Pig Liver Esterase Hydrolysis of 2-Arachidonoglycerol Exacerbates PRRSV-Induced Inflammation via PI3K-Akt-NF-κB Pathway
Abstract
1. Introduction
2. Materials and Methods
2.1. Cloning and Subtype Identification of PLE
2.2. Construction of PLE 6 Prokaryotic Functional Expression Plasmid
2.3. Prokaryotic Functional Expression and Purification of PLE6
2.4. Identification of PLE 6 Hydrolysis Activity
2.5. Cell Culture and Virus Propagation
2.6. PLE Activity Inhibition and Virus Infection
2.7. RNA Extraction and Real-Time PCR
2.8. Western Blot Analysis
2.9. siRNA Knockdown
2.10. PLE Enzyme Activity Assay and 2-AG Hydrolysis
2.11. RNA-Seq and Data Analysis
2.12. ELISA
2.13. Animal Experiment
2.14. Immunofluorescence
2.15. Statistical Analysis
3. Results
3.1. Characterization of PLE Expression in PAMs and Its Functional Involvement in PRRSV Infection
3.2. PLE Inhibition and Knockdown Suppress PRRSV-Mediated Inflammation
3.3. 2-AG Inhibits PRRSV-Induced Inflammation but Promotes It Post-Hydrolysis
3.4. Inhibition of PLE Activity Reduces Lung Inflammation and Tissue Damage in PRRSV-Infected Pigs
3.5. The PI3K-Akt-NF-κB Pathway Is Important for Reducing Inflammation After PRRSV Infection Through PLE Inhibition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anil, S.M.; Peeri, H.; Koltai, H. Medical cannabis activity against inflammation: Active compounds and modes of action. Front. Pharmacol. 2022, 13, 908198. [Google Scholar] [CrossRef]
- Penzes, Z.; Horvath, D.; Molnar, P.; Fekete, T.; Pazmandi, K.; Bacsi, A.; Szollosi, A.G. Anandamide modulation of monocyte-derived langerhans cells: Implications for immune homeostasis and skin inflammation. Front. Immunol. 2024, 15, 1423776. [Google Scholar] [CrossRef]
- Espinosa-Riquer, Z.P.; Ibarra-Sanchez, A.; Vibhushan, S.; Bratti, M.; Charles, N.; Blank, U.; Rodriguez-Manzo, G.; Gonzalez-Espinosa, C. TLR4 receptor induces 2-AG-dependent tolerance to lipopolysaccharide and trafficking of CB2 receptor in mast cells. J. Immunol. 2019, 202, 2360–2371. [Google Scholar] [CrossRef] [PubMed]
- Ellermann, M.; Pacheco, A.R.; Jimenez, A.G.; Russell, R.M.; Cuesta, S.; Kumar, A.; Zhu, W.; Vale, G.; Martin, S.A.; Raj, P.; et al. Endocannabinoids inhibit the induction of virulence in enteric pathogens. Cell 2020, 183, 650–665. [Google Scholar] [CrossRef] [PubMed]
- Navarini, L.; Vomero, M.; Di Donato, S.; Currado, D.; Berardicurti, O.; Marino, A.; Bearzi, P.; Biaggi, A.; Ferrito, M.; Ruscitti, P.; et al. 2-arachidonoylglycerol reduces the production of interferon-gamma in t lymphocytes from patients with systemic lupus erythematosus. Biomedicines 2022, 10, 1675. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Zhang, J.; Gao, F.; Hu, M.; Hashem, J.; Chen, C. Augmentation of 2-arachidonoylglycerol signaling in astrocytes maintains synaptic functionality by regulation of miRNA-30b. Exp. Neurol. 2023, 361, 114292. [Google Scholar] [CrossRef]
- Dinh, T.P.; Carpenter, D.; Leslie, F.M.; Freund, T.F.; Katona, I.; Sensi, S.L.; Kathuria, S.; Piomelli, D. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl. Acad. Sci. USA 2002, 99, 10819–10824. [Google Scholar] [CrossRef]
- Nomura, D.K.; Morrison, B.E.; Blankman, J.L.; Long, J.Z.; Kinsey, S.G.; Marcondes, M.C.; Ward, A.M.; Hahn, Y.K.; Lichtman, A.H.; Conti, B.; et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 2011, 334, 809–813. [Google Scholar] [CrossRef]
- Saario, S.M.; Savinainen, J.R.; Laitinen, J.T.; Jarvinen, T.; Niemi, R. Monoglyceride lipase-like enzymatic activity is responsible for hydrolysis of 2-arachidonoylglycerol in rat cerebellar membranes. Biochem. Pharmacol. 2004, 67, 1381–1387. [Google Scholar] [CrossRef]
- Genovese, T.; Duranti, A.; D’Amico, R.; Fusco, R.; Impellizzeri, D.; Peritore, A.F.; Crupi, R.; Gugliandolo, E.; Cuzzocrea, S.; Di Paola, R.; et al. Fatty acid amide hydrolase (FAAH) inhibition plays a key role in counteracting acute lung injury. Int. J. Mol. Sci. 2022, 23, 2781. [Google Scholar] [CrossRef]
- Xiang, W.; Shi, R.; Kang, X.; Zhang, X.; Chen, P.; Zhang, L.; Hou, A.; Wang, R.; Zhao, Y.; Zhao, K.; et al. Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat. Commun. 2018, 9, 2574. [Google Scholar] [CrossRef]
- Baenas, I.; Miranda-Olivos, R.; Granero, R.; Sole-Morata, N.; Sanchez, I.; Pastor, A.; Del, P.A.; Codina, E.; Tinahones, F.J.; Fernandez-Formoso, J.A.; et al. Association of anandamide and 2-arachidonoylglycerol concentrations with clinical features and body mass index in eating disorders and obesity. Eur. Psychiatry 2023, 66, e49. [Google Scholar] [CrossRef] [PubMed]
- Bedse, G.; Hill, M.N.; Patel, S. 2-arachidonoylglycerol modulation of anxiety and stress adaptation: From grass roots to novel therapeutics. Biol. Psychiatry 2020, 88, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. Inhibiting degradation of 2-arachidonoylglycerol as a therapeutic strategy for neurodegenerative diseases. Pharmacol. Ther. 2023, 244, 108394. [Google Scholar] [CrossRef]
- Martinez-Rivera, A.; Fetcho, R.N.; Birmingham, L.; Xu, J.; Yang, R.; Foord, C.; Scala-Chavez, D.; Mekawy, N.; Pleil, K.; Pickel, V.M.; et al. Elevating levels of the endocannabinoid 2-arachidonoylglycerol blunts opioid reward but not analgesia. Sci. Adv. 2024, 10, eadq4779. [Google Scholar] [CrossRef]
- Brusehaber, E.; Bottcher, D.; Bornscheuer, U.T. Insights into the physiological role of pig liver esterase: Isoenzymes show differences in the demethylation of prenylated proteins. Bioorg. Med. Chem. 2009, 17, 7878–7883. [Google Scholar] [CrossRef]
- Elkhanoufi, S.; Stefania, R.; Alberti, D.; Baroni, S.; Aime, S.; Geninatti, C.S. Highly sensitive "off/on" EPR probes to monitor enzymatic activity. Chem. Eur. J. 2022, 28, e202104563. [Google Scholar] [CrossRef] [PubMed]
- La Rocca, P.; Mingione, A.; Casati, S.; Ottria, R.; Allevi, P.; Ciuffreda, P.; Rota, P. Small-molecules as chemiluminescent probes to detect lipase activity. Int. J. Mol. Sci. 2022, 23, 9039. [Google Scholar] [CrossRef]
- Shervington, L.A.; Ingham, O. Investigating the stability of six phenolic TMZ ester analogues, incubated in the presence of porcine liver esterase and monitored by HPLC. Molecules 2022, 27, 2958. [Google Scholar] [CrossRef]
- Chanda, P.K.; Gao, Y.; Mark, L.; Btesh, J.; Strassle, B.W.; Lu, P.; Piesla, M.J.; Zhang, M.Y.; Bingham, B.; Uveges, A.; et al. Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system. Mol. Pharmacol. 2010, 78, 996–1003. [Google Scholar] [CrossRef]
- Xie, S.; Borazjani, A.; Hatfield, M.J.; Edwards, C.C.; Potter, P.M.; Ross, M.K. Inactivation of lipid glyceryl ester metabolism in human THP1 monocytes/macrophages by activated organophosphorus insecticides: Role of carboxylesterases 1 and 2. Chem. Res. Toxicol. 2010, 23, 1890–1904. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.C.; Mackie, K. An introduction to the endogenous cannabinoid system. Biol. Psychiatry 2016, 79, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Yan, B.; Sun, W.; Chen, Q.; Xiao, Q.; Xiao, Y.; Wang, X.; Shi, D. Pig liver esterases hydrolyze endocannabinoids and promote inflammatory response. Front. Immunol. 2021, 12, 670427. [Google Scholar] [CrossRef]
- Jiang, B.; Li, L.; Wu, Y.; Wang, X.; Gao, N.; Xu, Z.; Guo, C.; He, S.; Zhang, G.; Chen, Y.; et al. Unveiling shared immune responses in porcine alveolar macrophages during ASFV and PRRSV infection using single-cell RNA-seq. Microorganisms 2024, 12, 563. [Google Scholar] [CrossRef]
- Sun, Q.; Xu, H.; An, T.; Cai, X.; Tian, Z.; Zhang, H. Recent progress in studies of porcine reproductive and respiratory syndrome virus 1 in China. Viruses 2023, 15, 1528. [Google Scholar] [CrossRef]
- Wang, T.Y.; Sun, M.X.; Zhang, H.L.; Wang, G.; Zhan, G.; Tian, Z.J.; Cai, X.H.; Su, C.; Tang, Y.D. Evasion of antiviral innate immunity by porcine reproductive and respiratory syndrome virus. Front. Microbiol. 2021, 12, 693799. [Google Scholar] [CrossRef]
- Diao, F.; Jiang, C.; Sun, Y.; Gao, Y.; Bai, J.; Nauwynck, H.; Wang, X.; Yang, Y.; Jiang, P.; Liu, X. Porcine reproductive and respiratory syndrome virus infection triggers autophagy via ER stress-induced calcium signaling to facilitate virus replication. PLoS Pathog. 2023, 19, e1011295. [Google Scholar] [CrossRef]
- Chen, J.; Wang, D.; Sun, Z.; Gao, L.; Zhu, X.; Guo, J.; Xu, S.; Fang, L.; Li, K.; Xiao, S. Arterivirus nsp4 antagonizes interferon beta production by proteolytically cleaving NEMO at multiple sites. J. Virol. 2019, 93, e00385-19. [Google Scholar] [CrossRef]
- Ke, W.; Zhou, Y.; Lai, Y.; Long, S.; Fang, L.; Xiao, S. Porcine reproductive and respiratory syndrome virus nsp4 positively regulates cellular cholesterol to inhibit type i interferon production. Redox Biol. 2022, 49, 102207. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Fu, Y.; Jia, L.; Zhang, Y.; Bai, L.; Wang, W.; Cheng, D.; Liu, E. PRRSV induces HMGB1 phosphorylation at threonine-51 residue to enhance its secretion. Viruses 2022, 14, 1002. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, M.; Yuan, L.; Xu, Y.; Zhou, H.; Lian, Z.; Liu, P.; Li, X. LGP2 promotes type i interferon production to inhibit PRRSV infection via enhancing MDA5-mediated signaling. J. Virol. 2023, 97, e0184322. [Google Scholar] [CrossRef]
- Zhou, P.; Zhai, S.; Zhou, X.; Lin, P.; Jiang, T.; Hu, X.; Jiang, Y.; Wu, B.; Zhang, Q.; Xu, X.; et al. Molecular characterization of transcriptome-wide interactions between highly pathogenic porcine reproductive and respiratory syndrome virus and porcine alveolar macrophages in vivo. Int. J. Biol. Sci. 2011, 7, 947–959. [Google Scholar] [CrossRef]
- Liang, W.; Meng, X.; Zhen, Y.; Zhang, Y.; Hu, X.; Zhang, Q.; Zhou, X.; Liu, B. Integration of transcriptome and proteome in lymph nodes reveal the different immune responses to PRRSV between PRRSV-resistant tongcheng pigs and PRRSV-susceptible large white pigs. Front. Genet. 2022, 13, 800178. [Google Scholar] [CrossRef]
- Liang, W.; Li, Z.; Wang, P.; Fan, P.; Zhang, Y.; Zhang, Q.; Wang, Y.; Xu, X.; Liu, B. Differences of immune responses between tongcheng (Chinese local breed) and large white pigs after artificial infection with highly pathogenic porcine reproductive and respiratory syndrome virus. Virus Res. 2016, 215, 84–93. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhou, Q.; Yang, L.; Tian, Z.; Wang, X.; Xiao, Y.; Shi, D. Breed differences in pig liver esterase (PLE) between tongcheng (Chinese local breed) and large white pigs. Sci. Rep. 2018, 8, 16364. [Google Scholar] [CrossRef]
- Junge, W.; Heymann, E. Characterization of the isoenzymes of pig-liver esterase. 2. Kinetic studies. Eur. J. Biochem. 1979, 95, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Aegerter, H.; Lambrecht, B.N.; Jakubzick, C.V. Biology of lung macrophages in health and disease. Immunity 2022, 55, 1564–1580. [Google Scholar] [CrossRef]
- Baasch, S.; Giansanti, P.; Kolter, J.; Riedl, A.; Forde, A.J.; Runge, S.; Zenke, S.; Elling, R.; Halenius, A.; Brabletz, S.; et al. Cytomegalovirus subverts macrophage identity. Cell 2021, 184, 3774–3793. [Google Scholar] [CrossRef]
- Lercher, A.; Cheong, J.G.; Bale, M.J.; Jiang, C.; Hoffmann, H.H.; Ashbrook, A.W.; Lewy, T.; Yin, Y.S.; Quirk, C.; DeGrace, E.J.; et al. Antiviral innate immune memory in alveolar macrophages following SARS-CoV-2 infection ameliorates secondary influenza a virus disease. Immunity 2024, 57, 2530–2546. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Schols, D.; Meier, C. Anti-HIV-active nucleoside triphosphate prodrugs. J. Med. Chem. 2020, 63, 6003–6027. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Hirano, A.; Hidaka, R.; Suzuki, A.Z.; Ueno, T.; Furuta, T. Elucidation of the working principle of a gene-directed caged HDAC inhibitor with cell-type selectivity. Chem. Commun. 2022, 58, 10484–10487. [Google Scholar] [CrossRef]
- Leow, J.; Chan, E. CYP2j2-mediated metabolism of arachidonic acid in heart: A review of its kinetics, inhibition and role in heart rhythm control. Pharmacol. Ther. 2024, 258, 108637. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Liu, X.; Zhao, C.; Shi, X.; Zhang, J.; Zhou, T.; Xiong, H.; Gao, X.; Zhao, X.; Yang, X.; et al. LC-MS/MS-based arachidonic acid metabolomics in acute spinal cord injury reveals the upregulation of 5-LOX and COX-2 products. Free Radic. Biol. Med. 2022, 193, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Placin, C.; Castillejo-Rufo, A.; Estaras, M.; Gonzalez, A. Membrane lipid derivatives: Roles of arachidonic acid and its metabolites in pancreatic physiology and pathophysiology. Molecules 2023, 28, 4316. [Google Scholar] [CrossRef]
- Zeng, M.L.; Xu, W. A narrative review of the published pre-clinical evaluations: Multiple effects of arachidonic acid, its metabolic enzymes and metabolites in epilepsy. Mol. Neurobiol. 2025, 62, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Ji, L.; Zhang, Y.; Zhen, Y.; Zhang, Q.; Xu, X.; Liu, B. Transcriptome differences in porcine alveolar macrophages from tongcheng and large white pigs in response to highly pathogenic porcine reproductive and respiratory syndrome virus (PRRSV) infection. Int. J. Mol. Sci. 2017, 18, 1475. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, S.; Li, C.; Wang, C.; Liu, Y.; Wang, G.; He, X.; Hu, L.; Liu, Y.; Cui, M.; et al. Secondary haemophilus parasuis infection enhances highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) infection-mediated inflammatory responses. Vet. Microbiol. 2017, 204, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Thanawongnuwech, R.; Thacker, B.; Halbur, P.; Thacker, E.L. Increased production of proinflammatory cytokines following infection with porcine reproductive and respiratory syndrome virus and mycoplasma hyopneumoniae. Clin. Diagn. Lab. Immunol. 2004, 11, 901–908. [Google Scholar]
- Mitsi, E.; Nikolaou, E.; Goncalves, A.; Blizard, A.; Hill, H.; Farrar, M.; Hyder-Wright, A.; Akeju, O.; Hamilton, J.; Howard, A.; et al. RSV and rhinovirus increase pneumococcal carriage acquisition and density, whereas nasal inflammation is associated with bacterial shedding. Cell Host Microbe 2024, 32, 1608–1620.e4. [Google Scholar] [CrossRef]
- Zhang, D.; Lin, L.; Yang, J.; Lv, Q.; Wang, M.; Hua, L.; Zhang, K.; Chen, H.; Wu, B.; Peng, Z. Pseudorabies virus infection increases the permeability of the mammalian respiratory barrier to facilitate Pasteurella multocida infection. mSphere 2024, 9, e0029724. [Google Scholar] [CrossRef]
- Chai, S.; Yang, Y.; Wei, L.; Cao, Y.; Ma, J.; Zheng, X.; Teng, J.; Qin, N. Luteolin rescues postmenopausal osteoporosis elicited by OVX through alleviating osteoblast pyroptosis via activating PI3k-AKT signaling. Phytomedicine 2024, 128, 155516. [Google Scholar] [CrossRef]
- Feng, Y.; Ren, Y.; Zhang, X.; Yang, S.; Jiao, Q.; Li, Q.; Jiang, W. Metabolites of traditional chinese medicine targeting PI3k/AKT signaling pathway for hypoglycemic effect in type 2 diabetes. Front. Pharmacol. 2024, 15, 1373711. [Google Scholar] [CrossRef]
- Wang, P.; Anderson, D.E.; Ye, Y. PI3k-AKT activation resculpts integrin signaling to drive filamentous tau-induced proinflammatory astrogliosis. Cell Biosci. 2023, 13, 179. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Du, M.; Li, S.; Zhang, Y.; Ding, J.; Wang, J.; Wang, Y.; Liu, P. Hydroxysafflor yellow a regulates lymphangiogenesis and inflammation via the inhibition of PI3k on regulating AKT/mTOR and NF-kappab pathway in macrophages to reduce atherosclerosis in ApoE-/- mice. Phytomedicine 2023, 112, 154684. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, W.; Yuan, Y.; Cui, X.; Bian, H.; Wen, H.; Zhang, X.; Yu, H.; Wu, H. Pinellia ternata lectin induces inflammation through TLR4 receptor and mediates PI3k/akt/mTOR axis to regulate NF-kappab signaling pathway. Toxicology 2023, 486, 153430. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Tong, X.; Jia, Y.; Zhao, Y.; Zhang, Q.; Hu, M.; Li, X.; Li, B.; Ming, X.; Xie, Y.; et al. Baiheqingjin formula reduces inflammation in mice with asthma by inhibiting the PI3k/AKT/NF-kappab signaling pathway. J. Ethnopharmacol. 2024, 321, 117565. [Google Scholar] [CrossRef]
- Wang, H.; Du, L.; Liu, F.; Wei, Z.; Gao, L.; Feng, W.H. Highly pathogenic porcine reproductive and respiratory syndrome virus induces interleukin-17 production via activation of the IRAK1-PI3k-p38MAPK-c/EBPbeta/CREB pathways. J. Virol. 2019, 93, e01100-19. [Google Scholar] [CrossRef]
- Wu, J.; Lu, Q.; Hou, J.; Qiu, Y.; Tian, M.; Wang, L.; Gao, K.; Yang, X.; Jiang, Z. Baicalein inhibits PRRSV through direct binding, targeting EGFR, and enhancing immune response. Vet. Res. 2025, 56, 16. [Google Scholar] [CrossRef]
Subtype | Number | Ratio |
---|---|---|
PLE6 | 69 | 92% |
Others | 6 | 8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Zhu, H.; Xiao, Q.; Chen, Q.; Zhou, Q.; Wang, X.; Shi, D. Pig Liver Esterase Hydrolysis of 2-Arachidonoglycerol Exacerbates PRRSV-Induced Inflammation via PI3K-Akt-NF-κB Pathway. Cells 2025, 14, 1227. https://doi.org/10.3390/cells14161227
Fu Y, Zhu H, Xiao Q, Chen Q, Zhou Q, Wang X, Shi D. Pig Liver Esterase Hydrolysis of 2-Arachidonoglycerol Exacerbates PRRSV-Induced Inflammation via PI3K-Akt-NF-κB Pathway. Cells. 2025; 14(16):1227. https://doi.org/10.3390/cells14161227
Chicago/Turabian StyleFu, Yuelin, Huiwen Zhu, Qiling Xiao, Qi Chen, Qiongqiong Zhou, Xiliang Wang, and Deshi Shi. 2025. "Pig Liver Esterase Hydrolysis of 2-Arachidonoglycerol Exacerbates PRRSV-Induced Inflammation via PI3K-Akt-NF-κB Pathway" Cells 14, no. 16: 1227. https://doi.org/10.3390/cells14161227
APA StyleFu, Y., Zhu, H., Xiao, Q., Chen, Q., Zhou, Q., Wang, X., & Shi, D. (2025). Pig Liver Esterase Hydrolysis of 2-Arachidonoglycerol Exacerbates PRRSV-Induced Inflammation via PI3K-Akt-NF-κB Pathway. Cells, 14(16), 1227. https://doi.org/10.3390/cells14161227