p47phox: A Central Regulator of NADPH Oxidase Function and a Promising Therapeutic Target in Redox-Related Diseases
Abstract
1. Introduction
2. Structural Features of p47phox
3. Molecular Mechanisms of p47phox in NOX2 Activation
3.1. Phosphorylation and Conformational Change
3.2. Role of Cytosolic Regulators
3.3. Efficiency of NOX2 Activation
3.4. Role of Pin1
3.5. Other Post-Translational Modifications
4. p47phox in Pathological Conditions
4.1. Chronic Granulomatous Disease (CGD)
4.2. Cardiovascular Diseases
4.3. Neurodegenerative Diseases
4.4. Inflammatory Disorders
4.5. Metabolic Disorders
4.6. Cancer
5. Therapeutic Potential of Targeting p47phox
5.1. p47phox Inhibitors
5.2. p47phox Agonists
6. Current Challenges and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NOX2 | NADPH oxidase 2 |
CGD | Chronic granulomatous disease |
ROS | Reactive oxygen species |
NOX | NADPH oxidase |
PRR | Proline-rich region |
O2•− | Superoxide radical |
H2O2 | Hydrogen peroxide |
OH• | Hydroxyl radical |
HOCl | Hypochlorous acid |
NCF1 | Neutrophil cytosolic factor 1 |
PX | Phox homology domain |
SH3 | Src homology domain 3 |
PKC | Protein kinase C |
NMR | Nuclear magnetic resonance |
Cryo-EM | Cryo-electron microscopy |
PTM | Post-translational modification |
UPS | Ubiquitin proteasome system |
PAMP | Pathogen-associated molecular pattern |
DAMP | Damage-associated molecular pattern |
AIR | Autoinhibitory region |
FRET | Fluorescence resonance energy transfer |
BRET | Bioluminescence resonance energy transfer |
PPI | Protein–protein interaction |
TNF-α | Tumor necrosis factor alpha |
PKA | Protein kinase A |
CK2 | Casein kinase 2 |
RA | Rheumatoid arthritis |
AD | Alzheimer’s disease |
PD | Parkinson’s disease |
IBD | Inflammatory bowel disease |
VEGF | Vascular endothelial growth factor |
MMP | Matrix metalloproteinases |
TGF-β | Transforming growth factor beta |
NF-κB | Nuclear factor kappa B |
NAFLD | Non-alcoholic fatty liver disease |
PRR | Pattern recognition receptor |
SAR | Structure–activity relationship |
IP6 | Inositol hexaphosphate |
WAVE | Wiskott–Aldrich syndrome protein family verprolin homologous protein |
PROTAC | Proteolysis targeting chimera |
References
- Babior, B.M. NADPH oxidase: An update. Blood 1999, 93, 1464–1476. [Google Scholar] [CrossRef] [PubMed]
- Quinn, M.T.; Gauss, K.A. Structure and regulation of the neutrophil respiratory burst oxidase: Comparison with nonphagocyte oxidases. J. Leukoc. Biol. 2004, 76, 760–781. [Google Scholar] [CrossRef]
- Leto, T.L.; Geiszt, M. Role of Nox family NADPH oxidases in host defense. Antioxid. Redox Signal. 2006, 8, 1549–1561. [Google Scholar] [CrossRef]
- Cross, A.R.; Segal, A.W. The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. Biochim. Biophys. Acta 2004, 1657, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Lambeth, J.D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 2004, 4, 181–189. [Google Scholar] [CrossRef]
- El-Benna, J.; Dang, P.M.; Gougerot-Pocidalo, M.A.; Marie, J.C.; Braut-Boucher, F. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: Structure, phosphorylation and implication in diseases. Exp. Mol. Med. 2009, 41, 217–225. [Google Scholar] [CrossRef]
- DeLeo, F.R.; Quinn, M.T. Assembly of the phagocyte NADPH oxidase: Molecular interaction of oxidase proteins. J. Leukoc. Biol. 1996, 60, 677–691. [Google Scholar] [CrossRef]
- Bedard, K.; Krause, K.H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef]
- Sumimoto, H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 2008, 275, 3249–3277. [Google Scholar] [CrossRef]
- Groemping, Y.; Rittinger, K. Activation and assembly of the NADPH oxidase: A structural perspective. Biochem. J. 2005, 386, 401–416. [Google Scholar] [CrossRef] [PubMed]
- Nocella, C.; D’Amico, A.; Cammisotto, V.; Bartimoccia, S.; Castellani, V.; Loffredo, L.; Marini, L.; Ferrara, G.; Testa, M.; Motta, G.; et al. Structure, Activation, and Regulation of NOX2: At the Crossroad between the Innate Immunity and Oxidative Stress-Mediated Pathologies. Antioxidants 2023, 12, 429. [Google Scholar] [CrossRef] [PubMed]
- Winkelstein, J.A.; Marino, M.C.; Johnston, R.B., Jr.; Boyle, J.; Curnutte, J.; Gallin, J.I.; Malech, H.L.; Holland, S.M.; Ochs, H.; Quie, P.; et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine 2000, 79, 155–169. [Google Scholar] [CrossRef]
- Segal, B.H.; Veys, P.; Malech, H.; Cowan, M.J. Chronic granulomatous disease: Lessons from a rare disorder. Biol. Blood Marrow Transplant. 2011, 17, S123–S131. [Google Scholar] [CrossRef] [PubMed]
- Roos, D.; van Bruggen, R.; Meischl, C. Oxidative killing of microbes by neutrophils. Microbes Infect. 2003, 5, 1307–1315. [Google Scholar] [CrossRef]
- Clark, R.A.; Volpp, B.D.; Leidal, K.G.; Nauseef, W.M. Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J. Clin. Investig. 1990, 85, 714–721. [Google Scholar] [CrossRef]
- Kanai, F.; Liu, H.; Field, S.J.; Akbary, H.; Matsuo, T.; Brown, G.E.; Cantley, L.C.; Yaffe, M.B. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat. Cell Biol. 2001, 3, 675–678. [Google Scholar] [CrossRef]
- Stahelin, R.V.; Burian, A.; Bruzik, K.S.; Murray, D.; Cho, W. Membrane binding mechanisms of the PX domains of NADPH oxidase p40phox and p47phox. J. Biol. Chem. 2003, 278, 14469–14479. [Google Scholar] [CrossRef]
- Karathanassis, D.; Stahelin, R.V.; Bravo, J.; Perisic, O.; Pacold, C.M.; Cho, W.; Williams, R.L. Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J. 2002, 21, 5057–5068. [Google Scholar] [CrossRef]
- Sumimoto, H.; Kage, Y.; Nunoi, H.; Sasaki, H.; Nose, T.; Fukumaki, Y.; Ohno, M.; Minakami, S.; Takeshige, K. Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc. Natl. Acad. Sci. USA 1994, 91, 5345–5349. [Google Scholar] [CrossRef]
- Leto, T.L.; Adams, A.G.; de Mendez, I. Assembly of the phagocyte NADPH oxidase: Binding of Src homology 3 domains to proline-rich targets. Proc. Natl. Acad. Sci. USA 1994, 91, 10650–10654. [Google Scholar] [CrossRef]
- Fuchs, A.; Dagher, M.C.; Vignais, P.V. Mapping the domains of interaction of p40phox with both p47phox and p67phox of the neutrophil oxidase complex using the two-hybrid system. J. Biol. Chem. 1995, 270, 5695–5697. [Google Scholar] [CrossRef]
- Yuzawa, S.; Suzuki, N.N.; Fujioka, Y.; Ogura, K.; Sumimoto, H.; Inagaki, F. A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase. Genes Cells 2004, 9, 443–456. [Google Scholar] [CrossRef]
- Groemping, Y.; Lapouge, K.; Smerdon, S.J.; Rittinger, K. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 2003, 113, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Han, C.H.; Freeman, J.L.; Lee, T.; Motalebi, S.A.; Lambeth, J.D. Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67(phox). J. Biol. Chem. 1998, 273, 16663–16668. [Google Scholar] [CrossRef] [PubMed]
- Koga, H.; Terasawa, H.; Nunoi, H.; Takeshige, K.; Inagaki, F.; Sumimoto, H. Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J. Biol. Chem. 1999, 274, 25051–25060. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, C.S.; Bouchab, L.; Tramier, M.; Durand, D.; Fieschi, F.; Dupre-Crochet, S.; Merola, F.; Nusse, O.; Erard, M. Quantitative live-cell imaging and 3D modeling reveal critical functional features in the cytosolic complex of phagocyte NADPH oxidase. J. Biol. Chem. 2019, 294, 3824–3836. [Google Scholar] [CrossRef]
- Aimeur, S.; Fas, B.A.; Serfaty, X.; Santuz, H.; Sacquin-Mora, S.; Bizouarn, T.; Taly, A.; Baciou, L. Structural profiles of the full phagocyte NADPH oxidase unveiled by combining computational biology and experimental knowledge. J. Biol. Chem. 2024, 300, 107943. [Google Scholar] [CrossRef]
- Liu, X.; Shi, Y.; Liu, R.; Song, K.; Chen, L. Structure of human phagocyte NADPH oxidase in the activated state. Nature 2024, 627, 189–195. [Google Scholar] [CrossRef]
- Johnson, J.L.; Park, J.W.; Benna, J.E.; Faust, L.P.; Inanami, O.; Babior, B.M. Activation of p47(PHOX), a cytosolic subunit of the leukocyte NADPH oxidase. Phosphorylation of ser-359 or ser-370 precedes phosphorylation at other sites and is required for activity. J. Biol. Chem. 1998, 273, 35147–35152. [Google Scholar] [CrossRef]
- El-Benna, J.; Dang, P.M.; Gougerot-Pocidalo, M.A. Priming of the neutrophil NADPH oxidase activation: Role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin. Immunopathol. 2008, 30, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Fontayne, A.; Dang, P.M.; Gougerot-Pocidalo, M.A.; El-Benna, J. Phosphorylation of p47phox sites by PKC alpha, beta II, delta, and zeta: Effect on binding to p22phox and on NADPH oxidase activation. Biochemistry 2002, 41, 7743–7750. [Google Scholar] [CrossRef]
- Dang, P.M.; Stensballe, A.; Boussetta, T.; Raad, H.; Dewas, C.; Kroviarski, Y.; Hayem, G.; Jensen, O.N.; Gougerot-Pocidalo, M.A.; El-Benna, J. A specific p47phox-serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites. J. Clin. Investig. 2006, 116, 2033–2043. [Google Scholar] [CrossRef]
- Hoyal, C.R.; Gutierrez, A.; Young, B.M.; Catz, S.D.; Lin, J.H.; Tsichlis, P.N.; Babior, B.M. Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase. Proc. Natl. Acad. Sci. USA 2003, 100, 5130–5135. [Google Scholar] [CrossRef] [PubMed]
- Bengis-Garber, C.; Gruener, N. Protein kinase A downregulates the phosphorylation of p47 phox in human neutrophils: A possible pathway for inhibition of the respiratory burst. Cell Signal. 1996, 8, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Raad, H.; Mouawia, H.; Hassan, H.; El-Seblani, M.; Arabi-Derkawi, R.; Boussetta, T.; Gougerot-Pocidalo, M.A.; Dang, P.M.; El-Benna, J. The protein kinase A negatively regulates reactive oxygen species production by phosphorylating gp91phox/NOX2 in human neutrophils. Free Radic. Biol. Med. 2020, 160, 19–27. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, S.M.; Lee, J.H.; Kim, Y.S.; Bae, Y.S.; Park, J.W. Phosphorylation of the leucocyte NADPH oxidase subunit p47(phox) by casein kinase 2: Conformation-dependent phosphorylation and modulation of oxidase activity. Biochem. J. 2001, 358, 783–790. [Google Scholar] [CrossRef]
- Valenta, H.; Dupre-Crochet, S.; Abdesselem, M.; Bizouarn, T.; Baciou, L.; Nusse, O.; Deniset-Besseau, A.; Erard, M. Consequences of the constitutive NOX2 activity in living cells: Cytosol acidification, apoptosis, and localized lipid peroxidation. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119276. [Google Scholar] [CrossRef]
- Jaquet, V.; Scapozza, L.; Clark, R.A.; Krause, K.H.; Lambeth, J.D. Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid. Redox Signal. 2009, 11, 2535–2552. [Google Scholar] [CrossRef]
- Cipriano, A.; Viviano, M.; Feoli, A.; Milite, C.; Sarno, G.; Castellano, S.; Sbardella, G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J. Med. Chem. 2023, 66, 11632–11655. [Google Scholar] [CrossRef]
- Boussetta, T.; Raad, H.; Bedouhene, S.; Arabi Derkawi, R.; Gougerot-Pocidalo, M.A.; Hayem, G.; Dang, P.M.; El-Benna, J. The peptidyl-prolyl isomerase Pin1 controls GM-CSF-induced priming of NADPH oxidase in human neutrophils and priming at inflammatory sites. Int. Immunopharmacol. 2024, 137, 112425. [Google Scholar] [CrossRef] [PubMed]
- Albadrani, M.; Seth, R.K.; Sarkar, S.; Kimono, D.; Mondal, A.; Bose, D.; Porter, D.E.; Scott, G.I.; Brooks, B.; Raychoudhury, S.; et al. Exogenous PP2A inhibitor exacerbates the progression of nonalcoholic fatty liver disease via NOX2-dependent activation of miR21. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 317, G408–G428. [Google Scholar] [CrossRef] [PubMed]
- Vucic, D.; Dixit, V.M.; Wertz, I.E. Ubiquitylation in apoptosis: A post-translational modification at the edge of life and death. Nat. Rev. Mol. Cell Biol. 2011, 12, 439–452. [Google Scholar] [CrossRef]
- Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325, 834–840. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Colombo, R.; Milzani, A. S-glutathionylation in protein redox regulation. Free Radic. Biol. Med. 2007, 43, 883–898. [Google Scholar] [CrossRef]
- Foster, M.W.; McMahon, T.J.; Stamler, J.S. S-nitrosylation in health and disease. Trends Mol. Med. 2003, 9, 160–168. [Google Scholar] [CrossRef]
- Hart, G.W.; Slawson, C.; Ramirez-Correa, G.; Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: Roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 2011, 80, 825–858. [Google Scholar] [CrossRef]
- Belambri, S.A.; Marzaioli, V.; Hurtado-Nedelec, M.; Pintard, C.; Liang, S.; Liu, Y.; Boussetta, T.; Gougerot-Pocidalo, M.A.; Ye, R.D.; Dang, P.M.; et al. Impaired p47phox phosphorylation in neutrophils from patients with p67phox-deficient chronic granulomatous disease. Blood 2022, 139, 2512–2522. [Google Scholar] [CrossRef] [PubMed]
- Roesler, J.; Curnutte, J.T.; Rae, J.; Barrett, D.; Patino, P.; Chanock, S.J.; Goerlach, A. Recombination events between the p47-phox gene and its highly homologous pseudogenes are the main cause of autosomal recessive chronic granulomatous disease. Blood 2000, 95, 2150–2156. [Google Scholar] [CrossRef]
- Jackson, S.H.; Gallin, J.I.; Holland, S.M. The p47phox mouse knock-out model of chronic granulomatous disease. J. Exp. Med. 1995, 182, 751–758. [Google Scholar] [CrossRef]
- Morgenstern, D.E.; Gifford, M.A.; Li, L.L.; Doerschuk, C.M.; Dinauer, M.C. Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. J. Exp. Med. 1997, 185, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.W.; Chae, H.Z.; Seo, M.S.; Kim, K.; Baines, I.C.; Rhee, S.G. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J. Biol. Chem. 1998, 273, 6297–6302. [Google Scholar] [CrossRef]
- Bagaitkar, J.; Huang, J.; Zeng, M.Y.; Pech, N.K.; Monlish, D.A.; Perez-Zapata, L.J.; Miralda, I.; Schuettpelz, L.G.; Dinauer, M.C. NADPH oxidase activation regulates apoptotic neutrophil clearance by murine macrophages. Blood 2018, 131, 2367–2378. [Google Scholar] [CrossRef]
- Pollock, J.D.; Williams, D.A.; Gifford, M.A.; Li, L.L.; Du, X.; Fisherman, J.; Orkin, S.H.; Doerschuk, C.M.; Dinauer, M.C. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat. Genet. 1995, 9, 202–209. [Google Scholar] [CrossRef]
- Darbinian, E.; Mlaga, K.D.; Chandrasekaran, P.; Han, Y.; Donko, A.; Desjardins, A.; Leto, T.L.; Holland, S.M.; Poudrier, J.; Falcone, E.L. Genotype-specific immune responses at the intestinal barrier predispose to colitis in chronic granulomatous disease in mice. Blood 2025, 145, 3153–3165. [Google Scholar] [CrossRef]
- Ott, M.G.; Schmidt, M.; Schwarzwaelder, K.; Stein, S.; Siler, U.; Koehl, U.; Glimm, H.; Kuhlcke, K.; Schilz, A.; Kunkel, H.; et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat. Med. 2006, 12, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Hacein-Bey-Abina, S.; Garrigue, A.; Wang, G.P.; Soulier, J.; Lim, A.; Morillon, E.; Clappier, E.; Caccavelli, L.; Delabesse, E.; Beldjord, K.; et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Investig. 2008, 118, 3132–3142. [Google Scholar] [CrossRef]
- Fuentes, E.; Gibbins, J.M.; Holbrook, L.M.; Palomo, I. NADPH oxidase 2 (NOX2): A key target of oxidative stress-mediated platelet activation and thrombosis. Trends Cardiovasc. Med. 2018, 28, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Griendling, K.K.; Sorescu, D.; Ushio-Fukai, M. NAD(P)H oxidase: Role in cardiovascular biology and disease. Circ. Res. 2000, 86, 494–501. [Google Scholar] [CrossRef]
- Judkins, C.P.; Diep, H.; Broughton, B.R.; Mast, A.E.; Hooker, E.U.; Miller, A.A.; Selemidis, S.; Dusting, G.J.; Sobey, C.G.; Drummond, G.R. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE−/− mice. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, H24–H32. [Google Scholar] [CrossRef]
- Sorescu, D.; Weiss, D.; Lassegue, B.; Clempus, R.E.; Szocs, K.; Sorescu, G.P.; Valppu, L.; Quinn, M.T.; Lambeth, J.D.; Vega, J.D.; et al. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 2002, 105, 1429–1435. [Google Scholar] [CrossRef]
- Touyz, R.M.; Schiffrin, E.L. Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: Role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. J. Hypertens. 2001, 19, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Lassegue, B.; Sorescu, D.; Szocs, K.; Yin, Q.; Akers, M.; Zhang, Y.; Grant, S.L.; Lambeth, J.D.; Griendling, K.K. Novel gp91(phox) homologues in vascular smooth muscle cells: Nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ. Res. 2001, 88, 888–894. [Google Scholar] [CrossRef]
- Clempus, R.E.; Griendling, K.K. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc. Res. 2006, 71, 216–225. [Google Scholar] [CrossRef]
- Lu, W.; Lin, Y.; Haider, N.; Moly, P.; Wang, L.; Zhou, W. Ginsenoside Rb1 protects human vascular smooth muscle cells against resistin-induced oxidative stress and dysfunction. Front. Cardiovasc. Med. 2023, 10, 1164547. [Google Scholar] [CrossRef]
- Manea, S.A.; Vlad, M.L.; Lazar, A.G.; Muresian, H.; Simionescu, M.; Manea, A. SET7 lysine methyltransferase mediates the up-regulation of NADPH oxidase expression, oxidative stress, and NLRP3 inflammasome priming in atherosclerosis. J. Transl. Med. 2025, 23, 339. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.B.; Drummond, G.R.; Sobey, C.G.; Selemidis, S. Evidence that nitric oxide inhibits vascular inflammation and superoxide production via a p47phox-dependent mechanism in mice. Clin. Exp. Pharmacol. Physiol. 2010, 37, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Hsich, E.; Segal, B.H.; Pagano, P.J.; Rey, F.E.; Paigen, B.; Deleonardis, J.; Hoyt, R.F.; Holland, S.M.; Finkel, T. Vascular effects following homozygous disruption of p47(phox): An essential component of NADPH oxidase. Circulation 2000, 101, 1234–1236. [Google Scholar] [CrossRef]
- Guzik, T.J.; Sadowski, J.; Guzik, B.; Jopek, A.; Kapelak, B.; Przybylowski, P.; Wierzbicki, K.; Korbut, R.; Harrison, D.G.; Channon, K.M. Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 333–339. [Google Scholar] [CrossRef]
- Touyz, R.M.; Schiffrin, E.L. Reactive oxygen species in vascular biology: Implications in hypertension. Histochem. Cell Biol. 2004, 122, 339–352. [Google Scholar] [CrossRef]
- Jaquet, V.; Marcoux, J.; Forest, E.; Leidal, K.G.; McCormick, S.; Westermaier, Y.; Perozzo, R.; Plastre, O.; Fioraso-Cartier, L.; Diebold, B.; et al. NADPH oxidase (NOX) isoforms are inhibited by celastrol with a dual mode of action. Br. J. Pharmacol. 2011, 164, 507–520. [Google Scholar] [CrossRef]
- Chu, S.; Mao, X.; Guo, H.; Wang, L.; Li, Z.; Zhang, Y.; Wang, Y.; Wang, H.; Zhang, X.; Peng, W. Indoxyl sulfate potentiates endothelial dysfunction via reciprocal role for reactive oxygen species and RhoA/ROCK signaling in 5/6 nephrectomized rats. Free Radic. Res. 2017, 51, 237–252. [Google Scholar] [CrossRef]
- Ravichandran, K.A.; Heneka, M.T. Inflammasomes in neurological disorders—Mechanisms and therapeutic potential. Nat. Rev. Neurol. 2024, 20, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Liu, Y.; Wang, T.; Wei, S.J.; Block, M.L.; Wilson, B.; Liu, B.; Hong, J.S. NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J. Biol. Chem. 2004, 279, 1415–1421. [Google Scholar] [CrossRef]
- Block, M.L.; Zecca, L.; Hong, J.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007, 8, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.C.; Teismann, P.; Tieu, K.; Vila, M.; Jackson-Lewis, V.; Ischiropoulos, H.; Przedborski, S. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2003, 100, 6145–6150. [Google Scholar] [CrossRef] [PubMed]
- Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell 2010, 140, 918–934. [Google Scholar] [CrossRef]
- Gong, P.; Chen, Y.Q.; Lin, A.H.; Zhang, H.B.; Zhang, Y.; Ye, R.D.; Yu, Y. p47(phox) deficiency improves cognitive impairment and attenuates tau hyperphosphorylation in mouse models of AD. Alzheimers Res. Ther. 2020, 12, 146. [Google Scholar] [CrossRef]
- Simpson, D.S.A.; Oliver, P.L. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants 2020, 9, 743. [Google Scholar] [CrossRef]
- Birmann, P.T.; Casaril, A.M.; Abenante, L.; Penteado, F.; Bruning, C.A.; Savegnago, L.; Lenardao, E.J. Neuropharmacology of Organoselenium Compounds in Mental Disorders and Degenerative Diseases. Curr. Med. Chem. 2023, 30, 2357–2395. [Google Scholar] [CrossRef]
- Dustin, C.M.; Shiva, S.S.; Vazquez, A.; Saeed, A.; Pascoal, T.; Cifuentes-Pagano, E.; Pagano, P.J. NOX2 in Alzheimer’s and Parkinson’s disease. Redox Biol. 2024, 78, 103433. [Google Scholar] [CrossRef] [PubMed]
- Kuber, B.; Fadnavis, M.; Chatterjee, B. Role of angiotensin receptor blockers in the context of Alzheimer’s disease. Fundam. Clin. Pharmacol. 2023, 37, 429–445. [Google Scholar] [CrossRef] [PubMed]
- Dragoi, C.M.; Diaconu, C.C.; Nicolae, A.C.; Dumitrescu, I.B. Redox Homeostasis and Molecular Biomarkers in Precision Therapy for Cardiovascular Diseases. Antioxidants 2024, 13, 1163. [Google Scholar] [CrossRef]
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Shen, P.; Song, Y.; Huang, Y.; Tu, S. Reactive Oxygen Species in Autoimmune Cells: Function, Differentiation, and Metabolism. Front. Immunol. 2021, 12, 635021. [Google Scholar] [CrossRef]
- Chenevier-Gobeaux, C.; Lemarechal, H.; Bonnefont-Rousselot, D.; Poiraudeau, S.; Ekindjian, O.G.; Borderie, D. Superoxide production and NADPH oxidase expression in human rheumatoid synovial cells: Regulation by interleukin-1beta and tumour necrosis factor-alpha. Inflamm. Res. 2006, 55, 483–490. [Google Scholar] [CrossRef]
- Ryo, A.; Suizu, F.; Yoshida, Y.; Perrem, K.; Liou, Y.C.; Wulf, G.; Rottapel, R.; Yamaoka, S.; Lu, K.P. Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 2003, 12, 1413–1426. [Google Scholar] [CrossRef]
- Jacobsson, L.T.; Turesson, C.; Nilsson, J.A.; Petersson, I.F.; Lindqvist, E.; Saxne, T.; Geborek, P. Treatment with TNF blockers and mortality risk in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2007, 66, 670–675. [Google Scholar] [CrossRef]
- Ma, Y.; Lin, H.; Li, Y.; An, Z. Amentoflavone Induces Ferroptosis to Alleviate Proliferation, Migration, Invasion and Inflammation in Rheumatoid Arthritis Fibroblast-like Synoviocytes by Inhibiting PIN1. Cell Biochem. Biophys. 2025, 83, 1299–1312. [Google Scholar] [CrossRef]
- Roessner, A.; Kuester, D.; Malfertheiner, P.; Schneider-Stock, R. Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathol. Res. Pract. 2008, 204, 511–524. [Google Scholar] [CrossRef]
- Falcone, E.L.; Abusleme, L.; Swamydas, M.; Lionakis, M.S.; Ding, L.; Hsu, A.P.; Zelazny, A.M.; Moutsopoulos, N.M.; Kuhns, D.B.; Deming, C.; et al. Colitis susceptibility in p47phox−/− mice is mediated by the microbiome. Microbiome 2016, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Nunoi, H.; Nakamura, H.; Nishimura, T.; Matsukura, M. Recent topics and advanced therapies in chronic granulomatous disease. Hum. Cell 2023, 36, 515–527. [Google Scholar] [CrossRef]
- Xavier, R.J.; Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007, 448, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Lupu, A.; Stoleriu, G.; Nedelcu, A.H.; Perju, S.N.; Gavrilovici, C.; Baciu, G.; Mihai, C.M.; Chisnoiu, T.; Morariu, I.D.; Grigore, E.; et al. Overview of Oxidative Stress in Systemic Lupus Erythematosus. Antioxidants 2025, 14, 303. [Google Scholar] [CrossRef] [PubMed]
- Lowes, M.A.; Bowcock, A.M.; Krueger, J.G. Pathogenesis and therapy of psoriasis. Nature 2007, 445, 866–873. [Google Scholar] [CrossRef]
- Liu, F.C.; Yu, H.P.; Chen, P.J.; Yang, H.W.; Chang, S.H.; Tzeng, C.C.; Cheng, W.J.; Chen, Y.R.; Chen, Y.L.; Hwang, T.L. A novel NOX2 inhibitor attenuates human neutrophil oxidative stress and ameliorates inflammatory arthritis in mice. Redox Biol. 2019, 26, 101273. [Google Scholar] [CrossRef]
- Aggarwal, H.; Pathak, P.; Gupta, S.K.; Kumar, Y.; Jagavelu, K.; Dikshit, M. Serum and cecal metabolic profile of the insulin resistant and dyslipidemic p47(phox) knockout mice. Free Radic. Res. 2022, 56, 483–497. [Google Scholar] [CrossRef]
- Chen, B.; Li, T.; Wu, Y.; Song, L.; Wang, Y.; Bian, Y.; Qiu, Y.; Yang, Z. Lipotoxicity: A New Perspective in Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2025, 18, 1223–1237. [Google Scholar] [CrossRef]
- Laddha, A.P.; Kulkarni, Y.A. NADPH oxidase: A membrane-bound enzyme and its inhibitors in diabetic complications. Eur. J. Pharmacol. 2020, 881, 173206. [Google Scholar] [CrossRef]
- Du, X.L.; Edelstein, D.; Rossetti, L.; Fantus, I.G.; Goldberg, H.; Ziyadeh, F.; Wu, J.; Brownlee, M. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl. Acad. Sci. USA 2000, 97, 12222–12226. [Google Scholar] [CrossRef]
- Du, Y.; Veenstra, A.; Palczewski, K.; Kern, T.S. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc. Natl. Acad. Sci. USA 2013, 110, 16586–16591. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Huo, Y.; Zhang, K.; Chang, L.; Zhang, H.; Wang, X.; Li, L.; Hu, Z. Development and validation of outcome prediction models for acute kidney injury patients undergoing continuous renal replacement therapy. Front. Med. 2022, 9, 853989. [Google Scholar] [CrossRef]
- Tojo, A.; Asaba, K.; Onozato, M.L. Suppressing renal NADPH oxidase to treat diabetic nephropathy. Expert Opin. Ther. Targets 2007, 11, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.C.; Fang, F.; Zhou, J.; Koulajian, K.; Yang, S.; Lam, L.; Reich, H.N.; John, R.; Herzenberg, A.M.; Giacca, A.; et al. Deletion of p47phox attenuates the progression of diabetic nephropathy and reduces the severity of diabetes in the Akita mouse. Diabetologia 2012, 55, 2522–2532. [Google Scholar] [CrossRef] [PubMed]
- De Minicis, S.; Seki, E.; Paik, Y.H.; Osterreicher, C.H.; Kodama, Y.; Kluwe, J.; Torozzi, L.; Miyai, K.; Benedetti, A.; Schwabe, R.F.; et al. Role and cellular source of nicotinamide adenine dinucleotide phosphate oxidase in hepatic fibrosis. Hepatology 2010, 52, 1420–1430. [Google Scholar] [CrossRef]
- Ni, X.; Duan, L.; Bao, Y.; Li, J.; Zhang, X.; Jia, D.; Wu, N. Circ_005077 accelerates myocardial lipotoxicity induced by high-fat diet via CyPA/p47PHOX mediated ferroptosis. Cardiovasc. Diabetol. 2024, 23, 129. [Google Scholar] [CrossRef]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004, 114, 1752–1761. [Google Scholar] [CrossRef]
- Ushio-Fukai, M.; Nakamura, Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 2008, 266, 37–52. [Google Scholar] [CrossRef]
- Weinberg, F.; Hamanaka, R.; Wheaton, W.W.; Weinberg, S.; Joseph, J.; Lopez, M.; Kalyanaraman, B.; Mutlu, G.M.; Budinger, G.R.; Chandel, N.S. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. USA 2010, 107, 8788–8793. [Google Scholar] [CrossRef]
- Kelkka, T.; Pizzolla, A.; Laurila, J.P.; Friman, T.; Gustafsson, R.; Kallberg, E.; Olsson, O.; Leanderson, T.; Rubin, K.; Salmi, M.; et al. Mice lacking NCF1 exhibit reduced growth of implanted melanoma and carcinoma tumors. PLoS ONE 2013, 8, e84148. [Google Scholar] [CrossRef]
- Vuong, H.; Cheng, F.; Lin, C.C.; Zhao, Z. Functional consequences of somatic mutations in cancer using protein pocket-based prioritization approach. Genome Med. 2014, 6, 81. [Google Scholar] [CrossRef]
- van der Weyden, L.; Speak, A.O.; Swiatkowska, A.; Clare, S.; Schejtman, A.; Santilli, G.; Arends, M.J.; Adams, D.J. Pulmonary metastatic colonisation and granulomas in NOX2-deficient mice. J. Pathol. 2018, 246, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Yager, J.D.; Davidson, N.E. Estrogen carcinogenesis in breast cancer. N. Engl. J. Med. 2006, 354, 270–282. [Google Scholar] [CrossRef]
- Roy, K.; Wu, Y.; Meitzler, J.L.; Juhasz, A.; Liu, H.; Jiang, G.; Lu, J.; Antony, S.; Doroshow, J.H. NADPH oxidases and cancer. Clin. Sci. (Lond.) 2015, 128, 863–875. [Google Scholar] [CrossRef]
- Zheng, K.; Li, Y.; Wang, S.; Wang, X.; Liao, C.; Hu, X.; Fan, L.; Kang, Q.; Zeng, Y.; Wu, X.; et al. Inhibition of autophagosome-lysosome fusion by ginsenoside Ro via the ESR2-NCF1-ROS pathway sensitizes esophageal cancer cells to 5-fluorouracil-induced cell death via the CHEK1-mediated DNA damage checkpoint. Autophagy 2016, 12, 1593–1613. [Google Scholar] [CrossRef] [PubMed]
- Paolillo, R.; Boulanger, M.; Gatel, P.; Gabellier, L.; De Toledo, M.; Tempe, D.; Hallal, R.; Akl, D.; Moreaux, J.; Baik, H.; et al. The NADPH oxidase NOX2 is a marker of adverse prognosis involved in chemoresistance of acute myeloid leukemias. Haematologica 2022, 107, 2562–2575. [Google Scholar] [CrossRef]
- Quilaqueo-Millaqueo, N.; Brown-Brown, D.A.; Vidal-Vidal, J.A.; Niechi, I. NOX proteins and ROS generation: Role in invadopodia formation and cancer cell invasion. Biol. Res. 2024, 57, 98. [Google Scholar] [CrossRef] [PubMed]
- Vallee, A.; Lecarpentier, Y. Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/beta-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis. Front. Immunol. 2018, 9, 745. [Google Scholar] [CrossRef]
- Ye, S.X.Y.; Li, J.; Zheng, Y.; Sun, P.; Yang, W. p47phox contributes to inflammation and tumor promotion in colitis-associated cancer through NF-κB activation. J. Immunol. 2016, 196, 153.129. [Google Scholar]
- Dhiman, M.; Garg, N.J. P47phox−/− mice are compromised in expansion and activation of CD8+ T cells and susceptible to Trypanosoma cruzi infection. PLoS Pathog. 2014, 10, e1004516. [Google Scholar] [CrossRef]
- Ushio-Fukai, M. Redox signaling in angiogenesis: Role of NADPH oxidase. Cardiovasc. Res. 2006, 71, 226–235. [Google Scholar] [CrossRef]
- Chen, Y.; He, F.; Wang, R.; Yao, M.; Li, Y.; Guo, D.; He, S. NCF1/2/4 Are Prognostic Biomarkers Related to the Immune Infiltration of Kidney Renal Clear Cell Carcinoma. Biomed. Res. Int. 2021, 2021, 5954036. [Google Scholar] [CrossRef] [PubMed]
- Griess, B.; Mir, S.; Datta, K.; Teoh-Fitzgerald, M. Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. Free Radic. Biol. Med. 2020, 147, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pei, C.; Yan, S.; Liu, G.; Liu, G.; Chen, W.; Cui, Y.; Liu, Y. NADPH oxidase 1-dependent ROS is crucial for TLR4 signaling to promote tumor metastasis of non-small cell lung cancer. Tumour Biol. 2015, 36, 1493–1502. [Google Scholar] [CrossRef]
- Lee, J.K.; Edderkaoui, M.; Truong, P.; Ohno, I.; Jang, K.T.; Berti, A.; Pandol, S.J.; Gukovskaya, A.S. NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology 2007, 133, 1637–1648. [Google Scholar] [CrossRef] [PubMed]
- Furuya-Ikude, C.; Kitta, A.; Tomonobu, N.; Kawasaki, Y.; Sakaguchi, M.; Kondo, E. NCF-1 plays a pivotal role in the survival of adenocarcinoma cells of pancreatic and gastric origins. In Vitro Cell Dev. Biol. Anim. 2024, 60, 1151–1159. [Google Scholar] [CrossRef]
- Liu, R.; Peng, L.; Zhou, L.; Huang, Z.; Zhou, C.; Huang, C. Oxidative Stress in Cancer Immunotherapy: Molecular Mechanisms and Potential Applications. Antioxidants 2022, 11, 853. [Google Scholar] [CrossRef]
- Solbak, S.M.O.; Zang, J.; Narayanan, D.; Hoj, L.J.; Bucciarelli, S.; Softley, C.; Meier, S.; Langkilde, A.E.; Gotfredsen, C.H.; Sattler, M.; et al. Developing Inhibitors of the p47phox-p22phox Protein-Protein Interaction by Fragment-Based Drug Discovery. J. Med. Chem. 2020, 63, 1156–1177. [Google Scholar] [CrossRef]
- Rey, F.E.; Cifuentes, M.E.; Kiarash, A.; Quinn, M.T.; Pagano, P.J. Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O2− and systolic blood pressure in mice. Circ. Res. 2001, 89, 408–414. [Google Scholar] [CrossRef]
- Cifuentes-Pagano, E.; Pagano, P.J. Rational Design and Delivery of NOX-Inhibitory Peptides. Methods Mol. Biol. 2019, 1982, 417–428. [Google Scholar] [CrossRef]
- Ebrahimian, T.; Li, M.W.; Lemarie, C.A.; Simeone, S.M.; Pagano, P.J.; Gaestel, M.; Paradis, P.; Wassmann, S.; Schiffrin, E.L. Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: Regulation of oxidative stress. Hypertension 2011, 57, 245–254. [Google Scholar] [CrossRef] [PubMed]
- DiStasi, M.R.; Mund, J.A.; Bohlen, H.G.; Miller, S.J.; Ingram, D.A.; Dalsing, M.C.; Unthank, J.L. Impaired compensation to femoral artery ligation in diet-induced obese mice is primarily mediated via suppression of collateral growth by Nox2 and p47phox. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H1207–H1217. [Google Scholar] [CrossRef]
- Liu, X.; Lei, Z.; Gilhooly, D.; He, J.; Li, Y.; Ritzel, R.M.; Li, H.; Wu, L.J.; Liu, S.; Wu, J. Traumatic brain injury-induced inflammatory changes in the olfactory bulb disrupt neuronal networks leading to olfactory dysfunction. Brain Behav. Immun. 2023, 114, 22–45. [Google Scholar] [CrossRef]
- Sabirzhanov, B.; Li, Y.; Coll-Miro, M.; Matyas, J.J.; He, J.; Kumar, A.; Ward, N.; Yu, J.; Faden, A.I.; Wu, J. Inhibition of NOX2 signaling limits pain-related behavior and improves motor function in male mice after spinal cord injury: Participation of IL-10/miR-155 pathways. Brain Behav. Immun. 2019, 80, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 2013, 81, 136–147. [Google Scholar] [CrossRef]
- Cifuentes-Pagano, M.E.; Meijles, D.N.; Pagano, P.J. Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors. Curr. Pharm. Des. 2015, 21, 6023–6035. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cifuentes-Pagano, E.; DeVallance, E.R.; de Jesus, D.S.; Sahoo, S.; Meijles, D.N.; Koes, D.; Camacho, C.J.; Ross, M.; St Croix, C.; et al. NADPH oxidase 2 inhibitors CPP11G and CPP11H attenuate endothelial cell inflammation & vessel dysfunction and restore mouse hind-limb flow. Redox Biol. 2019, 22, 101143. [Google Scholar] [CrossRef]
- Wang, X.; Abu Bakar, M.H.; Liqun, S.; Kassim, M.A.; Shariff, K.A.; Karunakaran, T. Targeting metabolic diseases with celastrol: A comprehensive review of anti-inflammatory mechanisms and therapeutic potential. J. Ethnopharmacol. 2025, 344, 119560. [Google Scholar] [CrossRef]
- Lei, H.; Ruan, Y.; Ding, R.; Li, H.; Zhang, X.; Ji, X.; Wang, Q.; Lv, S. The role of celastrol in inflammation and diseases. Inflamm. Res. 2025, 74, 23. [Google Scholar] [CrossRef]
- Zhao, Y.; Miettinen, K.; Kampranis, S.C. Celastrol: A century-long journey from the isolation to the biotechnological production and the development of an antiobesity drug. Curr. Opin. Plant Biol. 2024, 81, 102615. [Google Scholar] [CrossRef]
- Tan, J.L.; Yi, J.; Cao, X.Y.; Wang, F.Y.; Xie, S.L.; Zhou, L.L.; Qin, L.; Dai, A.G. Celastrol: The new dawn in the treatment of vascular remodeling diseases. Biomed. Pharmacother. 2023, 158, 114177. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Dai, S.; Zhao, X.; Zhang, Y.; Gong, L.; Fu, K.; Ma, C.; Peng, C.; Li, Y. Celastrol as an emerging anticancer agent: Current status, challenges and therapeutic strategies. Biomed. Pharmacother. 2023, 163, 114882. [Google Scholar] [CrossRef]
- Robertson, R.P. Antioxidants for Early Treatment of Type 2 Diabetes in Rodents and Humans: Lost in Translation? Diabetes 2024, 73, 653–658. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Li, X.; Lu, J.; Wang, M. Recent advances in drug delivery of celastrol for enhancing efficiency and reducing the toxicity. Front. Pharmacol. 2024, 15, 1137289. [Google Scholar] [CrossRef]
- Ali, F.; Alom, S.; Ali, S.R.; Kondoli, B.; Sadhu, P.; Borah, C.; Kakoti, B.B.; Ghosh, S.K.; Shakya, A.; Ahmed, A.B.; et al. Ebselen: A Review on its Synthesis, Derivatives, Anticancer Efficacy and Utility in Combating SARS-CoV-2. Mini Rev. Med. Chem. 2024, 24, 1203–1225. [Google Scholar] [CrossRef] [PubMed]
- Ramli, F.F.; Cowen, P.J.; Godlewska, B.R. The Potential Use of Ebselen in Treatment-Resistant Depression. Pharmaceuticals 2022, 15, 485. [Google Scholar] [CrossRef] [PubMed]
- Santi, C.; Scimmi, C.; Sancineto, L. Ebselen and Analogues: Pharmacological Properties and Synthetic Strategies for Their Preparation. Molecules 2021, 26, 4230. [Google Scholar] [CrossRef] [PubMed]
- Kil, J.; Harruff, E.E.; Longenecker, R.J. Development of ebselen for the treatment of sensorineural hearing loss and tinnitus. Hear. Res. 2022, 413, 108209. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.; Dong, C.; Zhao, Y.; Zhou, J.; Yuan, C.; Zou, L. Mechanisms of ebselen as a therapeutic and its pharmacology applications. Future Med. Chem. 2020, 12, 2141–2160. [Google Scholar] [CrossRef]
- Etemadi, A.; Hemmati, S.; Shahrivar-Gargari, M.; Abibiglue, Y.T.; Bavili, A.; Hamzeh-Mivehroud, M.; Dastmalchi, S. Design, Synthesis, and Biological Evaluation of Novel Indanone Derivatives as Cholinesterase Inhibitors for Potential Use in Alzheimer’s Disease. Chem. Biodivers. 2023, 20, e202300075. [Google Scholar] [CrossRef]
- Treuer, A.V.; Faundez, M.; Ebensperger, R.; Hovelmeyer, E.; Vergara-Jaque, A.; Perera-Sardina, Y.; Gutierrez, M.; Fuentealba, R.; Gonzalez, D.R. New NADPH Oxidase 2 Inhibitors Display Potent Activity against Oxidative Stress by Targeting p22(phox)-p47(phox) Interactions. Antioxidants 2023, 12, 1441. [Google Scholar] [CrossRef]
- Develin, A.M.; Fuglestad, B. Inositol Hexaphosphate as an Inhibitor and Potential Regulator of p47(phox) Membrane Anchoring. Biochemistry 2024, 63, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.M.; Liu, F.; Du, J.; Geng, L.; Li, J.M. Inhibition of endothelial Nox2 activation by LMH001 protects mice from angiotensin II-induced vascular oxidative stress, hypertension and aortic aneurysm. Redox Biol. 2022, 51, 102269. [Google Scholar] [CrossRef] [PubMed]
- Zang, J.; Cambet, Y.; Jaquet, V.; Bach, A. Chemical synthesis of a reported p47phox/p22phox inhibitor and characterization of its instability and irreproducible activity. Front. Pharmacol. 2022, 13, 1075328. [Google Scholar] [CrossRef] [PubMed]
- Zang, J.; Peters, F.; Cambet, Y.; Cifuentes-Pagano, E.; Hissabu, M.M.S.; Dustin, C.M.; Svensson, L.H.; Olesen, M.M.; Poulsen, M.F.L.; Jacobsen, S.; et al. Targeting NOX2 with Bivalent Small-Molecule p47phox-p22phox Inhibitors. J. Med. Chem. 2023, 66, 14963–15005. [Google Scholar] [CrossRef]
- Trevelin, S.C.; Shah, A.M.; Lombardi, G. Beyond bacterial killing: NADPH oxidase 2 is an immunomodulator. Immunol. Lett. 2020, 221, 39–48. [Google Scholar] [CrossRef]
- Glorieux, C.; Liu, S.; Trachootham, D.; Huang, P. Targeting ROS in cancer: Rationale and strategies. Nat. Rev. Drug Discov. 2024, 23, 583–606. [Google Scholar] [CrossRef]
- Poolman, T.M.; Quinn, P.A.; Ng, L. Protein Kinase C Epsilon Contributes to NADPH Oxidase Activation in a Pre-Eclampsia Lymphoblast Cell Model. Diseases 2013, 1, 1–17. [Google Scholar] [CrossRef]
- Chang, S.N.; Dey, D.K.; Oh, S.T.; Kong, W.H.; Cho, K.H.; Al-Olayan, E.M.; Hwang, B.S.; Kang, S.C.; Park, J.G. Phorbol 12-Myristate 13-Acetate Induced Toxicity Study and the Role of Tangeretin in Abrogating HIF-1alpha-NF-kappaB Crosstalk In Vitro and In Vivo. Int. J. Mol. Sci. 2020, 21, 9261. [Google Scholar] [CrossRef]
- Vasukutty, A.; Pillarisetti, S.; Choi, J.; Kang, S.H.; Park, I.K. CXCR4 Targeting Nanoplatform for Transcriptional Activation of Latent HIV-1 Infected T Cells. ACS Appl. Bio Mater. 2024, 7, 4831–4842. [Google Scholar] [CrossRef]
- Makni-Maalej, K.; Boussetta, T.; Hurtado-Nedelec, M.; Belambri, S.A.; Gougerot-Pocidalo, M.A.; El-Benna, J. The TLR7/8 agonist CL097 primes N-formyl-methionyl-leucyl-phenylalanine-stimulated NADPH oxidase activation in human neutrophils: Critical role of p47phox phosphorylation and the proline isomerase Pin1. J. Immunol. 2012, 189, 4657–4665. [Google Scholar] [CrossRef]
- Kubli-Garfias, C.; Vazquez-Ramirez, R.; Trejo-Munoz, C.; Berber, A. Insights on the mechanism of action of immunostimulants in relation to their pharmacological potency. The effects of imidazoquinolines on TLR8. PLoS ONE 2017, 12, e0178846. [Google Scholar] [CrossRef]
- Cheng, N.; He, R.; Tian, J.; Dinauer, M.C.; Ye, R.D. A critical role of protein kinase C delta activation loop phosphorylation in formyl-methionyl-leucyl-phenylalanine-induced phosphorylation of p47(phox) and rapid activation of nicotinamide adenine dinucleotide phosphate oxidase. J. Immunol. 2007, 179, 7720–7728. [Google Scholar] [CrossRef]
- Schejtman, A.; Aragao-Filho, W.C.; Clare, S.; Zinicola, M.; Weisser, M.; Burns, S.O.; Booth, C.; Gaspar, H.B.; Thomas, D.C.; Condino-Neto, A.; et al. Lentiviral gene therapy rescues p47(phox) chronic granulomatous disease and the ability to fight Salmonella infection in mice. Gene Ther. 2020, 27, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Diebold, B.A.; Fowler, B.; Lu, J.; Dinauer, M.C.; Bokoch, G.M. Antagonistic cross-talk between Rac and Cdc42 GTPases regulates generation of reactive oxygen species. J. Biol. Chem. 2004, 279, 28136–28142. [Google Scholar] [CrossRef] [PubMed]
- Vermot, A.; Petit-Hartlein, I.; Smith, S.M.E.; Fieschi, F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants 2021, 10, 890. [Google Scholar] [CrossRef] [PubMed]
- Kuihon, S.; Sevart, B.J.; Abbey, C.A.; Bayless, K.J.; Chen, B. The NADPH oxidase 2 subunit p47(phox) binds to the WAVE regulatory complex and p22(phox) in a mutually exclusive manner. J. Biol. Chem. 2024, 300, 107130. [Google Scholar] [CrossRef]
- Liu, L.; Chen, A.; Li, Y.; Mulder, J.; Heyn, H.; Xu, X. Spatiotemporal omics for biology and medicine. Cell 2024, 187, 4488–4519. [Google Scholar] [CrossRef]
- Sanati, M.; Amin Yavari, S. Liposome-integrated hydrogel hybrids: Promising platforms for cancer therapy and tissue regeneration. J. Control. Release 2024, 368, 703–727. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, X.; Wang, M.; Liu, W.; Zhang, L.; Zhang, Y.; Hu, Z.; Zhou, X.; Jiang, W.; Zou, Q.; et al. Optogenetic-controlled immunotherapeutic designer cells for post-surgical cancer immunotherapy. Nat. Commun. 2022, 13, 6357. [Google Scholar] [CrossRef]
- Klatt, D.; Cheng, E.; Philipp, F.; Selich, A.; Dahlke, J.; Schmidt, R.E.; Schott, J.W.; Buning, H.; Hoffmann, D.; Thrasher, A.J.; et al. Targeted Repair of p47-CGD in iPSCs by CRISPR/Cas9: Functional Correction without Cleavage in the Highly Homologous Pseudogenes. Stem Cell Rep. 2019, 13, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Xiong, B.; Zhang, Y.; Liu, S.; Liao, S.; Zhou, Z.; He, Q.; Zhou, Y. NOX Family: Regulators of Reactive Oxygen Species Balance in Tumor Cells. FASEB J. 2025, 39, e70565. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Li, X.; Aquadro, E.; Haigh, S.; Zhou, J.; Stepp, D.W.; Weintraub, N.L.; Barman, S.A.; Fulton, D.J.R. Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension. Free Radic. Biol. Med. 2016, 99, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Deneault, E. Recent Therapeutic Gene Editing Applications to Genetic Disorders. Curr. Issues Mol. Biol. 2024, 46, 4147–4185. [Google Scholar] [CrossRef]
Regulator | Specific Target(s) | Effect on NOX2 Activation | Relevance to Disease States |
---|---|---|---|
Protein Kinase C (PKC) | Ser303, Ser304, Ser315, Ser320, Ser328 | Phosphorylation at these sites induces conformational changes in p47phox, facilitating its interaction with p22phox and activation of NOX2 | Implicated in diabetic complications and cancer progression due to enhanced ROS production |
Akt (Protein Kinase B) | Ser304, Ser328 | Phosphorylation by Akt sustains NOX2 activation, prolonging ROS output | Associated with neurodegenerative diseases where prolonged ROS contributes to neuronal damage |
p38 MAPK | Ser345 | Phosphorylation at Ser345 primes p47phox for subsequent phosphorylation events, enhancing NOX2 activation | Relevant in inflammatory disorders such as rheumatoid arthritis and inflammatory bowel disease |
Ubiquitination | Lysine residues (specific sites not fully characterized) | Ubiquitination targets p47phox for proteasomal degradation, reducing its availability for NOX2 complex assembly | Modulates severity in CGD by regulating p47phox levels |
Acetylation | Lysine residues (specific sites not fully characterized) | Acetylation may influence p47phox stability and interaction with other proteins, potentially affecting NOX2 activity | Emerging role in metabolic stress responses; further research needed to elucidate specific mechanisms |
Disease | p47phox Role | Impact of NCF1 Deficiency | Preclinical Outcomes (NCF1−/− Models) | Human Evidence |
---|---|---|---|---|
Diabetic Nephropathy | Increases glomerular ROS | Reduction in ROS | ↓ Albuminuria, improved GFR | ↑ NCF1 in renal biopsies ↑ 4-HNE |
Diabetic Retinopathy | Drives vascular ROS | Reduction in ROS | ↓ Vascular leakage, capillary occlusion | ↑ NCF1 in retinal endothelium, ↑ nitrotyrosine |
Diabetic Neuropathy | Promotes nerve ROS | Reduction in ROS | ↑ Nerve conduction velocity, ↓ pain hypersensitivity | ↑ NCF1 in peripheral nerves, ↑ lipid peroxidation |
NAFLD/Obesity | Amplifies hepatic/adipose ROS | Reduction in hepatic ROS | ↓ Lipid accumulation, ↓ fibrosis | ↑ NCF1 in visceral adipose ↑ ROS markers |
Chronic Granulomatous Disease (CGD) | Impairs neutrophil ROS production | Reduction in ROS | ↑ Susceptibility to Aspergillus and S. aureus, ↓ microbial clearance | ↓ NCF1 mutations in PBMCs, ↑ infection rates, ↓ superoxide levels |
Rheumatoid Arthritis (RA) | Drives synovial ROS | Reduction in ROS | ↓ Synovial inflammation, ↓ cartilage erosion | ↑ NCF1 in synovial biopsies, ↑ malondialdehyde, ↑ IL-6 |
Inflammatory Bowel Disease (Crohn’s Disease) | Supports gut microbial ROS | Reduction in ROS | ↑ Gut permeability, ↑ Clostridium overgrowth, ↑ colitis severity | ↓ NCF1 in Crohn’s flares, ↑ IL-1β, ↓ microbial control |
Inflammatory Bowel Disease (Ulcerative Colitis) | Amplifies mucosal ROS | Reduction in ROS | ↓ Mucosal damage, ↓ inflammatory cytokines | ↑ NCF1 in severe UC, ↑ ROS markers, ↑ TNF-α |
Systemic Lupus Erythematosus (SLE) | Promotes autoantigen ROS | Reduction in ROS | ↓ Immune complex deposition, ↓ renal damage | ↑ NCF1 in lupus nephritis, ↑ 8-OHdG, ↑ anti-dsDNA antibodies |
Melanoma | Enhances immunosuppressive ROS | Reduction in ROS | ↓ Tumor growth, ↑ T-cell infiltration by | ↑ NCF1 in tumor-associated macrophages, ↑ MDSC markers |
Lymphoma | Drives tumor-promoting ROS | Reduction in ROS | ↑ Tumor cell lysis, ↓ tumor burden | ↑ NCF1 in lymphoma biopsies, ↑ ROS-driven immunosuppression |
Pancreatic Cancer | Promotes tumoricidal resistance ROS | Reduction in ROS | ↑ Macrophage tumoricidal activity, ↓ tumor burden | ↑ NCF1 in pancreatic tumors, ↑ ROS-driven PD-L1 expression |
Breast Cancer | Enhances tumor-promoting ROS | Reduction in ROS | ↓ Tumor progression, ↑ immune cell infiltration | ↑ NCF1 in breast tumor stroma, ↑ ROS-driven VEGF expression |
Colorectal Cancer | Drives immunosuppressive ROS | Reduction in ROS | ↓ Tumor growth, ↓ metastasis | ↑ NCF1 in colorectal tumors, ↑ ROS-driven MDSC activity |
Psoriasis | Promotes keratinocyte ROS | Reduction in ROS | ↓ Epidermal hyperplasia; ↓ inflammatory infiltration | NCF1 mutations associated with increased susceptibility |
Asthma | Enhances airway epithelial ROS | Reduction in ROS | Airway inflammation; ↓ eosinophil infiltration | ↑ NCF1 expression in bronchial biopsies; ↑ oxidative stress markers |
Multiple Sclerosis (MS) | Mediates CNS inflammation via ROS | Reduction in ROS | ↓ Demyelination; ↓ neuroinflammation | ↑ NCF1 expression in active lesions; ↑ oxidative damage markers |
Parkinson’s Disease | Contributes to dopaminergic neuron degeneration via ROS | Reduction in ROS | ↓ Neuronal loss; ↑ motor function | ↑ NCF1 in substantia nigra; ↑ oxidative stress markers |
Disease | Signaling Pathway(s) | ROS-Mediated Effect | Downstream Consequences |
---|---|---|---|
Chronic Granulomatous Disease (CGD) | Impaired NF-κB, IL-1β | Deficient ROS production leading to impaired microbial killing | Recurrent bacterial and fungal infections, granuloma formation, hyperinflammation |
Cardiovascular Diseases | TGF-β, NF-κB | Oxidation of LDL, promotion of atherosclerotic plaque formation | Endothelial dysfunction, vascular inflammation, plaque progression |
Neurodegenerative Diseases | PI3K/Akt, MAPK | Enhanced microglial activation, increased α-synuclein aggregation | Dopaminergic neuronal loss, cognitive decline |
Inflammatory Disorders | NF-κB, IL-6, TNF-α | Amplification of synovial inflammation via ROS production | Joint destruction, cartilage degradation |
Metabolic Disorders | PKC, MAPK, TGF-β | Induction of glomerular oxidative stress and fibrosis | Progression of diabetic nephropathy and retinopathy |
Cancer | PI3K/Akt, Wnt/β-catenin | Promotion of epithelial-mesenchymal transition (EMT), increased proliferation | Tumor growth, invasion, metastasis |
Strategy | Agent/Example | Target/Mechanism | Preclinical Efficacy | Challenges |
---|---|---|---|---|
Inhibitors (Peptides) | NOX2ds-tat | Inhibit p47phox-p22phox PPI | Reduced vascular ROS and inflammation; improved hind-limb perfusion in ischemic models. | Rapid clearance, limited bioavailability |
Inhibitors (Small Molecules) | CPP11G CPP11H Celastrol Ebselen/SPI-1005 LMH001 C6 C14 Bivalent inhibitors | Disrupt p47phox-PPI Redox modulation | Decreased synovial ROS; neuroprotection in models of neurodegeneration | Off-target effects; hepatotoxicity concerns |
Agonists (Gene Therapy) | Lentiviral NCF1 PM359 | Restore NCF1 expression to reconstitute NADPH oxidase activity | Reduced infection rates and granuloma formation in CGD mouse models | Potential genomic instability; variable transduction efficiency |
Agonists (PKC Activators) | Phorbol 12-myristate 13-acetate (PMA) | Induce p47phox phosphorylation to activate NADPH oxidase | Enhanced microbial clearance; increased tumor cell lysis in vitro | Systemic toxicity; pro-inflammatory responses |
Agonists (TLR Ligands) | CL097 | Activate TLR7/8 pathways; modulate Pin1 and Ser345 phosphorylation of p47phox | Stimulated plasmacytoid dendritic cell activation; increased cytokine production; potential antitumor effects | Short half-life; challenges in targeted delivery |
Clinical Development Stage | Agent/Target | Disease Indication | Clinicaltrials.gov NCT # |
---|---|---|---|
Phase II | Sentanaxib (GKT137831) NOX1/4 inhibitor | Idiopathic pulmonary fibrosis Type 2 diabetes & albuminuria Biliary cholangitis Alport syndrome | NCT03865927 NCT02010242 NCT03226067 NCT06274489 |
Phase II | APX-115 Pan-NOX inhibitor | Type 2 diabetes with nephropathy COVID-19 Acute kidney injury | NCT04534439 NCT04880109 NCT05758896 |
Phase II/III | SPI-1005/Ebselen NOX2 inhibitor | Bipolar disorder Treatment-resistant depression Meniere’s disease Cochlear implant Type I & II diabetes COVID-19 Otoprotection | NCT03013400 NCT05117710 NCT06859788, NCT03325790 NCT06340633 NCT00762671 NCT04484025, NCT04483973 NCT01444846, NCT01451853, NCT02779192 |
Phase I | PM359 NCF1 gene therapy | Chronic granulomatous disease | NCT06559176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamble, M.E.; Sureshkumar, S.; Carrera Espinoza, M.J.; Hakim, N.L.; Espitia, C.M.; Bi, F.; Kelly, K.R.; Wang, W.; Nawrocki, S.T.; Carew, J.S. p47phox: A Central Regulator of NADPH Oxidase Function and a Promising Therapeutic Target in Redox-Related Diseases. Cells 2025, 14, 1043. https://doi.org/10.3390/cells14141043
Gamble ME, Sureshkumar S, Carrera Espinoza MJ, Hakim NL, Espitia CM, Bi F, Kelly KR, Wang W, Nawrocki ST, Carew JS. p47phox: A Central Regulator of NADPH Oxidase Function and a Promising Therapeutic Target in Redox-Related Diseases. Cells. 2025; 14(14):1043. https://doi.org/10.3390/cells14141043
Chicago/Turabian StyleGamble, Madison E., Sruthi Sureshkumar, Maria Janina Carrera Espinoza, Natalie L. Hakim, Claudia M. Espitia, Fangchao Bi, Kevin R. Kelly, Wei Wang, Steffan T. Nawrocki, and Jennifer S. Carew. 2025. "p47phox: A Central Regulator of NADPH Oxidase Function and a Promising Therapeutic Target in Redox-Related Diseases" Cells 14, no. 14: 1043. https://doi.org/10.3390/cells14141043
APA StyleGamble, M. E., Sureshkumar, S., Carrera Espinoza, M. J., Hakim, N. L., Espitia, C. M., Bi, F., Kelly, K. R., Wang, W., Nawrocki, S. T., & Carew, J. S. (2025). p47phox: A Central Regulator of NADPH Oxidase Function and a Promising Therapeutic Target in Redox-Related Diseases. Cells, 14(14), 1043. https://doi.org/10.3390/cells14141043