] [CrossRef]
- Lodola, F.; Morone, D.; Denegri, M.; Bongianino, R.; Nakahama, H.; Rutigliano, L.; Gosetti, R.; Rizzo, G.; Vollero, A.; Buonocore, M.; et al. Adeno-Associated Virus-Mediated CASQ2 Delivery Rescues Phenotypic Alterations in a Patient-Specific Model of Recessive Catecholaminergic Polymorphic Ventricular Tachycardia. Cell Death Dis. 2016, 7, e2393. [Google Scholar] [CrossRef]
- Kalyanasundaram, A.; Viatchenko-Karpinski, S.; Belevych, A.E.; Lacombe, V.A.; Hwang, H.S.; Knollmann, B.C.; Gyorke, S.; Periasamy, M. Functional Consequences of Stably Expressing a Mutant Calsequestrin (CASQ2D307H) in the CASQ2 Null Background. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H253–H261. [Google Scholar] [CrossRef]
- Ayuk, J.; Gittoes, N.J.L. How Should Hypomagnesaemia Be Investigated and Treated? Clin. Endocrinol. 2011, 75, 743–746. [Google Scholar] [CrossRef]
- Andreozzi, F.; Cuminetti, G.; Karmali, R.; Kamgang, P. Electrolyte Disorders as Triggers for Takotsubo Cardiomyopathy. Eur. J. Case Rep. Intern. Med. 2018, 5, 000760. [Google Scholar] [CrossRef]
- Gragossian, A.; Bashir, K.; Bhutta, B.S.; Friede, R. Hypomagnesemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Fauconnier, J.; Thireau, J.; Reiken, S.; Cassan, C.; Richard, S.; Matecki, S.; Marks, A.R.; Lacampagne, A. Leaky RyR2 Trigger Ventricular Arrhythmias in Duchenne Muscular Dystrophy. Proc. Natl. Acad. Sci. USA 2010, 107, 1559–1564. [Google Scholar] [CrossRef]
- Haigney, M.C.; Wei, S.; Kääb, S.; Griffiths, E.; Berger, R.; Tunin, R.; Kass, D.; Fisher, W.G.; Silver, B.; Silverman, H. Loss of Cardiac Magnesium in Experimental Heart Failure Prolongs and Destabilizes Repolarization in Dogs. J. Am. Coll. Cardiol. 1998, 31, 701–706. [Google Scholar] [CrossRef]
- Gusev, K.; Niggli, E. Modulation of the Local SR Ca2+ Release by Intracellular Mg2+ in Cardiac Myocytes. J. Gen. Physiol. 2008, 132, 721–730. [Google Scholar] [CrossRef]
- Murphy, E.; Steenbergen, C.; Levy, L.A.; Raju, B.; London, R.E. Cytosolic Free Magnesium Levels in Ischemic Rat Heart. J. Biol. Chem. 1989, 264, 5622–5627. [Google Scholar] [CrossRef]
- Murphy, E.; Steenbergen, C. Mechanisms Underlying Acute Protection from Cardiac Ischemia-Reperfusion Injury. Physiol. Rev. 2008, 88, 581–609. [Google Scholar] [CrossRef]
Side | Site | Protein Location | Ion Binding Properties | Functional Consequence of Mg2+ |
---|---|---|---|---|
Cytosolic | A-site | Within central domain, in proximity to C-terminal domain and to ATP-binding site [84] a, [91] b | Ka for Ca2+= 2–5 µM Ka for Mg2+= 50 μM [12,86,93,95,96] | Mg2+ shifts the apparent Ka for Ca2+ up to 50 μM [86] and stabilizes an inactive state yet accessible to Ca2+ [84]. |
I1-site | Two putative locations:
| RyR2 IC50 Mg2+= 2–10 mM RyR1 IC50 Mg2+= 0.1 mM [12,27,84,85] | Mg2+ acts as a surrogate for Ca2+ in stabilizing the closed state. Physiological cytosolic Mg2+ is unlikely to trigger an inhibitory mechanism through the I1-site in cardiac muscle. | |
I2-site | Estimated at a 26 nm distance from the cytosolic channel mouth; possibly identifies with an inhibitory, Ca2+-sensing protein interactor [98] | RyR2 Ka for Ca2+ = 1 µM [98] | Mg2+ produces partial inactivation (20–40% reduction in open probability) in response to high levels of Ca2+ “feed-through” from the jSR. Physiological Mg2+ is largely unlikely to impact RyR2. | |
ATP-Binding Pocket | Cavity between the central domains (U-motif and S6) and the C-terminal domain [84] a | EC50 for Mg-ATP = 0.2 mM [99] | Binding of Mg-ATP induces a “primed” state, more susceptible to Ca2+-induced activation. Mg-ATP is essential for the luminal partner CASQ2 to inhibit RyR2 channel activity. | |
Transmembrane | Pore | In RyR1: D4945 (corresponding to D4875 in RyR2) lining the pore in S6 helices [54] c, [84] a | RyR1: Selective for stable Mg2+ binding over Ca2+ [84] | RyR1: Mg2+ stabilizes the closed state, increasing resistance to pore opening [84]. RyR2: Mg2+ at this site is not described. The RyR2 channel is permeable to Mg2+ just as it is to Ca2+ [54]. |
Selectivity Filter | Conserved GGGIG motif within the S5–S6 loop (residues 4790–4830 in human RyR2) [54,84]c | RyR1 and RyR2: Higher charge density expectedly favors Mg2+ binding over Ca2+ [54] RyR1 IC50 Eu3+ = 0.4 mM at 100 nM [Ca2+]cyt [100]. | There is expected similarity with the biphasic effect of Ca2+ and Eu3+ on RyR2, activating at submicromolar concentrations and inhibiting at higher than 1 µM concentrations [100]. | |
Luminal | Intrinsic Luminal Activation site | Proposed within intraluminal S1-S2 EF-hand motif [98] b, [100,101] c, and proximal to S6-helical bundle [102] b | RyR2 EC50 Ca2+/Mg2+ = 0.2–0.5 mM [103] | During pathological SR overload, when the inhibitory interaction with partners is lowered, maximal open probability is enhanced by luminal Ca2+/Mg2+ ions. |
Intrinsic Luminal Inhibition site | Proposed close to channel activation gate, near RyR1 Q4933 [100,101]c | RyR2 Po inhibited by 15 µM luminal Eu3+ at 100 nM [Ca2+]cyt [100] | Unknown. | |
CASQ2- dependent Inhibitory L-site | Proposed binding of CASQ2 at RyR2-specific S1-S2 EF-hand [104]b Proposed binding of TRDN at S3-S4 loop [105,106] b | Voltage-independent Ka for Ca2+/Mg2+ = 35–45 µM at 100 μM luminal Ca2+ [98] Hill coefficient = 2 | At physiological concentrations, luminal Mg2+ shifts the Ka for luminal Ca2+ activation to 1 mM. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marabelli, C.; Santiago, D.J.; Priori, S.G. The Yin and Yang of Heartbeats: Magnesium–Calcium Antagonism Is Essential for Cardiac Excitation–Contraction Coupling. Cells 2025, 14, 1280. https://doi.org/10.3390/cells14161280
Marabelli C, Santiago DJ, Priori SG. The Yin and Yang of Heartbeats: Magnesium–Calcium Antagonism Is Essential for Cardiac Excitation–Contraction Coupling. Cells. 2025; 14(16):1280. https://doi.org/10.3390/cells14161280
Chicago/Turabian StyleMarabelli, Chiara, Demetrio J. Santiago, and Silvia G. Priori. 2025. "The Yin and Yang of Heartbeats: Magnesium–Calcium Antagonism Is Essential for Cardiac Excitation–Contraction Coupling" Cells 14, no. 16: 1280. https://doi.org/10.3390/cells14161280
APA StyleMarabelli, C., Santiago, D. J., & Priori, S. G. (2025). The Yin and Yang of Heartbeats: Magnesium–Calcium Antagonism Is Essential for Cardiac Excitation–Contraction Coupling. Cells, 14(16), 1280. https://doi.org/10.3390/cells14161280