CircIDH2 Modulates Porcine Adipogenesis via the miR-193a-5p/RASGRP4 Axis: Implications for ceRNA-Mediated Regulation of Fat Deposition
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Isolation, Culture, and Transfection
2.2. RNA Extraction and qRT-PCR
2.3. Cell Proliferation Analysis
2.4. Western Blot
2.5. Oil Red O Staining for Lipid Droplet Detection
2.6. Dual-Luciferase Reporter Assay
2.7. Statistical Analysis
3. Results
3.1. CircIDH2 Suppresses Porcine Preadipocyte Proliferation and Promotes Adipogenic Differentiation
3.2. CircIDH2 Directly Sponges miR-193a-5p
3.3. MiR-193a-5p Promotes Proliferation and Suppresses Adipogenesis in Porcine Preadipocytes
3.4. CircIDH2 Attenuates miR-193a-5p-Mediated Regulation of Proliferation and Adipogenesis in Porcine Preadipocytes
3.5. MiR-193a-5p Directly Targets RASGRP4
3.6. RASGRP4 Suppresses Proliferation and Enhances Adipogenic Differentiation in Porcine Preadipocytes
3.7. MiR-193a-5p Attenuates RASGRP4-Mediated Suppression of Proliferation and Promotion of Adipogenic Differentiation in Porcine Preadipocytes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs Are Abundant, Conserved, and Associated with ALU Repeats. RNA 2013, 19, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Hei, W.; Gong, Y.; Cai, W.; Li, R.; Chen, J.; Zhang, W.; Ji, M.; Li, M.; Yang, Y.; Cai, C.; et al. The Regulatory Role of CircAGGF1 in Myogenic Differentiation and Skeletal Muscle Development. Animals 2025, 15, 708. [Google Scholar] [CrossRef]
- Guo, X.Y.; Chen, J.N.; Sun, F.; Wang, Y.Q.; Pan, Q.; Fan, J.G. circRNA_0046367 Prevents Hepatoxicity of Lipid Peroxidation: An Inhibitory Role against Hepatic Steatosis. Oxidative Med. Cell. Longev. 2017, 2017, 3960197. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.F.; Zhou, Z.J.; Zeng, Y.H.; Yang, S.L.; Zhang, Q.Y. Circular RNA RRM2 Alleviates Metabolic Dysfunction-Associated Steatotic Liver Disease by Targeting miR-142-5p to Increase NRG1 Expression. Am. J. Physiol. Gastrointest. Liver Physiol. 2024, 327, G485–G498. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Chen, X.; Li, H.; Yang, J. CircLDLR Acts as a Sponge for miR-667-5p to Regulate SIRT1 Expression in Non-Alcoholic Fatty Liver Disease. Lipids Health Dis. 2022, 21, 127. [Google Scholar] [CrossRef]
- Li, J.; Qi, J.; Tang, Y.; Liu, H.; Zhou, K.; Dai, Z.; Yuan, L.; Sun, C. A Nanodrug System Overexpressed circRNA_0001805 Alleviates Nonalcoholic Fatty Liver Disease via miR-106a-5p/miR-320a and ABCA1/CPT1 Axis. J. Nanobiotechnol. 2021, 19, 363. [Google Scholar] [CrossRef]
- Li, M.; Zhang, N.; Zhang, W.; Hei, W.; Cai, C.; Yang, Y.; Lu, C.; Gao, P.; Guo, X.; Cao, G.; et al. Comprehensive Analysis of Differentially Expressed circRNAs and ceRNA Regulatory Network in Porcine Skeletal Muscle. BMC Genom. 2021, 10, 320. [Google Scholar] [CrossRef]
- Reitman, Z.J.; Yan, H. Isocitrate Dehydrogenase 1 and 2 Mutations in Cancer: Alterations at a Crossroads of Cellular Metabolism. J. Natl. Cancer Inst. 2010, 102, 932–941. [Google Scholar] [CrossRef]
- Mondesir, J.; Willekens, C.; Touat, M.; de Botton, S. IDH1 and IDH2 Mutations as Novel Therapeutic Targets: Current Perspectives. J. Blood Med. 2016, 7, 171–180. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, X.; Zhao, J.; Du, M. AMPKα1 Regulates Idh2 Transcription through H2B O-GlcNAcylation during Brown Adipogenesis. Acta Biochim. Biophys. Sin. 2021, 53, 112–118. [Google Scholar] [CrossRef]
- Hausman, G.J.; Poulos, S. Recruitment and Differentiation of Intramuscular Preadipocytes in Stromal-Vascular Cell Cultures Derived from Neonatal Pig Semitendinosus Muscles. J. Anim. Sci. 2004, 82, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat Deposition, Fatty Acid Composition and Meat Quality: A Review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Rosen, E.D.; Spiegelman, B.M. Adipocytes as Regulators of Energy Balance and Glucose Homeostasis. Nature 2006, 444, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Spurlock, M.E.; Gabler, N.K. The Development of Porcine Models of Obesity and the Metabolic Syndrome. J. Nutr. 2008, 138, 397–402. [Google Scholar] [CrossRef]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef]
- Liu, C.; Li, X. Role of leptin and adiponectin in immune response and inflammation. Int. Immunopharmacol. 2025, 161, 115082. [Google Scholar] [CrossRef]
- Chen, Y.; Hou, X.; Fu, Y.; Gao, H.; Wang, Q.; Fan, N.; Xie, Q.; Ren, R.; Chen, F.; Yin, Y.; et al. Identification of candidate CircRNA associated with intramuscular fat deposition in Duroc pigs. Genomics 2025, 117, 111073. [Google Scholar] [CrossRef]
- Qin, C.; Xu, F.; Yue, B.; Zhong, J.; Chai, Z.; Wang, H. SRSF3 and hnRNP A1-mediated m6A-modified circCDK14 regulates intramuscular fat deposition by acting as miR-4492-z sponge. Cell. Mol. Biol. Lett. 2025, 30, 26. [Google Scholar] [CrossRef]
- Ling, Y.; Zheng, Q.; Zhu, L.; Xu, L.; Sui, M.; Zhang, Y.; Liu, Y.; Fang, F.; Chu, M.; Ma, Y.; et al. Trend Analysis of the Role of Circular RNA in Goat Skeletal Muscle Development. BMC Genom. 2020, 21, 220. [Google Scholar] [CrossRef]
- Li, S.Y.; Liu, S.T.; Wang, C.Y.; Bai, Y.Z.; Yuan, Z.W.; Tang, X.B. Comprehensive circRNA expression profile and hub genes screening during human liver development. Ann. Med. 2025, 57, 2497111. [Google Scholar] [CrossRef]
- Li, W.; Shan, B.; Cheng, X.; He, H.; Qin, J.; Zhao, H.; Tian, M.; Zhang, X.; Jin, G. circRNA Acbd6 Promotes Neural Stem Cell Differentiation into Cholinergic Neurons via the miR-320-5p-Osbpl2 Axis. J. Biol. Chem. 2022, 298, 101828. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Li, S.; Zhang, Y.; Nie, J.; Cao, J.; Li, A.; Li, Y.; Pei, D. BMSC-Derived Exosomal CircHIPK3 Promotes Osteogenic Differentiation of MC3T3-E1 Cells via Mitophagy. Int. J. Mol. Sci. 2023, 24, 2785. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Chen, H.; Zhong, J.; Zhou, X.; Zhang, J.; Zhang, Y. circRNA-ZCCHC14 Affects the Chondrogenic Differentiation Ability of Peripheral Blood-Derived Mesenchymal Stem Cells by Regulating GREM1 through miR-181a. Sci. Rep. 2023, 13, 2889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Jiang, J.; Qian, H.; Yan, Y.; Xu, W. Exosomal circRNA: Emerging Insights into Cancer Progression and Clinical Application Potential. J. Hematol. Oncol. 2023, 16, 67. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Z.; Wang, Y.; Chen, W.; Lin, Y.; Guo, J.; Ye, G. CircRNA: A New Class of Targets for Gastric Cancer Drug Resistance Therapy. Pathol. Oncol. Res. 2023, 29, 1611033. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, J.; Deng, H.; Ma, R.; Liao, J.Y.; Liang, H.; Hu, J.; Li, J.; Guo, Z.; Cai, J.; et al. Targeting Mitochondria-Located circRNA SCAR Alleviates NASH via Reducing mROS Output. Cell 2020, 183, 76–93. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, L.; Yu, C.Q.; You, Z.H.; Wang, X.F.; Wei, M.M.; Shi, T.L.; Liang, S.Z.; Wang, D.W. Hither-CMI: Prediction of circRNA-miRNA Interactions Based on a Hybrid Multimodal Network and Higher-Order Neighborhood Information via a Graph Convolutional Network. J. Chem. Inf. Model. 2025, 65, 446–459. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, B.; Wang, L.; Rong, W.; Liu, T. Identification of the Hsa_circ_0001314-Related ceRNA Network in Breast Cancer with Bioinformatics Analysis. Int. J. Genom. 2024, 2024, 4668425. [Google Scholar] [CrossRef]
- Hussen, B.M.; Abdullah, S.R.; Jaafar, R.M.; Rasul, M.F.; Aroutiounian, R.; Harutyunyan, T.; Liehr, T.; Samsami, M.; Taheri, M. Circular RNAs as Key Regulators in Cancer Hallmarks: New Progress and Therapeutic Opportunities. Crit. Rev. Oncol. Hematol. 2025, 207, 104612. [Google Scholar] [CrossRef]
- Shao, J.; Wang, M.; Zhang, A.; Liu, Z.; Jiang, G.; Tang, T.; Wang, J.; Jia, X.; Lai, S. Interference of a Mammalian circRNA Regulates Lipid Metabolism Reprogramming by Targeting miR-24-3p/Igf2/PI3K-AKT-mTOR and Igf2bp2/Ucp1 Axis. Cell. Mol. Life Sci. 2023, 80, 252. [Google Scholar] [CrossRef]
- De Tomi, E.; Orlandi, E.; Belpinati, F.; Patuzzo, C.; Trabetti, E.; Gomez-Lira, M.; Malerba, G. New Axes of Interaction in Circ_0079593/miR-516b-5p Network in Melanoma Metastasis Cell Lines. Genes 2024, 15, 1647. [Google Scholar] [CrossRef]
- Li, M.; Li, J.; Ji, M.; An, J.; Zhao, T.; Yang, Y.; Cai, C.; Gao, P.; Cao, G.; Guo, X.; et al. CircHOMER1 Inhibits Porcine Adipogenesis via the miR -23b/ SIRT1 Axis. FASEB J. 2023, 37, e22828. [Google Scholar] [CrossRef]
- Li, M.; Zhang, N.; Li, J.; Ji, M.; Zhao, T.; An, J.; Cai, C.; Yang, Y.; Gao, P.; Cao, G.; et al. CircRNA Profiling of Skeletal Muscle in Two Pig Breeds Reveals CircIGF1R Regulates Myoblast Differentiation via miR-16. Int. J. Mol. Sci. 2023, 24, 3779. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Y. CircRNA Has_circ_0001806 Promotes Hepatocellular Carcinoma Progression via the miR-193a-5p/MMP16 Pathway. Braz. J. Med. Biol. Res. 2021, 54, e11459. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shi, L.; Shi, K.; Yuan, B.; Cao, G.; Kong, C.; Fu, J.; Man, Z.; Li, X.; Zhang, X.; et al. CircCSPP1 Functions as a ceRNA to Promote Colorectal Carcinoma Cell EMT and Liver Metastasis by Upregulating COL1A1. Front. Oncol. 2020, 10, 850. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Zhang, Y.; Zhao, Y.; Duan, Y.; Mu, Q.; Wang, X. Circ-OSBPL2 Contributes to Smoke-Related Chronic Obstructive Pulmonary Disease by Targeting miR-193a-5p/BRD4 Axis. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 919–931. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Qin, B.; Luo, F.; Zhu, X.; Liu, K.; Li, K.; Wu, D.; Chen, G.; Tang, X. Qingjie Huagong decoction inhibits pancreatic acinar cell pyroptosis by regulating circHipk3/miR-193a-5p/NLRP3 pathway. Phytomedicine 2024, 126, 155265. [Google Scholar] [CrossRef]
- Stone, J.C. Regulation and Function of the RasGRP Family of Ras Activators in Blood Cells. Genes Cancer 2011, 2, 320–334. [Google Scholar] [CrossRef]
- Reuther, G.W.; Lambert, Q.T.; Rebhun, J.F.; Caligiuri, M.A.; Quilliam, L.A.; Der, C.J. RasGRP4 Is a Novel Ras Activator Isolated from Acute Myeloid Leukemia. J. Biol. Chem. 2002, 277, 30508–30514. [Google Scholar] [CrossRef]
- Vercoulen, Y.; Kondo, Y.; Iwig, J.S.; Janssen, A.B.; White, K.A.; Amini, M.; Barber, D.L.; Kuriyan, J.; Roose, J.P. A Histidine pH Sensor Regulates Activation of the Ras-Specific Guanine Nucleotide Exchange Factor RasGRP1. eLife 2017, 6, e29002. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Chen, J.; Bao, W.; Ma, S.; Wen, M.; Han, Y.; Zhang, W.; Yang, Y.; Guo, X.; Li, B. CircIDH2 Modulates Porcine Adipogenesis via the miR-193a-5p/RASGRP4 Axis: Implications for ceRNA-Mediated Regulation of Fat Deposition. Cells 2025, 14, 1265. https://doi.org/10.3390/cells14161265
Li M, Chen J, Bao W, Ma S, Wen M, Han Y, Zhang W, Yang Y, Guo X, Li B. CircIDH2 Modulates Porcine Adipogenesis via the miR-193a-5p/RASGRP4 Axis: Implications for ceRNA-Mediated Regulation of Fat Deposition. Cells. 2025; 14(16):1265. https://doi.org/10.3390/cells14161265
Chicago/Turabian StyleLi, Meng, Jiayi Chen, Wu Bao, Shuangji Ma, Mingxin Wen, Yuqi Han, Wanfeng Zhang, Yang Yang, Xiaohong Guo, and Bugao Li. 2025. "CircIDH2 Modulates Porcine Adipogenesis via the miR-193a-5p/RASGRP4 Axis: Implications for ceRNA-Mediated Regulation of Fat Deposition" Cells 14, no. 16: 1265. https://doi.org/10.3390/cells14161265
APA StyleLi, M., Chen, J., Bao, W., Ma, S., Wen, M., Han, Y., Zhang, W., Yang, Y., Guo, X., & Li, B. (2025). CircIDH2 Modulates Porcine Adipogenesis via the miR-193a-5p/RASGRP4 Axis: Implications for ceRNA-Mediated Regulation of Fat Deposition. Cells, 14(16), 1265. https://doi.org/10.3390/cells14161265