Growth Hormone Secretagogue Receptor (GHSR) Is Elevated in Myocardial Tissues of DMD mdx:utrn−/− Mice, and Correlates Strongly with Inflammatory Markers, and Negatively with Cardiac Function
Abstract
1. Introduction
2. Materials and Methods
2.1. Mouse Housing and Breeding
2.2. Animal Genotype Validation
2.3. Cardiac Tissue Preparation
2.4. Histological Imaging
2.5. Fluorescence Immunostaining
2.6. Confocal Microscopy
2.6.1. Fluorescence Image Acquisition
2.6.2. Fluorescence Image Analysis
2.6.3. H&E and Masson’s Trichrome Image Acquisition
2.6.4. H&E and Masson’s Trichrome Image Analysis
2.7. Statistical Analyses
3. Results
3.1. Characterization of Cardiac Tissue Pathology in the DMD Heart
3.2. Localization of GHSR in Cardiac Tissue
3.3. Correlation Between LVEF and GHSR
3.4. The Relationship Between GHSR and Cardiac Inflammation in DMD
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Towbin, J.A.; Lorts, A. Arrhythmias and Dilated Cardiomyopathy Common Pathogenetic Pathways? J. Am. Coll. Cardiol. 2011, 57, 2169–2171. [Google Scholar] [CrossRef]
- Harvey, P.A.; Leinwand, L.A. Cellular Mechanisms of Cardiomyopathy. J. Cell Biol. 2011, 194, 355–365. [Google Scholar] [CrossRef] [PubMed]
- McNally, E.M.; Golbus, J.R.; Puckelwartz, M.J. Genetic Mutations and Mechanisms in Dilated Cardiomyopathy. J. Clin. Investig. 2013, 123, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Stöllberger, C. The Heart in Human Dystrophinopathies. Cardiology 2003, 99, 1–19. [Google Scholar] [CrossRef]
- Tulangekar, A.; Sztal, T.E. Inflammation in Duchenne Muscular Dystrophy-Exploring the Role of Neutrophils in Muscle Damage and Regeneration. Biomedicines 2021, 9, 1366. [Google Scholar] [CrossRef]
- Rosenberg, A.S.; Puig, M.; Nagaraju, K.; Hoffman, E.P.; Villalta, S.A.; Rao, V.A.; Wakefield, L.M.; Woodcock, J. Immune-Mediated Pathology in Duchenne Muscular Dystrophy. Sci. Transl. Med. 2015, 7, 299rv4. [Google Scholar] [CrossRef]
- Howard, Z.M.; Lowe, J.; Blatnik, A.J.; Roberts, D.; Burghes, A.H.M.; Bansal, S.S.; Rafael-Fortney, J.A. Early Inflammation in Muscular Dystrophy Differs between Limb and Respiratory Muscles and Increases with Dystrophic Severity. Am. J. Pathol. 2021, 191, 730–747. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.D.; Khanna, S.; Kaminski, H.J.; Sunil Rao, J.; Merriam, A.P.; Richmonds, C.R.; Leahy, P.; Jingjin, L.; Wei, G.; Andrade, F.H. A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum. Mol. Genet. 2002, 11, 263–272. [Google Scholar] [CrossRef]
- Mojumdar, K.; Liang, F.; Giordano, C.; Lemaire, C.; Danialou, G.; Okazaki, T.; Bourdon, J.; Rafei, M.; Galipeau, J.; Divangahi, M.; et al. Inflammatory monocytes promote progression of Duchenne muscular dystrophy and can be therapeutically targeted via CCR 2. EMBO Mol. Med. 2014, 6, 1476–1492. [Google Scholar] [CrossRef]
- Van Erp, C.; Loch, D.; Laws, N.; Trebbin, A.; Hoey, A.J. Timeline of Cardiac Dystrophy in 3-18-Month-Old MDX Mice. Muscle Nerve 2010, 42, 504–513. [Google Scholar] [CrossRef]
- Shirokova, N.; Niggli, E. Cardiac Phenotype of Duchenne Muscular Dystrophy: Insights from Cellular Studies. J. Mol. Cell Cardiol. 2013, 58, 217–224. [Google Scholar] [CrossRef]
- Chu, V.; Otero, J.M.; Lopez, O.; Sullivan, M.F.; Morgan, J.P.; Amende, I.; Hampton, T.G. Electrocardiographic findings in mdx mice: A cardiac phenotype of Duchenne muscular dystrophy. Muscle Nerve 2002, 26, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Kaspar, R.W.; Allen, H.D.; Montanaro, F. Current Understanding and Management of Dilated Cardiomyopathy in Duchenne and Becker Muscular Dystrophy. J. Am. Acad. Nurse Pract. 2009, 21, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, J.G.; Hahn, H.S.; Wong, B.L.; Lorenz, J.N.; Wenisch, A.S.; Levin, L.S. Evolution of the Mdx Mouse Cardiomyopathy: Physiological and Morphological Findings. Neuromuscul. Disord. NMD 2004, 14, 491–496. [Google Scholar] [CrossRef]
- Ikeda, Y.; Ross, J. Models of Dilated Cardiomyopathy in the Mouse and the Hamster. Curr. Opin. Cardiol. 2000, 15, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Deconinck, A.E.; Rafael, J.A.; Skinner, J.A.; Brown, S.C.; Potter, A.C.; Metzinger, L.; Watt, D.J.; Dickson, J.G.; Tinsley, J.M.; Davies, K.E. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 1997, 90, 717–727. [Google Scholar] [CrossRef]
- Grady, R.M.; Teng, H.; Nichol, M.C.; Cunningham, J.C.; Wilkinson, R.S.; Sanes, J.R. Skeletal and Cardiac Myopathies in Mice Lacking Utrophin and Dystrophin: A Model for Duchenne Muscular Dystrophy. Cell 1997, 90, 729–738. [Google Scholar] [CrossRef]
- Chun, J.L.; O’Brien, R.; Berry, S.E. Cardiac Dysfunction and Pathology in the Dystrophin and Utrophin-Deficient Mouse during Development of Dilated Cardiomyopathy. Neuromuscul. Disord. 2012, 22, 368–379. [Google Scholar] [CrossRef]
- Duan, D.; Goemans, N.; Takeda, S.; Mercuri, E.; Aartsma-Rus, A. Duchenne muscular dystrophy. Nat. Rev. Dis. Primers 2021, 7, 13. [Google Scholar] [CrossRef]
- Bez Batti Angulski, A.; Hosny, N.; Cohen, H.; Martin, A.A.; Hahn, D.; Bauer, J.; Metzger, J.M. Duchenne muscular dystrophy: Disease mechanism and therapeutic strategies. Front. Physiol. 2023, 14, 1183101. [Google Scholar] [CrossRef]
- Bondoc, A.B.; Detombe, S.; Dunmore-Buyze, J.; Gutpell, K.M.; Liu, L.; Kaszuba, A.; Han, S.; McGirr, R.; Hadway, J.; Drangova, M.; et al. Application of 3-d Echocardiography and Gated Micro-Computed Tomography to Assess Cardiomyopathy in a Mouse Model of Duchenne Muscular Dystrophy. Ultrasound Med. Biol. 2014, 40, 2857–2867. [Google Scholar] [CrossRef]
- Tokudome, T.; Otani, K.; Miyazato, M.; Kangawa, K. Ghrelin and the Heart. Peptides 2019, 111, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Du, C.K.; Zhan, D.Y.; Morimoto, S.; Akiyama, T.; Schwenke, D.O.; Hosoda, H.; Kangawa, K.; Shirai, M. Survival Benefit of Ghrelin in the Heart Failure Due to Dilated Cardiomyopathy. Pharmacol. Res. Perspect. 2014, 2, e00064. [Google Scholar] [CrossRef]
- Chang, L.; Niu, F.; Chen, J.; Cao, X.; Liu, Z.; Bao, X.; Xu, Y. Ghrelin Improves Muscle Function in Dystrophin-Deficient Mdx Mice by Inhibiting NLRP3 Inflammasome Activation. Life Sci. 2019, 232, 116654. [Google Scholar] [CrossRef] [PubMed]
- Douglas, G.A.F.; McGirr, R.; Charlton, C.L.; Kagan, D.B.; Hoffman, L.M.; Luyt, L.G.; Dhanvantari, S. Characterization of a Far-Red Analog of Ghrelin for Imaging GHS-R in P19-Derived Cardiomyocytes. Peptides 2014, 54, 81–88. [Google Scholar] [CrossRef]
- Sullivan, R.; McGirr, R.; Hu, S.; Tan, A.; Wu, D.; Charron, C.; Lalonde, T.; Arany, E.; Chakrabarti, S.; Luyt, L.; et al. Changes in the Cardiac GHSR1a-Ghrelin System Correlate With Myocardial Dysfunction in Diabetic Cardiomyopathy in Mice. J. Endocr. Soc. 2018, 2, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.; Randhawa, V.K.; Stokes, A.; Wu, D.; Lalonde, T.; Kiaii, B.; Luyt, L.; Wisenberg, G.; Dhanvantari, S. Dynamics of the Ghrelin/Growth Hormone Secretagogue Receptor System in the Human Heart Before and After Cardiac Transplantation. J. Endocr. Soc. 2019, 3, 748–762. [Google Scholar] [CrossRef]
- Sullivan, R.; Randhawa, V.K.; Lalonde, T.; Yu, T.; Kiaii, B.; Luyt, L.; Wisenberg, G.; Dhanvantari, S. Regional Differences in the Ghrelin-Growth Hormone Secretagogue Receptor Signalling System in Human Heart Disease. CJC Open 2021, 3, 182–194. [Google Scholar] [CrossRef]
- Al-Rewashdy, H.; Ljubicic, V.; Lin, W.; Renaud, J.-M.; Jasmin, B.J. Utrophin A Is Essential in Mediating the Functional Adaptations of Mdx Mouse Muscle Following Chronic AMPK Activation. Hum. Mol. Genet. 2015, 24, 1243–1255. [Google Scholar] [CrossRef]
- Shi, S.-R.; Liu, C.; Taylor, C.R. Standardization of Immunohistochemistry for Formalin-Fixed, Paraffin-Embedded Tissue Sections Based on the Antigen-Retrieval Technique: From Experiments to Hypothesis. J. Histochem. Cytochem. Off. J. Histochem. Soc. 2007, 55, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Asadi, F.; Dhanvantari, S. Stathmin-2 Mediates Glucagon Secretion From Pancreatic α-Cells. Front. Endocrinol. 2020, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Asadi, F.; Dhanvantari, S. Pathways of Glucagon Secretion and Trafficking in the Pancreatic Alpha Cell: Novel Pathways, Proteins, and Targets for Hyperglucagonemia. Front. Endocrinol. 2021, 12, 726368. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, L.; Lu, Q.; Gao, Y.; Cai, Y.; Sui, A.; Su, T.; Shen, X.; Xie, B. Identification of Different Macrophage Subpopulations with Distinct Activities in a Mouse Model of Oxygen-Induced Retinopathy. Int. J. Mol. Med. 2017, 40, 281–292. [Google Scholar] [CrossRef]
- Chomarat, P.; Banchereau, J.; Davoust, J.; Palucka, A.K. IL-6 Switches the Differentiation of Monocytes from Dendritic Cells to Macrophages. Nat. Immunol. 2000, 1, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Stenvinkel, P.; Ketteler, M.; Johnson, R.J.; Lindholm, B.; Pecoits-Filho, R.; Riella, M.; Heimbürger, O.; Cederholm, T.; Girndt, M. IL-10, IL-6, and TNF-Alpha: Central Factors in the Altered Cytokine Network of Uremia–the Good, the Bad, and the Ugly. Kidney Int. 2005, 67, 1216–1233. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Guzmán, O.D.R.; Rodríguez-Cruz, M.; Cedillo, R.E.E. Systemic Inflammation in Duchenne Muscular Dystrophy: Association with Muscle Function and Nutritional Status. BioMed Res. Int. 2015, 2015, 891972. [Google Scholar] [CrossRef]
- Lin, Y.; McClennan, A.; Hoffman, L. Characterization of the Ang/Tie2 Signaling Pathway in the Diaphragm Muscle of DMD Mice. Biomedicines 2023, 11, 2265. [Google Scholar] [CrossRef]
- Fontes, J.A.; Rose, N.R.; Čiháková, D. The Varying Faces of IL-6: From Cardiac Protection to Cardiac Failure. Cytokine 2015, 74, 62–68. [Google Scholar] [CrossRef]
- Fang, C.; Xu, H.; Guo, S.; Mertens-Talcott, S.U.; Sun, Y. Ghrelin Signaling in Immunometabolism and Inflamm-Aging. Adv. Exp. Med. Biol. 2018, 1090, 165–182. [Google Scholar] [CrossRef]
- Waseem, T.; Duxbury, M.; Ito, H.; Ashley, S.W.; Robinson, M.K. Exogenous Ghrelin Modulates Release of Pro-Inflammatory and Anti-Inflammatory Cytokines in LPS-Stimulated Macrophages through Distinct Signaling Pathways. Surgery 2008, 143, 334–342. [Google Scholar] [CrossRef]
- Lin, L.; Lee, J.H.; Buras, E.D.; Yu, K.; Wang, R.; Smith, C.W.; Wu, H.; Sheikh-Hamad, D.; Sun, Y. Ghrelin Receptor Regulates Adipose Tissue Inflammation in Aging. Aging 2016, 8, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zeng, M.; He, W.; Huang, X.; Luo, L.; Zhang, H.; Deng, D.Y.B. Ghrelin Protects Alveolar Macrophages against Lipopolysaccharide-Induced Apoptosis through Growth Hormone Secretagogue Receptor 1a-Dependent c-Jun N-Terminal Kinase and Wnt/β-Catenin Signaling and Suppresses Lung Inflammation. Endocrinology 2015, 156, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.; Hou, J.; Yu, L.; Wilk, B.; Sykes, J.; Biernaski, H.; Butler, J.; Kovacs, M.; Hicks, J.; Thiessen, J.D.; et al. Design, synthesis and preclinical evaluation of a high-affinity 18F-labeled radioligand for myocardial growth hormone secretagogue receptor before and after myocardial infarction. J. Nuc. Med. 2024, 65, 1633–1639. [Google Scholar] [CrossRef] [PubMed]
Antibody | Source | Dilution | Target | Catalog | Research Resource Identification Number |
---|---|---|---|---|---|
Rat F4-80 | Abcam | 1:200 | F4-80 glycoprotein on murine macrophages | ab16911 | AB-443548 |
Mouse IL-6 | Abcam | 1:100 | IL-6 Cytokine | ab9324 | AB-307175 |
Rabbit GHSR | SantaCruz Biotechnology | 1:500 | GHSR | sc-374515 | AB-10987651 |
Isolectin GS-IB4 Alexa Fluor 488 Conjugate | Life Technologies | 1:100 | Endothelial cells and macrophages | I21411 | AB-2314662 |
Alexa Fluor-594 conjugated donkey anti- Rat IgG | Life Technologies | 1:500 | Rat IgG | A21209 | AB-2535795 |
Alexa Fluor-594 conjugated donkey anti-mouse IgG | Life Technologies | 1:500 | Mouse IgG | A21203 | AB-141633 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naghibosadat, M.; McClennan, A.; Egiian, M.; Flynn-Rizk, R.; Lalonde, T.; Charron, C.; Chhabra, A.; Luyt, L.G.; Dhanvantari, S.; Hoffman, L.M. Growth Hormone Secretagogue Receptor (GHSR) Is Elevated in Myocardial Tissues of DMD mdx:utrn−/− Mice, and Correlates Strongly with Inflammatory Markers, and Negatively with Cardiac Function. Cells 2025, 14, 1002. https://doi.org/10.3390/cells14131002
Naghibosadat M, McClennan A, Egiian M, Flynn-Rizk R, Lalonde T, Charron C, Chhabra A, Luyt LG, Dhanvantari S, Hoffman LM. Growth Hormone Secretagogue Receptor (GHSR) Is Elevated in Myocardial Tissues of DMD mdx:utrn−/− Mice, and Correlates Strongly with Inflammatory Markers, and Negatively with Cardiac Function. Cells. 2025; 14(13):1002. https://doi.org/10.3390/cells14131002
Chicago/Turabian StyleNaghibosadat, Maedeh, Andrew McClennan, Margarita Egiian, Reema Flynn-Rizk, Tyler Lalonde, Carlie Charron, Anish Chhabra, Leonard G. Luyt, Savita Dhanvantari, and Lisa M. Hoffman. 2025. "Growth Hormone Secretagogue Receptor (GHSR) Is Elevated in Myocardial Tissues of DMD mdx:utrn−/− Mice, and Correlates Strongly with Inflammatory Markers, and Negatively with Cardiac Function" Cells 14, no. 13: 1002. https://doi.org/10.3390/cells14131002
APA StyleNaghibosadat, M., McClennan, A., Egiian, M., Flynn-Rizk, R., Lalonde, T., Charron, C., Chhabra, A., Luyt, L. G., Dhanvantari, S., & Hoffman, L. M. (2025). Growth Hormone Secretagogue Receptor (GHSR) Is Elevated in Myocardial Tissues of DMD mdx:utrn−/− Mice, and Correlates Strongly with Inflammatory Markers, and Negatively with Cardiac Function. Cells, 14(13), 1002. https://doi.org/10.3390/cells14131002