Exploration of Preservation Methods for Utilizing Porcine Fetal-Organ-Derived Cells in Regenerative Medicine Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Animals
2.2. Embryo and Organ Sampling from Pigs with Fixed Gestation Date
2.3. Organ Vitrification and Thawing
2.4. Organ Slow Freezing and Thawing
2.5. Enzymatic Dissociation of Kidneys and In Vivo Differentiation of Kidney Spheroids
2.6. Enzymatic Dissociation and Post-Dissociation Freezing of Hearts
2.7. Heart Muscle Cell Culture
2.8. Hepatocyte Dissociation by Direct Tissue Perfusion
2.9. Hepatocyte Cryopreservation
2.10. Hepatocyte Culture
2.11. Hematoxylin-and-Eosin Staining and Immunostaining of Frozen Sections of Kidney Spheroids
3. Results
3.1. Macroscopic Findings of Fetal Pigs and Their Organs
3.2. In Vivo Differentiation Capacity of Cells Harvested from Vitrified and Thawed Fetal Pig Kidneys
3.3. Pulsation Capacity of Pig Fetal Heart Cells under Different Cryopreservation Conditions
3.4. Development of Direct Tissue Perfusion Method for Porcine Fetal Livers and Evaluation of Obtained Cells under Different Cryopreservation Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, H.; Uchimura, K.; Donnelly, E.L.; Kirita, Y.; Morris, S.A.; Humphreys, B.D. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 2018, 23, 869–881. [Google Scholar] [CrossRef]
- Lewis-Israeli, Y.R.; Wasserman, A.H.; Aguirre, A. Heart organoids and engineered heart yissues: Novel tools for modeling human cardiac biology and disease. Biomolecules 2021, 11, 1277. [Google Scholar] [CrossRef]
- Prior, N.; Inacio, P.; Huch, M. Liver organoids: From basic research to therapeutic applications. Gut 2019, 68, 2228–2237. [Google Scholar] [CrossRef]
- Nishinakamura, R. Human kidney organoids: Progress and remaining challenges. Nat. Rev. Nephrol. 2019, 15, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Porrett, P.M.; Orandi, B.J.; Kumar, V.; Houp, J.; Anderson, D.; Cozette Killian, A.; Hauptfeld-Dolejsek, V.; Martin, D.E.; Macedon, S.; Budd, N.; et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am. J. Transplant. 2022, 22, 1037–1053. [Google Scholar] [CrossRef]
- Montgomery, R.A.; Stern, J.M.; Lonze, B.E.; Tatapudi, V.S.; Mangiola, M.; Wu, M.; Weldon, E.; Lawson, N.; Deterville, C.; Dieter, R.A.; et al. Results of Two cases of pig-to-human kidney xenotransplantation. N. Engl. J. Med. 2022, 386, 1889–1898. [Google Scholar] [CrossRef] [PubMed]
- Sykes, M.; Sachs, D.H. Progress in xenotransplantation: Overcoming immune barriers. Nat. Rev. Nephrol. 2022, 18, 745–761. [Google Scholar] [CrossRef] [PubMed]
- Hammerman, M.R. Growing new kidneys in situ. Clin. Exp. Nephrol. 2004, 8, 169–177. [Google Scholar] [CrossRef]
- Humphreys, B.D.; Knepper, M.A. Prioritizing functional goals as we rebuild the kidney. J. Am. Soc. Nephrol. 2019, 30, 2287–2288. [Google Scholar] [CrossRef]
- Moscona, A. The development in vitro of chimeric aggregates of dissociated embryonic chick and mouse cells. Proc. Natl. Acad. Sci. USA 1957, 43, 184–194. [Google Scholar] [CrossRef]
- Matsumoto, N.; Yamanaka, S.; Morimoto, K.; Matsui, K.; Nishimura, S.; Kinoshita, Y.; Inage, Y.; Fujimori, K.; Kuroda, T.; Saito, Y.; et al. Evaluation of the ability of human induced nephron progenitor cells to form chimeric renal organoids using mouse embryonic renal progenitor cells. Biochem. Biophys. Res. Commun. 2023, 662, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Y.; Petersen, B.; Liu, P. Human and pig pluripotent stem cells: From cellular products to organogenesis and beyond. Cells 2023, 12, 2075. [Google Scholar] [CrossRef]
- Yokote, S.; Matsunari, H.; Iwai, S.; Yamanaka, S.; Uchikura, A.; Fujimoto, E.; Matsumoto, K.; Nagashima, H.; Kobayashi, E.; Yokoo, T. Urine excretion strategy for stem cell-generated embryonic kidneys. Proc. Natl. Acad. Sci. USA 2015, 112, 12980–12985. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Kinoshita, Y.; Inage, Y.; Matsumoto, N.; Morimoto, K.; Saito, Y.; Takamura, T.; Matsunari, H.; Yamanaka, S.; Nagashima, H.; et al. Cryopreservation of fetal porcine kidneys for xenogeneic regenerative medicine. J. Clin. Med. 2023, 12, 2293. [Google Scholar] [CrossRef]
- Davies, J.A. A method for cold storage and transport of viable embryonic kidney rudiments. Kidney Int. 2006, 70, 2031–2034. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, N.; Silber, S.; Kuwayama, M. Successful vitrification of bovine and human ovarian tissue. Reprod. Biomed. Online 2009, 18, 568–577. [Google Scholar] [CrossRef]
- Unbekandt, M.; Davies, J.A. Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int. 2010, 77, 407–416. [Google Scholar] [CrossRef]
- Enosawa, S. Isolation of GMP grade human hepatocytes from remnant liver tissue of living donor liver transplantation. In Hepatocyte Transplantation. Methods in Molecular Biology; Stock, P., Christ, B., Eds.; Humana Press: New York, NY, USA, 2017; pp. 231–245. [Google Scholar]
- Bantounas, I.; Ranjzad, P.; Tengku, F.; Silajdžić, E.; Forster, D.; Asselin, M.C.; Lewis, P.; Lennon, R.; Plagge, A.; Wang, Q.; et al. Generation of functioning nephrons by implanting human pluripotent stem cell-derived kidney progenitors. Stem Cell Rep. 2018, 10, 766–779. [Google Scholar] [CrossRef]
- van den Berg, C.W.; Ritsma, L.; Avramut, M.C.; Wiersma, L.E.; van den Berg, B.M.; Leuning, D.G.; Lievers, E.; Koning, M.; Vanslambrouck, J.M.; Koster, A.J.; et al. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Rep. 2018, 10, 751–765. [Google Scholar] [CrossRef]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
- Taguchi, A.; Kaku, Y.; Ohmori, T.; Sharmin, S.; Ogawa, M.; Sasaki, H.; Nishinakamura, R. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 2014, 14, 53–67. [Google Scholar] [CrossRef]
- Takasato, M.; Er, P.X.; Becroft, M.; Vanslambrouck, J.M.; Stanley, E.G.; Elefanty, A.G.; Little, M.H. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol. 2014, 16, 118–126. [Google Scholar] [CrossRef]
- Morizane, R.; Lam, A.Q.; Freedman, B.S.; Kishi, S.; Valerius, M.T.; Bonventre, J.V. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 2015, 33, 1193–1200. [Google Scholar] [CrossRef] [PubMed]
- Rall, W.F.; Fahy, G.M. Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature 1985, 313, 573–575. [Google Scholar] [CrossRef]
- Sørensen, T.; Jensen, S.; Møller, A.; Zimmer, J. Intracephalic transplants of freeze-stored rat hippocampal tissue. J. Comp. Neurol. 1986, 252, 468–482. [Google Scholar] [CrossRef]
- Fisher, R.; Putnam, C.W.; Koep, L.J.; Sipes, I.G.; Gandolfi, A.J.; Brendel, K. Cryopreservation of pig and human liver slices. Cryobiology 1991, 28, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Committee on Organ Procurement and Transplantation Policy. Organ Procurement and Transplantation: ASSESSING Current Policies and the Potential Impact of the DHHS Final Rule; National Academies Press: Washington, DC, USA, 1999. [Google Scholar]
- Taylor, M.J.; Weegman, B.P.; Baicu, S.C.; Giwa, S.E. New approaches to cryopreservation of cells, tissues, and organs. Transfus. Med. Hemother. 2019, 46, 197–215. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Rao, J.S.; Gangwar, L.; Namsrai, B.E.; Pasek-Allen, J.L.; Etheridge, M.L.; Wolf, S.M.; Pruett, T.L.; Bischof, J.C.; Finger, E.B. Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model. Nat. Commun. 2023, 14, 3407. [Google Scholar] [CrossRef]
Condition | Kidney | Heart | Liver |
---|---|---|---|
Non-frozen | NA | Beating (+) | Viability was >90% and parenchymal cell colonies were formed. |
Post-dissociation freezing | NA | Beating (+) | Viability was around 60% and colonies were nonparenchymal-cell-dominant. |
Organ rapid freezing | Differentiation capacity (+) | Beating (−) | Viability was low. |
Organ slow freezing | NA | Beating (−) | Viability was low. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsui, K.; Sekine, H.; Ishikawa, J.; Enosawa, S.; Matsumoto, N.; Inage, Y.; Kinoshita, Y.; Morimoto, K.; Yamamoto, S.; Koda, N.; et al. Exploration of Preservation Methods for Utilizing Porcine Fetal-Organ-Derived Cells in Regenerative Medicine Research. Cells 2024, 13, 228. https://doi.org/10.3390/cells13030228
Matsui K, Sekine H, Ishikawa J, Enosawa S, Matsumoto N, Inage Y, Kinoshita Y, Morimoto K, Yamamoto S, Koda N, et al. Exploration of Preservation Methods for Utilizing Porcine Fetal-Organ-Derived Cells in Regenerative Medicine Research. Cells. 2024; 13(3):228. https://doi.org/10.3390/cells13030228
Chicago/Turabian StyleMatsui, Kenji, Hidekazu Sekine, Jun Ishikawa, Shin Enosawa, Naoto Matsumoto, Yuka Inage, Yoshitaka Kinoshita, Keita Morimoto, Shutaro Yamamoto, Nagisa Koda, and et al. 2024. "Exploration of Preservation Methods for Utilizing Porcine Fetal-Organ-Derived Cells in Regenerative Medicine Research" Cells 13, no. 3: 228. https://doi.org/10.3390/cells13030228
APA StyleMatsui, K., Sekine, H., Ishikawa, J., Enosawa, S., Matsumoto, N., Inage, Y., Kinoshita, Y., Morimoto, K., Yamamoto, S., Koda, N., Yamanaka, S., Yokoo, T., & Kobayashi, E. (2024). Exploration of Preservation Methods for Utilizing Porcine Fetal-Organ-Derived Cells in Regenerative Medicine Research. Cells, 13(3), 228. https://doi.org/10.3390/cells13030228