Research Priorities for Malignant Pleural Organization with Loculation and Failed Drainage
Abstract
1. Introduction
2. The Pathogenesis of Tissue Organization and Fibrosis
3. Organization in MPE and Other Forms of Pleural Loculation
4. Incidence of and Management of Loculated MPE
5. Low Dose IPFT and IPC Delivery
6. Current Forms of IPFT Used in Loculated MPE and Limitations Regarding Their Use
7. Caveats in the Search for Optimized IPFT in MPE via Clinical Trial Testing
8. The Case for Preclinical Testing of IPFT Designed for Use in Symptomatic Loculated MPE
9. New Lines of Investigation and Potential Applications in Organizing MPE
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sherman, R.L.; Firth, A.U.; Henley, S.J.; Siegel, R.L.; Negoita, S.; Sung, H.; Kohler, B.A.; Anderson, R.N.; Cucinelli, J.; Scott, S.; et al. Annual Report to the Nation on the Status of Cancer, featuring state-level statistics after the onset of the COVID-19 pandemic. Cancer 2025, 131, e35833. [Google Scholar] [CrossRef] [PubMed]
- Henley, S.J.; Ward, E.M.; Scott, S.; Ma, J.; Anderson, R.N.; Firth, A.U.; Thomas, C.C.; Islami, F.; Weir, H.K.; Lewis, D.R.; et al. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer 2020, 126, 2225–2249. [Google Scholar] [CrossRef] [PubMed]
- Feller-Kopman, D.J.; Reddy, C.B.; DeCamp, M.M.; Diekemper, R.L.; Gould, M.K.; Henry, T.; Iyer, N.P.; Lee, Y.C.G.; Lewis, S.Z.; Maskell, N.A.; et al. Management of Malignant Pleural Effusions. An Official ATS/STS/STR Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 198, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Macapagal, S.; Wannaphut, C.; Nishimura, Y. Intrapleural fibrinolytic therapy for loculated malignant pleural effusion: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2025, 211, 104749. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, R.; Cara, A.; Cassina, E.M.; Degiovanni, S.; Libretti, L.; Pirondini, E.; Raveglia, F.; Tuoro, A.; Vaquer, S.; Rizzo, S.; et al. Malignant Pleural Effusion: Diagnosis and Treatment-Up-to-Date Perspective. Curr. Oncol. 2024, 31, 6867–6878. [Google Scholar] [CrossRef] [PubMed]
- Society, C.T.; Chinese Medical Association. Chinese expert consensus on treatment of malignant pleural effusion (2023 Edition). Zhonghua Jie He He Hu Xi Za Zhi 2023, 46, 1189–1203. [Google Scholar]
- Wang, S.; Zhang, R.; Wan, C.; Qin, J.; Hu, X.; Shen, Y.; Chen, L.; Wen, F. Incidence of complications from indwelling pleural catheter for pleural effusion: A meta-analysis. Clin. Transl. Sci. 2023, 16, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.; Sekowski, V.; Zheng, B.; Li, P.; Stollery, D.; Veenstra, J.; Gillson, A.M. Combination Tissue Plasminogen Activator and DNase for Loculated Malignant Pleural Effusions: A Single-center Retrospective Review. J. Bronchol. Interv. Pulmonol. 2023, 30, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Nik Abeed, N.N.; Faisal, M.; Ng, B.H.; Ban Yu-Lin, A. Successful treatment of a complex malignant pleural effusion with 1 mg alteplase instilled through a non-draining indwelling pleural catheter. BMJ Case Rep. 2021, 14, e236116. [Google Scholar] [CrossRef] [PubMed]
- Munavvar, M.; Bodtger, U.; Carus, A.; Cordovilla, R.; Naik, S.; Salud, A.; Porcel, J.M. Current Trends in Treating Malignant Pleural Effusion: Evidence, Guidelines, and Best Practice Recommendations. JCO Oncol. Pract. 2024, 21, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Pardessus Otero, A.; Rafecas-Codern, A.; Porcel, J.M.; Serra-Mitja, P.; Ferreiro, L.; Botana-Rial, M.; Ramos-Hernandez, C.; Brenes, J.M.; Canales, L.; Camacho, V.; et al. Malignant Pleural Effusion: A Multidisciplinary Approach. Open Respir. Arch. 2024, 6, 100349. [Google Scholar] [CrossRef] [PubMed]
- Banka, R.; Terrington, D.; Mishra, E.K. Management of Septated Malignant Pleural Effusions. Curr. Pulmonol. Rep. 2018, 7, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.D.; Yeh, W.B.; Chen, S.S.; Liu, Y.Y.; Lu, I.Y.; Chou, Y.P.; Wu, T.C. Early Management of Retained Hemothorax in Blunt Head and Chest Trauma. World J. Surg. 2018, 42, 2061–2066. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.J.; Dultz, L.; Ladhani, H.A.; Cullinane, D.C.; Klein, E.; McNickle, A.G.; Bugaev, N.; Fraser, D.R.; Kartiko, S.; Dodgion, C.; et al. Management of simple and retained hemothorax: A practice management guideline from the Eastern Association for the Surgery of Trauma. Am. J. Surg. 2021, 221, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Colice, G.L.; Curtis, A.; Deslauriers, J.; Heffner, J.; Light, R.; Littenberg, B.; Sahn, S.; Weinstein, R.A.; Yusen, R.D. Medical and surgical treatment of parapneumonic effusions: An evidence-based guideline. Chest 2000, 118, 1158–1171. [Google Scholar] [CrossRef] [PubMed]
- Ashizawa, K. CT findings of diffuse pleural disease--alteration of pleura and extrapleural fat. Nihon Igaku Hoshasen Gakkai Zasshi 1993, 53, 283–296. [Google Scholar] [PubMed]
- Matthews, C.; Freeman, C.; Sharples, L.D.; Fox-Rushby, J.; Tod, A.; Maskell, N.A.; Edwards, J.G.; Coonar, A.S.; Sivasothy, P.; Hughes, V.; et al. MesoTRAP: A feasibility study that includes a pilot clinical trial comparing video-assisted thoracoscopic partial pleurectomy decortication with indwelling pleural catheter in patients with trapped lung due to malignant pleural mesothelioma designed to address recruitment and randomisation uncertainties and sample size requirements for a phase III trial. BMJ Open Respir. Res. 2019, 6, e000368. [Google Scholar] [PubMed]
- Siddiqui, H.A.; Maginot, E.R.; Moody, T.B.; Henry, R.; Barrett, C.D. Pleural Space Diseases and Their Management: What is the Role of Intrapleural Fibrinolytic Therapy? Am. Surg. 2025, 91, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Komissarov, A.A.; Rahman, N.; Lee, Y.C.G.; Florova, G.; Shetty, S.; Idell, R.; Ikebe, M.; Das, K.; Tucker, T.A.; Idell, S. Fibrin turnover and pleural organization: Bench to bedside. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2018, 314, L757–L768. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, H.F. Tumors: Wounds That Do Not Heal-A Historical Perspective with a Focus on the Fundamental Roles of Increased Vascular Permeability and Clotting. Semin. Thromb. Hemost. 2019, 45, 576–592. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, H.F.; Senger, D.R.; Dvorak, A.M. Fibrin as a component of the tumor stroma: Origins and biological significance. Cancer Metastasis Rev. 1983, 2, 41–73. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.F.; Dvorak, A.M.; Dvorak, H.F. Leaky vessels, fibrin deposition, and fibrosis: A sequence of events common to solid tumors and to many other types of disease. Am. Rev. Respir. Dis. 1989, 140, 1104–1107. [Google Scholar] [CrossRef] [PubMed]
- Tillett, W.S.; Sherry, S. The Effect in Patients of Streptococcal Fibrinolysin (Streptokinase) and Streptococcal Desoxyribonuclease on Fibrinous, Purulent, and Sanguinous Pleural Exudations. J. Clin. Investig. 1949, 28, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Tillett, W.S.; Sherry, S.; Read, C.T. The use of streptokinase-streptodornase in the treatment of chronic empyema; with an interpretive discussion of enzymatic actions in the field of intrathoracic diseases. J. Thorac. Surg. 1951, 21, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.D.; Moore, P.K.; Moore, E.E.; Moore, H.B.; Chandler, J.G.; Siddiqui, H.; Maginot, E.R.; Sauaia, A.; Perez-Calatayud, A.A.; Buesing, K.; et al. Neutrophil-Mediated Inflammatory Plasminogen Degradation, Rather Than High Plasminogen-Activator Inhibitor-1, May Underly Failures and Inefficiencies of Intrapleural Fibrinolysis. Chest 2025, 167, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Strange, C.; Baumann, M.H.; Sahn, S.A.; Idell, S. Effects of intrapleural heparin or urokinase on the extent of tetracycline-induced pleural disease. Am. J. Respir. Crit. Care Med. 1995, 151, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Mierzejewski, M.; Korczynski, P.; Krenke, R.; Janssen, J.P. Chemical pleurodesis–a review of mechanisms involved in pleural space obliteration. Respir. Res. 2019, 20, 247. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Panadero, F.; Antony, V.B. Pleurodesis: State of the art. Eur. Respir. J. 1997, 10, 1648–1654. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Panadero, F.; Montes-Worboys, A. Mechanisms of pleurodesis. Respiration 2012, 83, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Feng, T.; Liu, S.; Xie, T.; Shi, T. Pleural Fluid Amino Acids Contribute to Distinguishing Tuberculosis, Malignant, and Parapneumonic Pleural Effusion Patients. Clin. Lab. 2025, 71, 430. [Google Scholar] [CrossRef] [PubMed]
- Gerner, C.; Costigliola, V.; Golubnitschaja, O. Multiomic Patterns in Body Fluids: Technological Challenge with a Great Potential to Implement the Advanced Paradigm of 3p Medicine. Mass Spectrom. Rev. 2020, 39, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L.; Chang, J.H.; Yeh, K.T.; Chang, Y.S.; Chang, J.G. Epigenetic changes in tumor suppressor genes, P15, P16, APC-3 and E-cadherin in body fluid. Kaohsiung J. Med Sci. 2007, 23, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.M.; Maskell, N.A.; West, A.; Teoh, R.; Arnold, A.; Mackinlay, C.; Peckham, D.; Davies, C.W.; Ali, N.; Kinnear, W.; et al. Intrapleural use of tissue plasminogen activator and DNase in pleural infection. N. Engl. J. Med. 2011, 365, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Beckert, L.; Brockway, B.; Simpson, G.; Southcott, A.M.; Lee, Y.C.G.; Rahman, N.; Light, R.W.; Shoemaker, S.; Gillies, J.; Komissarov, A.A.; et al. Phase 1 trial of intrapleural LTI-01; single chain urokinase in complicated parapneumonic effusions or empyema. JCI Insight 2019, 5, 127470. [Google Scholar] [CrossRef] [PubMed]
- Vaz, M.A.; Vargas, F.S.; Marinho, F.C.; D’Amico, E.A.; Rocha, T.R.; Teixeira, L.R. Does the evaluation of coagulation factors contribute to etiological diagnosis of pleural effusions? Clinics 2009, 64, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.L.; Chen, Y.C.; Chang, S.C. Effect of repeated thoracenteses on fluid characteristics, cytokines, and fibrinolytic activity in malignant pleural effusion. Chest 2003, 123, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Bibby, A.C.; Dorn, P.; Psallidas, I.; Porcel, J.M.; Janssen, J.; Froudarakis, M.; Subotic, D.; Astoul, P.; Licht, P.; Schmid, R.; et al. ERS/EACTS statement on the management of malignant pleural effusions. Eur. Respir. J. 2018, 52, 116–132. [Google Scholar] [CrossRef] [PubMed]
- Bielsa, S.; Martin-Juan, J.; Porcel, J.M.; Rodriguez-Panadero, F. Diagnostic and prognostic implications of pleural adhesions in malignant effusions. J. Thorac. Oncol. 2008, 3, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Addala, D.N.; Kanellakis, N.I.; Bedawi, E.O.; Dong, T.; Rahman, N.M. Malignant pleural effusion: Updates in diagnosis, management and current challenges. Front. Oncol. 2022, 12, 1053574. [Google Scholar] [CrossRef] [PubMed]
- Gonnelli, F.; Hassan, W.; Bonifazi, M.; Pinelli, V.; Bedawi, E.O.; Porcel, J.M.; Rahman, N.M.; Mei, F. Malignant pleural effusion: Current understanding and therapeutic approach. Respir. Res. 2024, 25, 47. [Google Scholar] [CrossRef] [PubMed]
- Mishra, E.K.; Clive, A.O.; Wills, G.H.; Davies, H.E.; Stanton, A.E.; Al-Aloul, M.; Hart-Thomas, A.; Pepperell, J.; Evison, M.; Saba, T.; et al. Randomized Controlled Trial of Urokinase versus Placebo for Nondraining Malignant Pleural Effusion. Am. J. Respir. Crit. Care Med. 2018, 197, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Piccolo, F.; Miller, D.; MacEachern, P.R.; Chee, A.C.; Huseini, T.; Yarmus, L.; Bhatnagar, R.; Lee, H.J.; Feller-Kopman, D.; et al. Intrapleural Fibrinolysis for the Treatment of Indwelling Pleural Catheter-Related Symptomatic Loculations: A Multicenter Observational Study. Chest 2015, 148, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Lan, N.S.H.; Vekaria, S.; Sidhu, C.; Lee, Y.C.G. Very low-dose intrapleural tPA for indwelling pleural catheter-associated symptomatic fluid loculation. Respirol. Case Rep. 2019, 7, e00457. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, D.B.; Muruganandan, S.; Tsim, S.; Ip, H.; Asciak, R.; Walker, S.; Uribe Becerra, J.P.; Majid, A.; Ahmed, L.; Rahman, N.M.; et al. Intrapleural Fibrinolytics and Deoxyribonuclease for Treatment of Indwelling Pleural Catheter-Related Pleural Infection: A Multi-Center Observational Study. Respiration 2021, 100, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Idell, S.; Rahman, N.M. Intrapleural Fibrinolytic Therapy for Empyema and Pleural Loculation: Knowns and Unknowns. Ann. Am. Thorac. Soc. 2018, 15, 515–517. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.H.; Soong, T.C.; Feng, A.C.; Liu, M.C. Intrapleural urokinase for the treatment of loculated malignant pleural effusions and trapped lungs in medically inoperable cancer patients. J. Thorac. Oncol. 2006, 1, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Popowicz, N.; Bintcliffe, O.; De Fonseka, D.; Blyth, K.G.; Smith, N.A.; Piccolo, F.; Martin, G.; Wong, D.; Edey, A.; Maskell, N.; et al. Dose De-escalation of Intrapleural Tissue Plasminogen Activator Therapy for Pleural Infection. The Alteplase Dose Assessment for Pleural Infection Therapy Project. Ann. Am. Thorac. Soc. 2017, 14, 929–936. [Google Scholar] [CrossRef] [PubMed]
- De Vera, C.J.; Jacob, J.; Sarva, K.; Christudas, S.; Emerine, R.L.; Florence, J.M.; Akiode, O.; Gorthy, T.V.; Tucker, T.A.; Singh, K.P.; et al. Intrapleural Fibrinolytic Interventions for Retained Hemothoraces in Rabbits. Int. J. Mol. Sci. 2024, 25, 8778. [Google Scholar] [CrossRef] [PubMed]
- Dick, I.M.; Lee, Y.C.G.; Cheah, H.M.; Miranda, A.; Robinson, B.W.S.; Creaney, J. Profile of soluble factors in pleural effusions predict prognosis in mesothelioma. Cancer Biomark. 2022, 33, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Donnenberg, A.D.; Luketich, J.D.; Dhupar, R.; Donnenberg, V.S. Treatment of malignant pleural effusions: The case for localized immunotherapy. J. Immunother. Cancer 2019, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Arnold, D.T.; Hamilton, F.W.; Elvers, K.T.; Frankland, S.W.; Zahan-Evans, N.; Patole, S.; Medford, A.; Bhatnagar, R.; Maskell, N.A. Pleural Fluid suPAR Levels Predict the Need for Invasive Management in Parapneumonic Effusions. Am. J. Respir. Crit. Care Med. 2020, 201, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Bedawi, E.O.; Kanellakis, N.I.; Corcoran, J.P.; Zhao, Y.; Hassan, M.; Asciak, R.; Mercer, R.M.; Sundaralingam, A.; Addala, D.N.; Miller, R.F.; et al. The Biological Role of Pleural Fluid PAI-1 and Sonographic Septations in Pleural Infection: Analysis of a Prospectively Collected Clinical Outcome Study. Am. J. Respir. Crit. Care Med. 2023, 207, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Florova, G.; Azghani, A.; Karandashova, S.; Schaefer, C.; Koenig, K.; Stewart-Evans, K.; Declerck, P.J.; Idell, S.; Komissarov, A.A. Targeting of plasminogen activator inhibitor 1 improves fibrinolytic therapy for tetracycline-induced pleural injury in rabbits. Am. J. Respir. Cell Mol. Biol. 2015, 52, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Cheah, H.M.; Fitzgerald, D.; Louw, A.; Creaney, J.; Lee, Y.C.G. Hyaluronic acid in viscous malignant mesothelioma pleural effusion. Respirol. Case Rep. 2021, 9, e00694. [Google Scholar] [CrossRef] [PubMed]
- Shojaee, S.; Romano, G.; Sanchez, T.M.; Yermakhanova, G.; Saviana, M.; Le, P.; Nigita, G.; Calore, F.; Guthrie, R.; Hess, K.; et al. Extracellular Vesicle MicroRNA in Malignant Pleural Effusion. Genes 2022, 13, 2159. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T.; Choo, Y.Y.; Mitsuhashi, S.; Ikebe, R.; Jeffers, A.; Idell, S.; Tucker, T.A.; Ikebe, M. Myocardin regulates fibronectin expression and secretion from human pleural mesothelial cells. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2024, 326, L419–L430. [Google Scholar] [CrossRef] [PubMed]
- Choo, Y.Y.; Sakai, T.; Ikebe, R.; Jeffers, A.; Idell, S.; Tucker, T.A.; Ikebe, M. Role of ZIP kinase in development of myofibroblast differentiation from HPMCs. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2024, 326, L353–L366. [Google Scholar] [CrossRef] [PubMed]
- Keshava, S.; Owens, S.; Qin, W.; Jeffers, A.; Kyei, P.; Komatsu, S.; Kleam, J.; Ikebe, M.; Idell, S.; Tucker, T.A. The mTORC2/SGK1/NDRG1 Signaling Axis Is Critical for the Mesomesenchymal Transition of Pleural Mesothelial Cells and the Progression of Pleural Fibrosis. Am. J. Respir. Cell Mol. Biol. 2024, 70, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Jeffers, A.; Owens, S.; Qin, W.; Durojaye, O.; Florence, M.; Okeke, P.; Destarac, L.; Keshava, S.; Ikebe, M.; Idell, S.; et al. The Role of Tuftelin-1 in Mesomesenchymal Transition of Pleural Mesothelial Cells and the Progression of Pleural Fibrosis. Am. J. Respir. Cell Mol. Biol. 2025. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tucker, T.A.; Massarelli, E.; Destarac, L.; Idell, S. Research Priorities for Malignant Pleural Organization with Loculation and Failed Drainage. Cells 2025, 14, 1118. https://doi.org/10.3390/cells14141118
Tucker TA, Massarelli E, Destarac L, Idell S. Research Priorities for Malignant Pleural Organization with Loculation and Failed Drainage. Cells. 2025; 14(14):1118. https://doi.org/10.3390/cells14141118
Chicago/Turabian StyleTucker, Torry A., Erminia Massarelli, Luis Destarac, and Steven Idell. 2025. "Research Priorities for Malignant Pleural Organization with Loculation and Failed Drainage" Cells 14, no. 14: 1118. https://doi.org/10.3390/cells14141118
APA StyleTucker, T. A., Massarelli, E., Destarac, L., & Idell, S. (2025). Research Priorities for Malignant Pleural Organization with Loculation and Failed Drainage. Cells, 14(14), 1118. https://doi.org/10.3390/cells14141118