Moss Extracts as Natural Neuroprotective Agents: Mitigating LPS-Induced Neuroinflammation and Microglial Activation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.2.1. Moss Material Collection
2.2.2. Preparation of Extracts
2.3. Chemical Characterization
2.3.1. Determination of Total Phenolic Content (TPC)
2.3.2. Determination of Total Phenolic Acids Content (TPAC)
2.3.3. Determination of Total Flavonoid Content (TFC)
2.3.4. Determination of Total Triterpenoid Content (TTC)
2.4. Enzyme Assays
2.4.1. Acetylcholinesterase Inhibitory Activity Assay
2.4.2. Tyrosinase Inhibitory Activity Assay
2.5. Biological Assays
2.5.1. Cell Cultivation
2.5.2. BV2 Microglial Cells
2.5.3. Microglial Culture Supernatant Transfer Model to SH-SY5Y Cells
2.5.4. Determination of Metabolic Activity (MTT Assay)
2.5.5. Determination of Nitrites Level in Supernatants (Griess Assay)
2.5.6. Determination of Superoxide Anion Radical (NBT Assay)
2.5.7. Measurement of Cytokine Levels in Cell Supernatants (ELISA Tests)
2.5.8. Statistical Analysis
3. Results
3.1. Moss Extraction and Chemical Characterization of Extracts
3.2. Antineurodegenerative Activity
3.3. Biocompatibility of Moss Extracts
3.4. Anti-Neuroinflammatory Potential of Moss Extracts
3.4.1. Effects of Moss Extracts on Nitric Oxide and Reactive Oxygen Species Production
3.4.2. Effects of Moss Extracts on the Microglia-Mediated LPS Neurotoxicity
3.4.3. Effects of Moss Extracts on Tumor Necrosis Factor Alpha and Interleukin-6 Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AChE | Acetylcholinesterase |
ATCC | American Tissue Culture Collection |
BBB | blood-brain barrier |
BV2 | Mouse microglial cell line |
CAE | Caffeic acid equivalents |
DMSO | Dimethyl sulfoxide |
DTNB | 5,5′-Dithio-bis(2-nitrobenzoic acid) |
ELISA | Enzyme-linked immunosorbent assay |
FBS | Fetal bovine serum |
GAE | Gallic acid equivalents |
IL-6 | Interleukin-6 |
L-DOPA | 3,4-Dihydroxy-L-phenylalanine |
LPS | Lipopolysaccharide |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
NBT | Nitro blue tetrazolium |
NO | Nitric oxide |
QE | Quercetin equivalents |
ROS | Reactive oxygen species |
RPMI | Roswell Park Memorial Institute medium |
SH-SY5Y | Human neuroblastoma cell line |
TFC | Total flavonoid content |
TNF-α | Tumor necrosis factor alpha |
TPC | Total phenolic content |
TPAC | Total phenolic acid content |
TTC | Total triterpenoid content |
Tyr | Tyrosinase |
UAE | Ursolic acid equivalents |
References
- Ludwiczuk, A.; Asakawa, Y. Bryophytes as a source of bioactive volatile terpenoids–A review. Food Chem. Toxicol. 2019, 132, 110649. [Google Scholar] [CrossRef]
- Godwin, A.; Akinpelu, B.; Makinde, A.; Aderogba, M.; Oyedapo, O. Identification of n-hexane fraction constituents of Archidium ohioense (Schimp. Ex Mull) extract using GC-MS technique. Br. J. Pharm. Res. 2015, 6, 366–375. [Google Scholar] [CrossRef]
- Oztopcuvatan, P.; Kabadere, S.; Uyar, R.; Savaroglu, F.; Kus, G. Time dependent cytotoxic role of Homalothecium sericeum extracts on glioma. Biol. Divers. Conserv. 2012, 5, 1–4. [Google Scholar]
- Sabovljević, M.S.; Sabovljević, A.D. Introductory Chapter: Bryophytes 2020, in Bryophytes. In Bryophytes; IntechOpen: London, UK, 2020. [Google Scholar]
- Klavina, L.; Springe, G.; Nikolajeva, V.; Martsinkevich, I.; Nakurte, I.; Dzabijeva, D.; Steinberga, I. Chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extracts (moss phytochemistry). Molecules 2015, 20, 17221–17243. [Google Scholar] [CrossRef]
- Asakawa, Y. Biologically active compounds from bryophytes. Pure Appl. Chem. 2007, 79, 557–580. [Google Scholar] [CrossRef]
- Chandra, S.; Chandra, D.; Barh, A.; Pandey, R.K.; Sharma, I.P. Bryophytes: Hoard of remedies, an ethno-medicinal review. J. Tradit. Complement. Med. 2017, 7, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Savaroğlu, F.; Işçen, C.F.; Vatan, A.P.Ö.; Kabadere, S.; Ilhan, S.; Uyar, R. Determination of antimicrobial and antiproliferative activities of the aquatic moss Fontinalis antipyretica Hedw. Turk. J. Biol. 2011, 35, 361–369. [Google Scholar] [CrossRef]
- Halder, K.; Mitra, S. A Short Review of the Ethno-Medicinal Perspectives of Bryophytes. Int. J. Ecol. Environ. Sci. 2020, 46, 73–81. [Google Scholar]
- Benek, A.; Canlı, K.; Altuner, E.M. Traditional medicinal uses of mosses. Anatol. Bryol. 2022, 8, 57–65. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Dey, A. The ethno-medicinal and pharmaceutical attributes of Bryophytes: A review. Phytomedicine Plus 2022, 2, 100255. [Google Scholar] [CrossRef]
- Oztopcu-Vatan, P.; Savaroglu, F.; Iscen, C.F.; Kabadere, S.; Ozturk, N.; Ilhan, S. Screening of antimicrobial, cytotoxic effects and phenolic compounds of the moss Aulacomnium androgynum (Hedw.) Schwagr (Bryophyta). JAPS J. Anim. Plant Sci. 2017, 27, 1909–1917. [Google Scholar]
- Onbasli, D.; Yuvali, G. In vitro medicinal potentials of Bryum capillare, a moss sample, from Turkey. Saudi J. Biol. Sci. 2021, 28, 478–483. [Google Scholar] [CrossRef]
- Ozturk, S.; Yayintas, O.T. Investigation of hepatotoxic effect of bryophytes (Homalothecium sericeum (HEDW) Schimp.) on rat liver. Fresenius Environ. Bull. 2021, 30, 1134–1146. [Google Scholar]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative stress in cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative stress in cardiovascular diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef]
- Jurcau, A.; Ardelean, A.I. Oxidative stress in ischemia/reperfusion injuries following acute ischemic stroke. Biomedicines 2022, 10, 574. [Google Scholar] [CrossRef] [PubMed]
- Zamudio-Cuevas, Y.; Martínez-Flores, K.; Martínez-Nava, G.A.; Clavijo-Cornejo, D.; Fernández-Torres, J.; Sánchez-Sánchez, R. Rheumatoid arthritis and oxidative stress. Cell. Mol. Biol. 2022, 68, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Mendiola, A.S.; Ryu, J.K.; Bardehle, S.; Meyer-Franke, A.; Ang, K.K.-H.; Wilson, C.; Baeten, K.M.; Hanspers, K.; Merlini, M.; Thomas, S. Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nat. Immunol. 2020, 21, 513–524. [Google Scholar] [CrossRef]
- Smith, J.A.; Das, A.; Ray, S.K.; Banik, N.L. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res. Bull. 2012, 87, 10–20. [Google Scholar] [CrossRef]
- Cahill-Smith, S.; Li, J.M. Oxidative stress, redox signalling and endothelial dysfunction in ageing-related neurodegenerative diseases: A role of NADPH oxidase 2. Br. J. Clin. Pharmacol. 2014, 78, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, B.L.; Landreth, G.E. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J. Neuroinflammation 2006, 3, 1–12. [Google Scholar] [CrossRef]
- Brown, G.C.; Neher, J.J. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol. Neurobiol. 2010, 41, 242–247. [Google Scholar] [CrossRef]
- Babylon, L.; Grewal, R.; Stahr, P.-L.; Eckert, R.W.; Keck, C.M.; Eckert, G.P. Hesperetin nanocrystals improve mitochondrial function in a cell model of early Alzheimer disease. Antioxidants 2021, 10, 1003. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-H.; Chen, C.-M. The role of oxidative stress in Parkinson’s disease. Antioxidants 2020, 9, 597. [Google Scholar] [CrossRef]
- Correia, A.S.; Cardoso, A.; Vale, N. Oxidative stress in depression: The link with the stress response, neuroinflammation, serotonin, neurogenesis and synaptic plasticity. Antioxidants 2023, 12, 470. [Google Scholar] [CrossRef] [PubMed]
- Ramos-González, E.; Bitzer-Quintero, O.; Ortiz, G.; Hernández-Cruz, J.; Ramírez-Jirano, L. Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurologia 2024, 39, 292–301. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, R.; Tong, Y.; Chen, P.; Shen, Y.; Miao, S.; Liu, X. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol. Dis. 2020, 140, 104814. [Google Scholar] [CrossRef]
- Lively, S.; Schlichter, L.C. Microglia responses to pro-inflammatory stimuli (LPS, IFNγ+ TNFα) and reprogramming by resolving cytokines (IL-4, IL-10). Front. Cell. Neurosci. 2018, 12, 215. [Google Scholar] [CrossRef]
- Demirbağ, M.; Yıldırım, V.; Batan, N.; Yılmaz, Ö.; Emre, İ.; Alataş, M. The Biochemical Properties of Some Species of Dicranum Hedw. Anatol. Bryol. 2022, 8, 140–148. [Google Scholar] [CrossRef]
- Jamieson, G.R.; Reid, E.H. Lipids of Fontinalis antipyretica. Phytochemistry 1976, 15, 1731–1734. [Google Scholar] [CrossRef]
- Lunić, T.M.; Oalđe, M.M.; Mandić, M.R.; Sabovljević, A.D.; Sabovljević, M.S.; Gašić, U.M.; Duletić-Laušević, S.N.; Božić, B.D.; Božić Nedeljković, B.D. Extracts Characterization and In Vitro Evaluation of Potential Immunomodulatory Activities of the Moss Hypnum cupressiforme Hedw. Molecules 2020, 25, 3343. [Google Scholar] [CrossRef] [PubMed]
- Lunić, T.M.; Mandić, M.R.; Oalđe Pavlović, M.M.; Sabovljević, A.D.; Sabovljević, M.S.; Božić Nedeljković, B.Đ.; Božić, B.Đ. The influence of seasonality on secondary metabolite profiles and neuroprotective activities of moss Hypnum cupressiforme extracts: In vitro and in silico study. Plants 2022, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Wolski, G.J.; Sadowska, B.; Fol, M.; Podsędek, A.; Kajszczak, D.; Kobylińska, A. Cytotoxicity, antimicrobial and antioxidant activities of mosses obtained from open habitats. PLoS 2021, 16, e0257479. [Google Scholar] [CrossRef]
- Rajčić, M.; Ćosić, M.; Tosti, T.; Mišić, D.; Sabovljević, A.; Sabovljević, M.; Vujičić, M. An insight into seasonal changes of carbohydrates and phenolic compounds within the moss Polytrichum formosum (Polytrichaceae). Bot. Serbica 2023, 47, 125–133. [Google Scholar] [CrossRef]
- Yağlıoğlu, M.Ş.; Abay, G.; Demirtaş, İ.; Yağlıoğlu, A.Ş. Phytochemical screening, antiproliferative and cytotoxic activities of the mosses Rhytidiadelphus triquetrus (Hedw.) Warnst. and Tortella tortuosa (Hedw.) Limpr. Anatol. Bryol. 2017, 3, 31–42. [Google Scholar] [CrossRef]
- Akatın, M.Y.; Kemal, M.E.; Batan, N. Antimicrobial activities of some bryophytes collected from Trabzon, Türkiye and preparation of herbal soap and cream using Pellia epiphylla extract for the first time. Anatol. Bryol. 2022, 8, 30–36. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Mihailović, V.; Kreft, S.; Benković, E.T.; Ivanović, N.; Stanković, M.S. Chemical profile, antioxidant activity and stability in stimulated gastrointestinal tract model system of three Verbascum species. Ind. Crops Prod. 2016, 89, 141–151. [Google Scholar] [CrossRef]
- Park, Y.K.; Koo, M.H.; Ikegaki, M.; Contado, J. Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Arq. Biol. Tecnol 1997, 40, 97–106. [Google Scholar]
- Chang, C.L.; Lin, C.S.; Lai, G.H. Phytochemical characteristics, free radical scavenging activities, and neuroprotection of five medicinal plant extracts. Evid. Based Complement. Altern. Med. 2012, 2012, 984295. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Masuda, T.; Yamashita, D.; Takeda, Y.; Yonemori, S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci. Biotechnol. Biochem. 2005, 69, 197–201. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, Y.; Zhang, Y.; Liu, F.; Rose, G.M.; He, X.; Yi, X.; Ren, R.; Li, Y.; Zhang, Y. Butein attenuates the cytotoxic effects of LPS-stimulated microglia on the SH-SY5Y neuronal cell line. Eur. J. Pharmacol. 2020, 868, 172858. [Google Scholar] [CrossRef]
- Shiau, M.-Y.; Chiou, H.-L.; Lee, Y.-L.; Kuo, T.-M.; Chang, Y.-H. Establishment of a consistent L929 bioassay system for TNF-α quantitation to evaluate the effect of lipopolysaccharide, phytomitogens and cytodifferentiation agents on cytotoxicity of TNF-α secreted by adherent human mononuclear cells. Mediat. Inflamm. 2001, 10, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.-G.; Miranda, C.L.; Maier, C.S. Epigallocatechin gallate (EGCG) potentiates the cytotoxicity of rotenone in neuroblastoma SH-SY5Y cells. Brain Res. 2007, 1176, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Pišlar, A.; Nedeljković, B.B.; Perić, M.; Jakoš, T.; Zidar, N.; Kos, J. Cysteine peptidase cathepsin X as a therapeutic target for simultaneous TLR3/4-mediated microglia activation. Mol. Neurobiol. 2022, 59, 2258–2276. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Weselsky, P.; Benedikt, R. Ueber einige Azoverbindungen. Berichte Der Dtsch. Chem. Ges. 1879, 12, 226–230. [Google Scholar] [CrossRef]
- Auclair, C.; Voisin, E. Nitroblue tetrazolium reduction. In Handbook Methods for Oxygen Radical Research, 1st ed.; CRC Press: Boca Raton, FL, USA, 1985; pp. 123–131. [Google Scholar]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Prodea, A.; Mioc, A.; Banciu, C.; Trandafirescu, C.; Milan, A.; Racoviceanu, R.; Ghiulai, R.; Mioc, M.; Soica, C. The role of cyclodextrins in the design and development of triterpene-based therapeutic agents. Int. J. Mol. Sci. 2022, 23, 736. [Google Scholar] [CrossRef] [PubMed]
- Jelena, R.; Jelena, T.; Marija, R.; Tanja, L.; Tatjana, S.; Bojan, B.; Biljana, B.N.; Pavković-Lučić, S. Different Long-Term Nutritional Regimens of Drosophila melanogaster Shape Its Microbiota and Associated Metabolic Activity in a Sex-Specific Manner. Insects 2025, 16, 141. [Google Scholar] [CrossRef] [PubMed]
- Kechebar, M.; Karoune, S.; Laroussi, K.; Djellouli, A. Phenolic composition and antioxidant activities of Opuntia ficus Indica L. cladodes related to extraction method. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 1025258. [Google Scholar]
- Cichon, N.; Grabowska, W.; Gorniak, L.; Stela, M.; Harmata, P.; Ceremuga, M.; Bijak, M. Mechanistic and Therapeutic Insights into Flavonoid-Based Inhibition of Acetylcholinesterase: Implications for Neurodegenerative Diseases. Nutrients 2024, 17, 78. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [PubMed]
- Ferruzzi, M.G.; Lobo, J.K.; Janle, E.M.; Cooper, B.; Simon, J.E.; Wu, Q.-L.; Welch, C.; Ho, L.; Weaver, C.; Pasinetti, G.M. Bioavailability of gallic acid and catechins from grape seed polyphenol extract is improved by repeated dosing in rats: Implications for treatment in Alzheimer’s disease. J. Alzheimer’s Dis. 2009, 18, 113–124. [Google Scholar] [CrossRef]
- Faria, A.; Meireles, M.; Fernandes, I.; Santos-Buelga, C.; Gonzalez-Manzano, S.; Dueñas, M.; de Freitas, V.; Mateus, N.; Calhau, C. Flavonoid metabolites transport across a human BBB model. Food Chem. 2014, 149, 190–196. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Wu, L.; Zhang, Q.-L.; Li, J.; Yin, F.-X.; Yuan, Y. Pharmacokinetics of phenolic compounds of Danshen extract in rat blood and brain by microdialysis sampling. J. Ethnopharmacol. 2011, 136, 129–136. [Google Scholar] [CrossRef]
- Lam, G.Y.; Huang, J.; Brumell, J.H. The many roles of NOX2 NADPH oxidase-derived ROS in immunity. In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Arias-Salvatierra, D.; Silbergeld, E.K.; Acosta-Saavedra, L.C.; Calderon-Aranda, E.S. Role of nitric oxide produced by iNOS through NF-κB pathway in migration of cerebellar granule neurons induced by Lipopolysaccharide. Cell. Signal. 2011, 23, 425–435. [Google Scholar] [CrossRef]
- Simonyi, A.; Chen, Z.; Jiang, J.; Zong, Y.; Chuang, D.Y.; Gu, Z.; Lu, C.-H.; Fritsche, K.L.; Greenlief, C.M.; Rottinghaus, G.E. Inhibition of microglial activation by elderberry extracts and its phenolic components. Life Sci. 2015, 128, 30–38. [Google Scholar] [CrossRef]
Moss Species | Extraction Yield (%) | |
---|---|---|
Ethanol Extracts | Ethyl Acetate Extracts | |
Dicranum scoparium | 1.69 | 0.87 |
Fontinalis antipyretica | 0.99 | 0.82 |
Hypnum cupressiforme | 0.75 | 0.39 |
Polytrichum formosum | 1.61 | 0.71 |
Tortella tortuosa | 1.69 | 0.61 |
Moss Species | TPC (mg GAE/g Extract) | TPAC (mg CAE/g Extract) | TFC (mg QE/g Extract) | TTC (mg UAE/g Extract) | ||||
---|---|---|---|---|---|---|---|---|
Ethanol | Ethyl Acetate | Ethanol | Ethyl Acetate | Ethanol | Ethyl Acetate | Ethanol | Ethyl Acetate | |
D. scoparium | 10.02 ± 0.08 a | 10.52 ± 0.92 a | 11.39 ± 2.01 a | 188.69 ± 2.46 B | ND | ND | 120.66 ± 3.22 a | 367.98 ± 6.19 D |
F. antipyretica | 13.94 ± 0.60 b | 4.94 ± 0.10 a | 23.70 ± 2.84 a | ND | ND | ND | 105.21 ± 3.22 a | 123.44 ± 8.61 B |
H. cupressiforme | 5.60 ± 0.73 a | 14.77 ± 1.71 b | 20.42 ± 3.43 a | 235.48 ± 0.00 C | ND | ND | 89.77 ± 0.64 a | 260.30 ± 5.15 C |
P. formosum | 24.77 ± 0.83 c | 17.99 ± 0.20 b | 55.71 ± 2.01 b | 122.20 ± 4.02 A | ND | ND | 130.31 ± 5.15 a | 220.40 ± 11.58 B |
T. tortuosa | 19.10 ± 0.75 b | 3.33 ± 1.41 a | ND | 156.68 ± 4.02 B | ND | ND | 150.90 ± 5.94 a | 259.87 ± 7.48 C |
Moss Species | Metabolic Activity (%) | |||
---|---|---|---|---|
Ethanol Extracts | Ethyl Acetate Extracts | |||
1 µg/mL | 10 µg/mL | 1 µg/mL | 10 µg/mL | |
Control | 100 ± 3.91 | |||
D. scoparium | 96.96 ± 1.63 | 93.14 ± 2.14 | 96.96 ± 1.66 | 91.09 ± 2.89 |
F. antipiretica | 99.34 ± 0.86 | 98.24 ± 3.39 | 95.69 ± 3.88 | 85.28 ± 3.29 |
H. cupressiforme | 91.53 ± 1.99 | 88.67 ± 4.15 | 94.84 ± 2.44 | 104.05 ± 2.94 |
P. formosum | 112.47 ± 1.69 | 101.31 ± 1.93 | 98.04 ± 0.29 | 91.63 ± 2.86 |
T. tortuosa | 92.98 ± 4.40 | 90.9 ± 0.87 | 108.34 ± 1.99 | 100.78 ± 3.32 |
Moss Species | Metabolic Activity (%) | |||
---|---|---|---|---|
Ethanol Extracts | Ethyl Acetate Extracts | |||
1 µg/mL | 10 µg/mL | 1 µg/mL | 10 µg/mL | |
Control | 100 ± 2.32 | |||
D. scoparium | 87.7 ± 1.11 ** | 88.45 ± 2.14 ** | 91.30 ± 1.92 * | 92.25 ± 1.95 |
F. antipiretica | 94.08 ± 1.30 | 90.82 ± 1.66 * | 91.64 ± 3.27 | 77.35 ± 1.08 *** |
H. cupressiforme | 95.18 ± 4.47 | 92.18 ± 1.25 * | 85.48 ± 0.84 ** | 94.40 ± 2.58 |
P. formosum | 101.38 ± 3.01 | 90.55 ± 2.39 * | 97.66 ± 4.41 | 86.07 ± 1.35 ** |
T. tortuosa | 95.59 ± 3.87 | 101.16 ± 4.17 | 91.71 ± 2.97 | 91.89 ± 1.69 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojanović, T.D.; Rakić, M.R.; Ćosić, M.V.; Oalđe Pavlović, M.M.; Sabovljević, A.D.; Sabovljević, M.S.; Božić, B.Đ.; Božić Nedeljković, B.Đ.; Vujičić, M.M.; Lunić, T.M. Moss Extracts as Natural Neuroprotective Agents: Mitigating LPS-Induced Neuroinflammation and Microglial Activation. Cells 2025, 14, 780. https://doi.org/10.3390/cells14110780
Stojanović TD, Rakić MR, Ćosić MV, Oalđe Pavlović MM, Sabovljević AD, Sabovljević MS, Božić BĐ, Božić Nedeljković BĐ, Vujičić MM, Lunić TM. Moss Extracts as Natural Neuroprotective Agents: Mitigating LPS-Induced Neuroinflammation and Microglial Activation. Cells. 2025; 14(11):780. https://doi.org/10.3390/cells14110780
Chicago/Turabian StyleStojanović, Tijana D., Marija R. Rakić, Marija V. Ćosić, Mariana M. Oalđe Pavlović, Aneta D. Sabovljević, Marko S. Sabovljević, Bojan Đ. Božić, Biljana Đ. Božić Nedeljković, Milorad M. Vujičić, and Tanja M. Lunić. 2025. "Moss Extracts as Natural Neuroprotective Agents: Mitigating LPS-Induced Neuroinflammation and Microglial Activation" Cells 14, no. 11: 780. https://doi.org/10.3390/cells14110780
APA StyleStojanović, T. D., Rakić, M. R., Ćosić, M. V., Oalđe Pavlović, M. M., Sabovljević, A. D., Sabovljević, M. S., Božić, B. Đ., Božić Nedeljković, B. Đ., Vujičić, M. M., & Lunić, T. M. (2025). Moss Extracts as Natural Neuroprotective Agents: Mitigating LPS-Induced Neuroinflammation and Microglial Activation. Cells, 14(11), 780. https://doi.org/10.3390/cells14110780