CHI3L1 in Multiple Sclerosis—From Bench to Clinic
Abstract
:1. Characteristics of Multiple Sclerosis (MS)
2. CHI3L1 as a Potential Biomarker for MS
2.1. CHI3L1 as an Early MS Biomarker
2.2. CHI3L1 in MS Progression
2.3. CHI3L1 Level in the Serum of MS Patients
2.4. Disease-Modifying Therapies (DMT) Influence CHI3L1 Levels in MS Patients
2.5. CHI3L1 and Other Biomarkers in MS
Authors, Year | Markers in Body Fluids | Study Groups | Conclusions |
---|---|---|---|
Huss et al., 2020 [5] | CHI3L1, GFAP, and NfL (CSF, serum) | RRMS (n = 47) PMS (n = 39) OND (n = 20) |
|
Cubas-Núñez et al., 2021 [46] | NfL and CHI3L1 (CSF, serum) | RRMS (n = 163) PMS (n = 61) Controls (non-SM, n = 17) |
|
Hinsinger et al., 2015 [71] | 527 proteins (CSF proteome analysis) | RRMS (n = 80) CIS (n = 40) PMS (n = 16) HC (n = 51) |
|
Mañé-Martínez et al., 2016 [73] | NfL, t-tau, p-tau, GFAP, S100B, CHI3L1, MCP-1, α-sAPP, β-sAPP, Aβ38, Aβ40, and Aβ42 (CSF) | CIS (n = 109) RRMS (n = 192) SPMS (n = 6) PPMS (n = 17) |
|
Novakova et al., 2017 [74] | CXCL13, CCL2, CHI3L1, GFAP, NfL, and CHIT1 (CSF) | RRMS (n = 59) HC (n = 39) |
|
Kušnierová et al., 2020 [94] | CHI3L1, CXCL13, and NfL (CSF) | MS (n = 42) CIS (n = 14) OIND (n = 11) IDPNS (n = 4) NIND (n = 46) Controls (n = 15) |
|
Gil-Perotin et al., 2019 [104] | NfL and CHI3L1 (CSF) | RRMS (n = 99) SPMS (n = 35) PPMS (n = 23) |
|
Pomary et al., 2023 [105] | NfL and CHI3L1 (CSF, serum) | PPMS (n = 18) SPMS (n = 22) OND (n = 13) |
|
Lucchini et al., 2023 [107] | APRIL, BAFF, CHI3L1, CCL2, CXCL8, CXCL10, CXCL12, and CXCL138 (CSF) | RRMS (n = 107) PMS (n = 18) OIND (n = 10) ONIND (n = 15) |
|
Sellebjerg et al., 2019 [108] | NfL and CHI3L1 (CSF) | RRMS (n = 109) CIS (n = 68) |
|
Fino et al., 2019 [110] | BAFF, CHI3L1, sCD163, and OPN (serum, CSF) | RRMS (n = 46) CIS (n = 25) OND (n = 11) |
|
Håkansson et al., 2017 [114] | NfL, NfH, OPN, CXCL1, CXCL8, CXCL10, CCL20, CXCL13, CCL22, MMP-9, GFAP, and CHI3L1 (CSF, serum) | RRMS (n = 22) CIS (n = 19) HC (n = 22) |
|
Sellebjerg et al., 2017 [115] | NfL, MBP, CHI3L1, MMP-9, and CXCL13 (CSF) | PPMS (n = 26) SPMS (n = 26) HC (n = 24) |
|
Masvekar et al., 2021 [116] | TNFα, IL-1β, TNFβ, LIOF, TRAIL, GM-CSF, IL-10, TGFβ, IL-17F, NfL, IL-12p40, BAFF, CD14, SERPINA3, CXCL13, CD27, CD21, BCMA, and CHI3L1 (serum, CSF) | MS active/inactive (n = 70) HC (n = 5) |
|
Schneider et al., 2021 [117] | CHI3L1 and NfL (CSF) | RRMS (n = 42) PMS (n = 89) HC (n = 42) |
|
Abdelhak et al., 2019 [118] | GFAP, CHI3L1, sTREM2, and NfL (serum and CSF) | PPMS (n = 93) |
|
Fissolo et al., 2024 [121] | NfL, sGFAP, and sCHI3L1 (serum) | PPMS (n = 141) |
|
Åkesson et al., 2023 [122] | 1431 proteins (CSF and serum) | Early stage of MS (n = 143) HC (n = 43) |
|
Lamancová et al., 2022 [123] | CHI3L1, sNfL, CXCL13, MCP-1, MMP-2, and MMP-9 (serum) | RRMS (n = 40) SPMS (n = 25) PPMS (n = 15) |
|
Magliozzi et al., 2020 [124] | CXCL13, CCL21, IL-10, IL-12p70, CX3CL1, and CHI3L1 (CSF) | RRMS (n = 103) OND (n = 36) |
|
Quintana et al., 2018 [125] | CHI3L1 and NfL (CSF) | MS (n = 51) |
|
Świderek-Matysiak et al., 2023 [126] | IFN-γ, IL-6, NfL, GFAP, CHI3L1, CXCL13, and OPN (CSF) | MS (n = 134) non-MS (n = 108) |
|
Pérez-Miralles et al. 2020 [127] | CHI3L1, CHI3L2, and NfL (CSF) | PPMS (n = 25) |
|
Tamam et al. 2021 [128] | Hox-B3 and CHI3L1 (CSF, serum) | CIS (n = 33) CIS-MS (n = 17) CIS-CIS (n = 16) RRMS (n = 15) |
|
Momtazmanesh et al., 2021 [129] | NfL, t-tau, CHI3L1, GFAP, and S100B (CSF) | CIS, RRMS, and PMS, MS relapse and remission, (n = 4071) |
|
Ruder et al., 2022 [130] | CXCL9, GFAP, CXCL10, CXCL13, CHI3L1, and NfL (serum, CSF) | MS (n = 32) after hematopoietic stem cell transplantation (aHSCT) |
|
Oset et al., 2023 [131] | CHI3L1, CXCL13, OPN, IL-6, GFAP, and NfL (serum) | MS (n = 50) |
|
3. Age as a Significant Factor Affecting Biomarker Levels in MS
4. CHI3L1 in MS—Not Only a Biomarker
5. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Disanto, G.; Morahan, J.M.; Ramagopalan, S.V. Multiple Sclerosis: Risk Factors and Their Interactions. CNS Neurol. Disord. Drug Targets 2012, 11, 545–555. [Google Scholar] [CrossRef]
- Simon, K.C.; Munger, K.L.; Ascherio, A. Vitamin D and Multiple Sclerosis: Epidemiology, Immunology, and Genetics. Curr. Opin. Neurol. 2012, 25, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Haki, M.; Al-Biati, H.A.; Al-Tameemi, Z.S.; Ali, I.S.; Al-Hussaniy, H.A. Review of Multiple Sclerosis: Epidemiology, Etiology, Pathophysiology, and Treatment. Medicine 2024, 103, e37297. [Google Scholar] [CrossRef] [PubMed]
- Huss, A.; Otto, M.; Senel, M.; Ludolph, A.C.; Abdelhak, A.; Tumani, H. A Score Based on NfL and Glial Markers May Differentiate Between Relapsing–Remitting and Progressive MS Course. Front. Neurol. 2020, 11, e00608. [Google Scholar] [CrossRef] [PubMed]
- Zeydan, B.; Kantarci, O.H. Progressive Forms of Multiple Sclerosis: Distinct Entity or Age-Dependent Phenomena. Neurol. Clin. 2018, 36, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Katz Sand, I. Classification, Diagnosis, and Differential Diagnosis of Multiple Sclerosis. Curr. Opin. Neurol. 2015, 28, 193. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Tuulasvaara, A.; Kurdo, G.; Martola, J.; Laakso, S.M. Cervical Lymph Node Diameter Reflects Disease Progression in Multiple Sclerosis. Mult. Scler. Relat. Disord. 2024, 84, 105496. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jelcic, I.; Mühlenbruch, L.; Haunerdinger, V.; Toussaint, N.C.; Zhao, Y.; Cruciani, C.; Faigle, W.; Naghavian, R.; Foege, M.; et al. HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis. Cell 2020, 183, 1264–1281.e20. [Google Scholar] [CrossRef]
- Moser, T.; Akgün, K.; Proschmann, U.; Sellner, J.; Ziemssen, T. The Role of TH17 Cells in Multiple Sclerosis: Therapeutic Implications. Autoimmun. Rev. 2020, 19, 102647. [Google Scholar] [CrossRef]
- Mosmann, T.R.; Sad, S. The Expanding Universe of T-Cell Subsets: Th1, Th2 and More. Immunol. Today 1996, 17, 138–146. [Google Scholar] [CrossRef]
- Kleinewietfeld, M.; Hafler, D.A. Regulatory T Cells in Autoimmune Neuroinflammation. Immunol. Rev. 2014, 259, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Comi, G.; Bar-Or, A.; Lassmann, H.; Uccelli, A.; Hartung, H.-P.; Montalban, X.; Sørensen, P.S.; Hohlfeld, R.; Hauser, S.L. The Role of B Cells in Multiple Sclerosis and Related Disorders. Ann. Neurol. 2021, 89, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Myhr, K.-M.; Torkildsen, Ø.; Lossius, A.; Bø, L.; Holmøy, T. B Cell Depletion in the Treatment of Multiple Sclerosis. Expert Opin. Biol. Ther. 2019, 19, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.K.; Willson, A.M.L.; Jordan, M.A. The Plasticity of Immune Cell Response Complicates Dissecting the Underlying Pathology of Multiple Sclerosis. J. Immunol. Res. 2024, 2024, 5383099. [Google Scholar] [CrossRef] [PubMed]
- Stasiolek, M.; Bayas, A.; Kruse, N.; Wieczarkowiecz, A.; Toyka, K.V.; Gold, R.; Selmaj, K. Impaired Maturation and Altered Regulatory Function of Plasmacytoid Dendritic Cells in Multiple Sclerosis. Brain J. Neurol. 2006, 129, 1293–1305. [Google Scholar] [CrossRef]
- van Langelaar, J.; Rijvers, L.; Smolders, J.; van Luijn, M.M. B and T Cells Driving Multiple Sclerosis: Identity, Mechanisms and Potential Triggers. Front. Immunol. 2020, 11, 760. [Google Scholar] [CrossRef] [PubMed]
- Woodberry, T.; Bouffler, S.E.; Wilson, A.S.; Buckland, R.L.; Brüstle, A. The Emerging Role of Neutrophil Granulocytes in Multiple Sclerosis. J. Clin. Med. 2018, 7, 511. [Google Scholar] [CrossRef] [PubMed]
- Rossi, B.; Constantin, G.; Zenaro, E. The Emerging Role of Neutrophils in Neurodegeneration. Immunobiology 2020, 225, 151865. [Google Scholar] [CrossRef]
- Casserly, C.S.; Nantes, J.C.; Whittaker Hawkins, R.F.; Vallières, L. Neutrophil Perversion in Demyelinating Autoimmune Diseases: Mechanisms to Medicine. Autoimmun. Rev. 2017, 16, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Mey, G.M.; Mahajan, K.R.; DeSilva, T.M. Neurodegeneration in Multiple Sclerosis. WIREs Mech. Dis. 2023, 15, e1583. [Google Scholar] [CrossRef]
- Gafson, A.; Craner, M.J.; Matthews, P.M. Personalised Medicine for Multiple Sclerosis Care. Mult. Scler. 2017, 23, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Popescu, V.; Agosta, F.; Hulst, H.E.; Sluimer, I.C.; Knol, D.L.; Sormani, M.P.; Enzinger, C.; Ropele, S.; Alonso, J.; Sastre-Garriga, J.; et al. Brain Atrophy and Lesion Load Predict Long Term Disability in Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Solomon, A.J.; Naismith, R.T.; Cross, A.H. Misdiagnosis of Multiple Sclerosis. Neurology 2019, 92, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Preziosa, P.; Arnold, D.L.; Barkhof, F.; Harrison, D.M.; Maggi, P.; Mainero, C.; Montalban, X.; Sechi, E.; Weinshenker, B.G.; et al. Present and Future of the Diagnostic Work-up of Multiple Sclerosis: The Imaging Perspective. J. Neurol. 2023, 270, 1286–1299. [Google Scholar] [CrossRef] [PubMed]
- Bodaghi, A.; Fattahi, N.; Ramazani, A. Biomarkers: Promising and Valuable Tools towards Diagnosis, Prognosis and Treatment of Covid-19 and Other Diseases. Heliyon 2023, 9, e13323. [Google Scholar] [CrossRef]
- Graner, M.; Pointon, T.; Manton, S.; Green, M.; Dennison, K.; Davis, M.; Braiotta, G.; Craft, J.; Edwards, T.; Polonsky, B.; et al. Oligoclonal IgG Antibodies in Multiple Sclerosis Target Patient-Specific Peptides. PLoS ONE 2020, 15, e0228883. [Google Scholar] [CrossRef] [PubMed]
- Disanto, G.; Barro, C.; Benkert, P.; Naegelin, Y.; Schädelin, S.; Giardiello, A.; Zecca, C.; Blennow, K.; Zetterberg, H.; Leppert, D.; et al. Serum Neurofilament Light: A Biomarker of Neuronal Damage in Multiple Sclerosis. Ann. Neurol. 2017, 81, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Cross, A.H.; Gelfand, J.M.; Thebault, S.; Bennett, J.L.; von Büdingen, H.C.; Cameron, B.; Carruthers, R.; Edwards, K.; Fallis, R.; Gerstein, R.; et al. Emerging Cerebrospinal Fluid Biomarkers of Disease Activity and Progression in Multiple Sclerosis. JAMA Neurol. 2024, 81, 373–383. [Google Scholar] [CrossRef]
- Barro, C.; Healy, B.C.; Liu, Y.; Saxena, S.; Paul, A.; Polgar-Turcsanyi, M.; Guttmann, C.R.G.; Bakshi, R.; Kropshofer, H.; Weiner, H.L.; et al. Serum GFAP and NfL Levels Differentiate Subsequent Progression and Disease Activity in Patients with Progressive Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200052. [Google Scholar] [CrossRef] [PubMed]
- Floro, S.; Carandini, T.; Pietroboni, A.M.; De Riz, M.A.; Scarpini, E.; Galimberti, D. Role of Chitinase 3–like 1 as a Biomarker in Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1164. [Google Scholar] [CrossRef] [PubMed]
- Correale, J.; Fiol, M. Chitinase Effects on Immune Cell Response in Neuromyelitis Optica and Multiple Sclerosis. Mult. Scler. 2011, 17, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Dönder, A.; Ozdemir, H. Serum YKL-40 Levels in Patients with Multiple Sclerosis. Arq. Neuropsiquiatr. 2021, 79, 795–798. [Google Scholar] [CrossRef] [PubMed]
- Bussink, A.P.; Speijer, D.; Aerts, J.M.F.G.; Boot, R.G. Evolution of Mammalian Chitinase(-Like) Members of Family 18 Glycosyl Hydrolases. Genetics 2007, 177, 959–970. [Google Scholar] [CrossRef] [PubMed]
- Hakala, B.E.; White, C.; Recklies, A.D. Human Cartilage Gp-39, a Major Secretory Product of Articular Chondrocytes and Synovial Cells, Is a Mammalian Member of a Chitinase Protein Family. J. Biol. Chem. 1993, 268, 25803–25810. [Google Scholar] [CrossRef] [PubMed]
- Cintin, C.; Johansen, J.S.; Christensen, I.J.; Price, P.A.; Sørensen, S.; Nielsen, H.J. Serum YKL-40 and Colorectal Cancer. Br. J. Cancer 1999, 79, 1494–1499. [Google Scholar] [CrossRef]
- Renkema, G.H.; Boot, R.G.; Au, F.L.; Donker-Koopman, W.E.; Strijland, A.; Muijsers, A.O.; Hrebicek, M.; Aerts, J.M. Chitotriosidase, a Chitinase, and the 39-kDa Human Cartilage Glycoprotein, a Chitin-Binding Lectin, Are Homologues of Family 18 Glycosyl Hydrolases Secreted by Human Macrophages. Eur. J. Biochem. 1998, 251, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.E.; Yeo, I.J.; Han, S.-B.; Yun, J.; Kim, B.; Yong, Y.J.; Lim, Y.; Kim, T.H.; Son, D.J.; Hong, J.T. Significance of Chitinase-3-like Protein 1 in the Pathogenesis of Inflammatory Diseases and Cancer. Exp. Mol. Med. 2024, 56, 1–18. [Google Scholar] [CrossRef]
- Bonneh-Barkay, D.; Bissel, S.J.; Kofler, J.; Starkey, A.; Wang, G.; Wiley, C.A. Astrocyte and Macrophage Regulation of YKL-40 Expression and Cellular Response in Neuroinflammation. Brain Pathol. 2012, 22, 530–546. [Google Scholar] [CrossRef]
- Lee, C.G.; Da Silva, C.A.; Lee, J.-Y.; Hartl, D.; Elias, J.A. Chitin Regulation of Immune Responses: An Old Molecule with New Roles. Curr. Opin. Immunol. 2008, 20, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Adrangi, S.; Faramarzi, M.A. From Bacteria to Human: A Journey into the World of Chitinases. Biotechnol. Adv. 2013, 31, 1786–1795. [Google Scholar] [CrossRef]
- Duru, S.; Yüceege, M.; Ardıç, S. Chitinases and Lung Diseases. Tuberk. Toraks 2013, 61, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Su, Z.; Li, Y.; Zhang, X.; You, Q. Chitinase-3 like-Protein-1 Function and Its Role in Diseases. Signal Transduct. Target. Ther. 2020, 5, 201. [Google Scholar] [CrossRef] [PubMed]
- Bonneh-Barkay, D.; Wang, G.; Starkey, A.; Hamilton, R.L.; Wiley, C.A. In Vivo CHI3L1 (YKL-40) Expression in Astrocytes in Acute and Chronic Neurological Diseases. J. Neuroinflamm. 2010, 7, 34. [Google Scholar] [CrossRef]
- Cubas-Núñez, L.; Gil-Perotín, S.; Castillo-Villalba, J.; López, V.; Solís Tarazona, L.; Gasqué-Rubio, R.; Carratalá-Boscá, S.; Alcalá-Vicente, C.; Pérez-Miralles, F.; Lassmann, H.; et al. Potential Role of CHI3L1+ Astrocytes in Progression in MS. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e972. [Google Scholar] [CrossRef]
- Bortolotto, V.; Grilli, M. Every Cloud Has a Silver Lining: Proneurogenic Effects of Aβ Oligomers and HMGB-1 via Activation of the RAGE-NF-κB Axis. CNS Neurol. Disord. Drug Targets 2017, 16, 1066–1079. [Google Scholar] [CrossRef] [PubMed]
- Tsoporis, J.N.; Izhar, S.; Leong-Poi, H.; Desjardins, J.-F.; Huttunen, H.J.; Parker, T.G. S100B Interaction with the Receptor for Advanced Glycation End Products (RAGE): A Novel Receptor-Mediated Mechanism for Myocyte Apoptosis Postinfarction. Circ. Res. 2010, 106, 93–101. [Google Scholar] [CrossRef]
- Kao, Y.-H.; Lin, Y.-C.; Tsai, M.-S.; Sun, C.-K.; Yuan, S.-S.; Chang, C.-Y.; Jawan, B.; Lee, P.-H. Involvement of the Nuclear High Mobility Group B1 Peptides Released from Injured Hepatocytes in Murine Hepatic Fibrogenesis. Biochim. Biophys. Acta 2014, 1842, 1720–1732. [Google Scholar] [CrossRef]
- Song, J.S.; Kang, C.M.; Park, C.K.; Yoon, H.K.; Lee, S.Y.; Ahn, J.H.; Moon, H.-S. Inhibitory Effect of Receptor for Advanced Glycation End Products (RAGE) on the TGF-β-Induced Alveolar Epithelial to Mesenchymal Transition. Exp. Mol. Med. 2011, 43, 517–524. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, H.; Zhang, D.; Liu, Y.; Wang, C.; Liu, F.; Chen, J. HMGB1 Enhances the AGE-Induced Expression of CTGF and TGF-β via RAGE-Dependent Signaling in Renal Tubular Epithelial Cells. Am. J. Nephrol. 2015, 41, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Guarneri, F.; Custurone, P.; Papaianni, V.; Gangemi, S. Involvement of RAGE and Oxidative Stress in Inflammatory and Infectious Skin Diseases. Antioxidants 2021, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Low, D.; Subramaniam, R.; Lin, L.; Aomatsu, T.; Mizoguchi, A.; Ng, A.; DeGruttola, A.K.; Lee, C.G.; Elias, J.A.; Andoh, A.; et al. Chitinase 3-like 1 Induces Survival and Proliferation of Intestinal Epithelial Cells during Chronic Inflammation and Colitis-Associated Cancer by Regulating S100A9. Oncotarget 2015, 6, 36535–36550. [Google Scholar] [CrossRef]
- Jiang, W.; Zhu, F.; Xu, H.; Xu, L.; Li, H.; Yang, X.; Khan Afridi, S.; Lai, S.; Qiu, X.; Liu, C.; et al. CHI3L1 Signaling Impairs Hippocampal Neurogenesis and Cognitive Function in Autoimmune-Mediated Neuroinflammation. Sci. Adv. 2023, 9, eadg8148. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, W.; Afridi, S.K.; Wang, T.; Zhu, F.; Xu, H.; Nazir, F.H.; Liu, C.; Wang, Y.; Long, Y.; et al. Astrocyte-Derived CHI3L1 Signaling Impairs Neurogenesis and Cognition in the Demyelinated Hippocampus. Cell Rep. 2024, 43, 114226. [Google Scholar] [CrossRef]
- Wu, S.; Tan, Y.; Li, F.; Han, Y.; Zhang, S.; Lin, X. CD44: A Cancer Stem Cell Marker and Therapeutic Target in Leukemia Treatment. Front. Immunol. 2024, 15, 1354992. [Google Scholar] [CrossRef] [PubMed]
- Geng, B.; Pan, J.; Zhao, T.; Ji, J.; Zhang, C.; Che, Y.; Yang, J.; Shi, H.; Li, J.; Zhou, H.; et al. Chitinase 3-like 1-CD44 Interaction Promotes Metastasis and Epithelial-to-Mesenchymal Transition through β-Catenin/Erk/Akt Signaling in Gastric Cancer. J. Exp. Clin. Cancer Res. 2018, 37, 208. [Google Scholar] [CrossRef] [PubMed]
- Guetta-Terrier, C.; Karambizi, D.; Akosman, B.; Zepecki, J.P.; Chen, J.-S.; Kamle, S.; Fajardo, J.E.; Fiser, A.; Singh, R.; Toms, S.A.; et al. Chi3l1 Is a Modulator of Glioma Stem Cell States and a Therapeutic Target in Glioblastoma. Cancer Res. 2023, 83, 1984–1999. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, T.; Joshi, B.H.; Takahashi, S.; Takasaki, Y.; Suzuki, A.; Ito, K.; Ochiai, K.; Tomishima, K.; Ishii, S.; Puri, R.K.; et al. IL-13Rα2 Is a Biomarker of Diagnosis and Therapeutic Response in Human Pancreatic Cancer. Diagnostics 2021, 11, 1140. [Google Scholar] [CrossRef] [PubMed]
- He, C.H.; Lee, C.G.; Ma, B.; Kamle, S.; Choi, A.M.K.; Elias, J.A. N-Glycosylation Regulates Chitinase 3-like-1 and IL-13 Ligand Binding to IL-13 Receptor A2. Am. J. Respir. Cell Mol. Biol. 2020, 63, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; He, C.H.; Herzog, E.L.; Peng, X.; Lee, C.-M.; Nguyen, T.H.; Gulati, M.; Gochuico, B.R.; Gahl, W.A.; Slade, M.L.; et al. Chitinase 3–like–1 and Its Receptors in Hermansky-Pudlak Syndrome–Associated Lung Disease. J. Clin. Investig. 2015, 125, 3178–3192. [Google Scholar] [CrossRef]
- Li, L.; Tian, E.; Chen, X.; Chao, J.; Klein, J.; Qu, Q.; Sun, G.; Sun, G.; Huang, Y.; Warden, C.D.; et al. GFAP Mutations in Astrocytes Impair Oligodendrocyte Progenitor Proliferation and Myelination in an hiPSC Model of Alexander Disease. Cell Stem Cell 2018, 23, 239–251.e6. [Google Scholar] [CrossRef] [PubMed]
- Dávila, I.; García-Sánchez, A.; Estravís, M.; Landeira-Viñuela, A.; Iribarren-López, A.; Moreno-Jiménez, E.; Martín-García, C.; Moreno, E.; Sanz, C.; Isidoro-García, M. Relationship between CRTH2 mRNA Expression in Peripheral Blood and IgE and Eosinophil Levels in Adult Patients with Asthma. Eur. Respir. J. 2019, 54, PA535. [Google Scholar] [CrossRef]
- Cosmi, L.; Annunziato, F.; Galli, M.I.G.; Maggi, R.M.E.; Nagata, K.; Romagnani, S. CRTH2 Is the Most Reliable Marker for the Detection of Circulating Human Type 2 Th and Type 2 T Cytotoxic Cells in Health and Disease. Eur. J. Immunol. 2000, 30, 2972–2979. [Google Scholar] [CrossRef] [PubMed]
- Sciacchitano, S.; Lavra, L.; Morgante, A.; Ulivieri, A.; Magi, F.; De Francesco, G.P.; Bellotti, C.; Salehi, L.B.; Ricci, A. Galectin-3: One Molecule for an Alphabet of Diseases, from A to Z. Int. J. Mol. Sci. 2018, 19, 379. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; He, C.H.; Yang, D.S.; Nguyen, T.; Cao, Y.; Kamle, S.; Lee, C.-M.; Gochuico, B.R.; Gahl, W.A.; Shea, B.S.; et al. Galectin-3 Interacts with the CHI3L1 Axis and Contributes to Hermansky-Pudlak Syndrome Lung Disease. J. Immunol. 2018, 200, 2140–2153. [Google Scholar] [CrossRef] [PubMed]
- D’Addio, F.; Assi, E.; Maestroni, A.; Rossi, G.; Usuelli, V.; Petrazzuolo, A.; Nardini, M.; Loretelli, C.; Ben Nasr, M.; Fiorina, P. TMEM219 Regulates the Transcription Factor Expression and Proliferation of Beta Cells. Front. Endocrinol. 2024, 15, 1306127. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-M.; He, C.H.; Nour, A.M.; Zhou, Y.; Ma, B.; Park, J.W.; Kim, K.H.; Dela Cruz, C.; Sharma, L.; Nasr, M.L.; et al. IL-13Rα2 Uses TMEM219 in Chitinase 3-like-1-Induced Signalling and Effector Responses. Nat. Commun. 2016, 7, 12752. [Google Scholar] [CrossRef]
- Pinteac, R.; Montalban, X.; Comabella, M. Chitinases and Chitinase-like Proteins as Biomarkers in Neurologic Disorders. Neurol. Neuroimmunol. Neuroinflamm. 2020, 8, e921. [Google Scholar] [CrossRef]
- Canto, E.; Tintore, M.; Villar, L.M.; Costa, C.; Nurtdinov, R.; Alvarez-Cermeno, J.C.; Arrambide, G.; Reverter, F.; Deisenhammer, F.; Hegen, H.; et al. Chitinase 3-like 1: Prognostic Biomarker in Clinically Isolated Syndromes. Brain 2015, 138, 918–931. [Google Scholar] [CrossRef]
- Hinsinger, G.; Galéotti, N.; Nabholz, N.; Urbach, S.; Rigau, V.; Demattei, C.; Lehmann, S.; Camu, W.; Labauge, P.; Castelnovo, G.; et al. Chitinase 3-like Proteins as Diagnostic and Prognostic Biomarkers of Multiple Sclerosis. Mult. Scler. 2015, 21, 1251–1261. [Google Scholar] [CrossRef]
- Burman, J.; Raininko, R.; Blennow, K.; Zetterberg, H.; Axelsson, M.; Malmeström, C. YKL-40 Is a CSF Biomarker of Intrathecal Inflammation in Secondary Progressive Multiple Sclerosis. J. Neuroimmunol. 2016, 292, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Mañé-Martínez, M.A.; Olsson, B.; Bau, L.; Matas, E.; Cobo-Calvo, Á.; Andreasson, U.; Blennow, K.; Romero-Pinel, L.; Martínez-Yélamos, S.; Zetterberg, H. Glial and Neuronal Markers in Cerebrospinal Fluid in Different Types of Multiple Sclerosis. J. Neuroimmunol. 2016, 299, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Novakova, L.; Axelsson, M.; Khademi, M.; Zetterberg, H.; Blennow, K.; Malmeström, C.; Piehl, F.; Olsson, T.; Lycke, J. Cerebrospinal Fluid Biomarkers as a Measure of Disease Activity and Treatment Efficacy in Relapsing-Remitting Multiple Sclerosis. J. Neurochem. 2017, 141, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Novakova, L.; Axelsson, M.; Khademi, M.; Zetterberg, H.; Blennow, K.; Malmeström, C.; Piehl, F.; Olsson, T.; Lycke, J. Cerebrospinal Fluid Biomarkers of Inflammation and Degeneration as Measures of Fingolimod Efficacy in Multiple Sclerosis. Mult. Scler. 2017, 23, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Malmeström, C.; Axelsson, M.; Lycke, J.; Zetterberg, H.; Blennow, K.; Olsson, B. CSF Levels of YKL-40 Are Increased in MS and Replaces with Immunosuppressive Treatment. J. Neuroimmunol. 2014, 269, 87–89. [Google Scholar] [CrossRef] [PubMed]
- Ponath, G.; Park, C.; Pitt, D. The Role of Astrocytes in Multiple Sclerosis. Front. Immunol. 2018, 9, 217. [Google Scholar] [CrossRef]
- Comabella, M.; Fernández, M.; Martin, R.; Rivera-Vallvé, S.; Borrás, E.; Chiva, C.; Julià, E.; Rovira, A.; Cantó, E.; Alvarez-Cermeño, J.C.; et al. Cerebrospinal Fluid Chitinase 3-like 1 Levels Are Associated with Conversion to Multiple Sclerosis. Brain J. Neurol. 2010, 133, 1082–1093. [Google Scholar] [CrossRef] [PubMed]
- Bonneh-Barkay, D.; Bissel, S.J.; Wang, G.; Fish, K.N.; Nicholl, G.C.B.; Darko, S.W.; Medina-Flores, R.; Murphey-Corb, M.; Rajakumar, P.A.; Nyaundi, J.; et al. YKL-40, a Marker of Simian Immunodeficiency Virus Encephalitis, Modulates the Biological Activity of Basic Fibroblast Growth Factor. Am. J. Pathol. 2008, 173, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Lafon-Cazal, M.; Adjali, O.; Galéotti, N.; Poncet, J.; Jouin, P.; Homburger, V.; Bockaert, J.; Marin, P. Proteomic Analysis of Astrocytic Secretion in the Mouse. Comparison with the Cerebrospinal Fluid Proteome. J. Biol. Chem. 2003, 278, 24438–24448. [Google Scholar] [CrossRef] [PubMed]
- Louboutin, J.-P.; Chekmasova, A.; Marusich, E.; Agrawal, L.; Strayer, D.S. Role of CCR5 and Its Ligands in the Control of Vascular Inflammation and Leukocyte Recruitment Required for Acute Excitotoxic Seizure Induction and Neural Damage. FASEB J. 2011, 25, 737–753. [Google Scholar] [CrossRef] [PubMed]
- Rossol, M.; Kraus, S.; Pierer, M.; Baerwald, C.; Wagner, U. The CD14(Bright) CD16+ Monocyte Subset Is Expanded in Rheumatoid Arthritis and Promotes Expansion of the Th17 Cell Population. Arthritis Rheumatol. 2012, 64, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.; Yester, J.W.; Singh, S.K.; Biswas, D.D.; Surace, M.J.; Waters, M.R.; Hauser, K.F.; Yao, Z.; Boyce, B.F.; Kordula, T. RelB/P50 Complexes Regulate Cytokine-Induced YKL-40 Expression. J. Immunol. 2015, 194, 2862–2870. [Google Scholar] [CrossRef] [PubMed]
- Cantó, E.; Reverter, F.; Morcillo-Suárez, C.; Matesanz, F.; Fernández, O.; Izquierdo, G.; Vandenbroeck, K.; Rodríguez-Antigüedad, A.; Urcelay, E.; Arroyo, R.; et al. Chitinase 3-like 1 Plasma Levels Are Increased in Patients with Progressive Forms of Multiple Sclerosis. Mult. Scler. 2012, 18, 983–990. [Google Scholar] [CrossRef]
- Volck, B.; Price, P.A.; Johansen, J.S.; Sørensen, O.; Benfield, T.L.; Nielsen, H.J.; Calafat, J.; Borregaard, N. YKL-40, a Mammalian Member of the Chitinase Family, Is a Matrix Protein of Specific Granules in Human Neutrophils. Proc. Assoc. Am. Physicians 1998, 110, 351–360. [Google Scholar]
- Rehli, M.; Krause, S.W.; Andreesen, R. Molecular Characterization of the Gene for Human Cartilage Gp-39 (CHI3L1), a Member of the Chitinase Protein Family and Marker for Late Stages of Macrophage Differentiation. Genomics 1997, 43, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Jafari, B.; Elias, J.A.; Mohsenin, V. Increased Plasma YKL-40/Chitinase-3-Like-Protein-1 Is Associated with Endothelial Dysfunction in Obstructive Sleep Apnea. PLoS ONE 2014, 9, e98629. [Google Scholar] [CrossRef]
- Shackelton, L.M.; Mann, D.M.; Millis, A.J. Identification of a 38-kDa Heparin-Binding Glycoprotein (Gp38k) in Differentiating Vascular Smooth Muscle Cells as a Member of a Group of Proteins Associated with Tissue Remodeling. J. Biol. Chem. 1995, 270, 13076–13083. [Google Scholar] [CrossRef] [PubMed]
- Coriati, A.; Massé, C.; Ménard, A.; Bouvet, G.F.; Berthiaume, Y. Neutrophils as a Potential Source of Chitinase-3-like Protein 1 in Cystic Fibrosis. Inflammation 2018, 41, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Żurawska-Płaksej, E.; Ługowska, A.; Hetmańczyk, K.; Knapik-Kordecka, M.; Piwowar, A. Neutrophils as a Source of Chitinases and Chitinase-Like Proteins in Type 2 Diabetes. PLoS ONE 2015, 10, e0141730. [Google Scholar] [CrossRef] [PubMed]
- Nordenbaek, C.; Johansen, J.S.; Junker, P.; Borregaard, N.; Sørensen, O.; Price, P.A. YKL-40, a Matrix Protein of Specific Granules in Neutrophils, Is Elevated in Serum of Patients with Community-Acquired Pneumonia Requiring Hospitalization. J. Infect. Dis. 1999, 180, 1722–1726. [Google Scholar] [CrossRef] [PubMed]
- Thouvenot, E.; Hinsinger, G.; Demattei, C.; Uygunoglu, U.; Castelnovo, G.; Pittion-Vouyovitch, S.; Okuda, D.; Kantarci, O.; Pelletier, D.; Lehmann, S.; et al. Cerebrospinal Fluid Chitinase-3-like Protein 1 Level Is Not an Independent Predictive Factor for the Risk of Clinical Conversion in Radiologically Isolated Syndrome. Mult. Scler. 2019, 25, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.A.M.; Olsson, B.; Bau, L.; Matas, E.; Cobo Calvo, Á.; Andreasson, U.; Blennow, K.; Romero-Pinel, L.; Martínez-Yélamos, S.; Zetterberg, H. Glial and Neuronal Markers in Cerebrospinal Fluid Predict Progression in Multiple Sclerosis. Mult. Scler. 2015, 21, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Kušnierová, P.; Zeman, D.; Hradílek, P.; Zapletalová, O.; Stejskal, D. Determination of Chitinase 3-like 1 in Cerebrospinal Fluid in Multiple Sclerosis and Other Neurological Diseases. PLoS ONE 2020, 15, e0233519. [Google Scholar] [CrossRef]
- Matute-Blanch, C.; Villar, L.M.; Álvarez-Cermeño, J.C.; Rejdak, K.; Evdoshenko, E.; Makshakov, G.; Nazarov, V.; Lapin, S.; Midaglia, L.; Vidal-Jordana, A.; et al. Neurofilament Light Chain and Oligoclonal Bands Are Prognostic Biomarkers in Radiologically Isolated Syndrome. Brain 2018, 141, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Talaat, F.; Abdelatty, S.; Ragaie, C.; Dahshan, A. Chitinase-3-like 1-Protein in CSF: A Novel Biomarker for Progression in Patients with Multiple Sclerosis. Neurol. Sci. 2023, 44, 3243–3252. [Google Scholar] [CrossRef] [PubMed]
- Håkansson, I.; Tisell, A.; Cassel, P.; Blennow, K.; Zetterberg, H.; Lundberg, P.; Dahle, C.; Vrethem, M.; Ernerudh, J. Neurofilament Levels, Disease Activity and Brain Volume during Follow-up in Multiple Sclerosis. J. Neuroinflamm. 2018, 15, 209. [Google Scholar] [CrossRef]
- Stoop, M.P.; Singh, V.; Stingl, C.; Martin, R.; Khademi, M.; Olsson, T.; Hintzen, R.Q.; Luider, T.M. Effects of Natalizumab Treatment on the Cerebrospinal Fluid Proteome of Multiple Sclerosis Patients. J. Proteome Res. 2013, 12, 1101–1107. [Google Scholar] [CrossRef]
- Li, F.; Liu, A.; Zhao, M.; Luo, L. Astrocytic Chitinase-3-like Protein 1 in Neurological Diseases: Potential Roles and Future Perspectives. J. Neurochem. 2023, 165, 772–790. [Google Scholar] [CrossRef] [PubMed]
- Connolly, K.; Lehoux, M.; O’Rourke, R.; Assetta, B.; Erdemir, G.A.; Elias, J.A.; Lee, C.G.; Huang, Y.-W.A. Potential Role of Chitinase-3-like Protein 1 (CHI3L1/YKL-40) in Neurodegeneration and Alzheimer’s Disease. Alzheimers Dement. J. Alzheimers Assoc. 2023, 19, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Haji, S.; Sako, W.; Murakami, N.; Osaki, Y.; Izumi, Y. Serum NfL and CHI3L1 for ALS and Parkinsonian Disorders in the Process of Diagnosis. J. Neural Transm. 2022, 129, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.V.; Johansen, J.S.; Price, P.A. High Levels of Serum HER-2/Neu and YKL-40 Independently Reflect Aggressiveness of Metastatic Breast Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2003, 9, 4423–4434. [Google Scholar]
- Kucur, M.; Isman, F.K.; Balci, C.; Onal, B.; Hacibekiroglu, M.; Ozkan, F.; Ozkan, A. Serum YKL-40 Levels and Chitotriosidase Activity as Potential Biomarkers in Primary Prostate Cancer and Benign Prostatic Hyperplasia. Urol. Oncol. 2008, 26, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Gil-Perotin, S.; Castillo-Villalba, J.; Cubas-Nuñez, L.; Gasque, R.; Hervas, D.; Gomez-Mateu, J.; Alcala, C.; Perez-Miralles, F.; Gascon, F.; Dominguez, J.A.; et al. Combined Cerebrospinal Fluid Neurofilament Light Chain Protein and Chitinase-3 Like-1 Levels in Defining Disease Course and Prognosis in Multiple Sclerosis. Front. Neurol. 2019, 10, 1008. [Google Scholar] [CrossRef] [PubMed]
- Pomary, P.K.; Eichau, S.; Amigó, N.; Barrios, L.; Matesanz, F.; García-Valdecasas, M.; Hrom, I.; García Sánchez, M.I.; Garcia-Martin, M.L. Multifaceted Analysis of Cerebrospinal Fluid and Serum from Progressive Multiple Sclerosis Patients: Potential Role of Vitamin C and Metal Ion Imbalance in the Divergence of Primary Progressive Multiple Sclerosis and Secondary Progressive Multiple Sclerosis. J. Proteome Res. 2023, 22, 743–757. [Google Scholar] [CrossRef] [PubMed]
- Komori, M.; Kosa, P.; Stein, J.; Zhao, V.; Blake, A.; Cherup, J.; Sheridan, J.; Wu, T.; Bielekova, B. Pharmacodynamic Effects of Daclizumab in the Intrathecal Compartment. Ann. Clin. Transl. Neurol. 2017, 4, 478–490. [Google Scholar] [CrossRef]
- Lucchini, M.; De Arcangelis, V.; Piro, G.; Nociti, V.; Bianco, A.; De Fino, C.; Di Sante, G.; Ria, F.; Calabresi, P.; Mirabella, M. CSF CXCL13 and Chitinase 3-like-1 Levels Predict Disease Course in Relapsing Multiple Sclerosis. Mol. Neurobiol. 2023, 60, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Sellebjerg, F.; Royen, L.; Soelberg Sørensen, P.; Oturai, A.B.; Jensen, P.E.H. Prognostic Value of Cerebrospinal Fluid Neurofilament Light Chain and Chitinase-3-like-1 in Newly Diagnosed Patients with Multiple Sclerosis. Mult. Scler. 2019, 25, 1444–1451. [Google Scholar] [CrossRef] [PubMed]
- Varhaug, K.N.; Barro, C.; Bjørnevik, K.; Myhr, K.-M.; Torkildsen, Ø.; Wergeland, S.; Bindoff, L.A.; Kuhle, J.; Vedeler, C. Neurofilament Light Chain Predicts Disease Activity in Relapsing-Remitting MS. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e422. [Google Scholar] [CrossRef]
- Fino, C.D.; Lucchini, M.; Lucchetti, D.; Nociti, V.; Losavio, F.A.; Bianco, A.; Colella, F.; Ricciardi-Tenore, C.; Sgambato, A.; Mirabella, M. The Predictive Value of CSF Multiple Assay in Multiple Sclerosis: A Single Center Experience. Multiple Sclerosis and Related Disorders 2019, 35, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Lereim, R.R.; Nytrova, P.; Guldbrandsen, A.; Havrdova, E.K.; Myhr, K.-M.; Barsnes, H.; Berven, F.S. Natalizumab Promotes Anti-Inflammatory and Repair Effects in Multiple Sclerosis. PLoS ONE 2024, 19, e0300914. [Google Scholar] [CrossRef] [PubMed]
- Matute-Blanch, C.; Río, J.; Villar, L.M.; Midaglia, L.; Malhotra, S.; Álvarez-Cermeño, J.C.; Vidal-Jordana, A.; Montalban, X.; Comabella, M. Chitinase 3-like 1 Is Associated with the Response to Interferon-Beta Treatment in Multiple Sclerosis. J. Neuroimmunol. 2017, 303, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Schrempf, W.; Ziemssen, T. Glatiramer Acetate: Mechanisms of Action in Multiple Sclerosis. Autoimmun. Rev. 2007, 6, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Håkansson, I.; Tisell, A.; Cassel, P.; Blennow, K.; Zetterberg, H.; Lundberg, P.; Dahle, C.; Vrethem, M.; Ernerudh, J. Neurofilament Light Chain in Cerebrospinal Fluid and Prediction of Disease Activity in Clinically Isolated Syndrome and Relapsing–Remitting Multiple Sclerosis. Eur. J. Neurol. 2017, 24, 703–712. [Google Scholar] [CrossRef]
- Sellebjerg, F.; Börnsen, L.; Ammitzbøll, C.; Nielsen, J.E.; Vinther-Jensen, T.; Hjermind, L.E.; von Essen, M.; Ratzer, R.L.; Soelberg Sørensen, P.; Romme Christensen, J. Defining Active Progressive Multiple Sclerosis. Mult. Scler. 2017, 23, 1727–1735. [Google Scholar] [CrossRef]
- Masvekar, R.; Phillips, J.; Komori, M.; Wu, T.; Bielekova, B. Cerebrospinal Fluid Biomarkers of Myeloid and Glial Cell Activation Are Correlated With Multiple Sclerosis Lesional Inflammatory Activity. Front. Neurosci. 2021, 15, 649876. [Google Scholar] [CrossRef]
- Schneider, R.; Bellenberg, B.; Gisevius, B.; Hirschberg, S.; Sankowski, R.; Prinz, M.; Gold, R.; Lukas, C.; Haghikia, A. Chitinase 3-like 1 and Neurofilament Light Chain in CSF and CNS Atrophy in MS. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e906. [Google Scholar] [CrossRef] [PubMed]
- Abdelhak, A.; Hottenrott, T.; Morenas-Rodríguez, E.; Suárez-Calvet, M.; Zettl, U.K.; Haass, C.; Meuth, S.G.; Rauer, S.; Otto, M.; Tumani, H.; et al. Glial Activation Markers in CSF and Serum From Patients With Primary Progressive Multiple Sclerosis: Potential of Serum GFAP as Disease Severity Marker? Front. Neurol. 2019, 10, 280. [Google Scholar] [CrossRef] [PubMed]
- Uysal, S.; Meriç Yilmaz, F.; Boğdaycioğlu, N.; Mungan Öztürk, S.; Ak, F. Increased Serum Levels of Some Inflammatory Markers in Patients with Multiple Sclerosis. Minerva Med. 2014, 105, 229–235. [Google Scholar]
- Madill, E.; Healy, B.C.; Molazadeh, N.; Polgar-Turcsanyi, M.; Glanz, B.I.; Weiner, H.L.; Chitnis, T. Serum Glial Fibrillary Acidic Protein Predicts Disease Progression in Multiple Sclerosis. Ann. Clin. Transl. Neurol. 2024, 11, 2719–2730. [Google Scholar] [CrossRef] [PubMed]
- Fissolo, N.; Benkert, P.; Sastre-Garriga, J.; Mongay-Ochoa, N.; Vilaseca-Jolonch, A.; Llufriu, S.; Blanco, Y.; Hegen, H.; Berek, K.; Perez-Miralles, F.; et al. Serum Biomarker Levels Predict Disability Progression in Patients with Primary Progressive Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2024, 95, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Åkesson, J.; Hojjati, S.; Hellberg, S.; Raffetseder, J.; Khademi, M.; Rynkowski, R.; Kockum, I.; Altafini, C.; Lubovac-Pilav, Z.; Mellergård, J.; et al. Proteomics Reveal Biomarkers for Diagnosis, Disease Activity and Long-Term Disability Outcomes in Multiple Sclerosis. Nat Commun 2023, 14, 6903. [Google Scholar] [CrossRef] [PubMed]
- Lamancová, P.; Urban, P.; Mašlanková, J.; Rabajdová, M.; Mareková, M. Correlation of Selected Serum Protein Levels with the Degree of Disability and NEDA-3 Status in Multiple Sclerosis Phenotypes. Eur Rev Med Pharmacol Sci 2022, 26, 3933–3941. [Google Scholar] [CrossRef]
- Magliozzi, R.; Mazziotti, V.; Montibeller, L.; Pisani, A.I.; Marastoni, D.; Tamanti, A.; Rossi, S.; Crescenzo, F.; Calabrese, M. Cerebrospinal Fluid IgM Levels in Association With Inflammatory Pathways in Multiple Sclerosis Patients. Front. Cell. Neurosci. 2020, 14, 569827. [Google Scholar] [CrossRef] [PubMed]
- Quintana, E.; Coll, C.; Salavedra-Pont, J.; Muñoz-San Martín, M.; Robles-Cedeño, R.; Tomàs-Roig, J.; Buxó, M.; Matute-Blanch, C.; Villar, L.M.; Montalban, X.; et al. Cognitive Impairment in Early Stages of Multiple Sclerosis Is Associated with High Cerebrospinal Fluid Levels of Chitinase 3-like 1 and Neurofilament Light Chain. Eur. J. Neurol. 2018, 25, 1189–1191. [Google Scholar] [CrossRef]
- Świderek-Matysiak, M.; Oset, M.; Domowicz, M.; Galazka, G.; Namiecińska, M.; Stasiołek, M. Cerebrospinal Fluid Biomarkers in Differential Diagnosis of Multiple Sclerosis and Systemic Inflammatory Diseases with Central Nervous System Involvement. Biomedicines 2023, 11, 425. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Miralles, F.; Prefasi, D.; García-Merino, A.; Gascón-Giménez, F.; Medrano, N.; Castillo-Villalba, J.; Cubas, L.; Alcalá, C.; Gil-Perotín, S.; Gómez-Ballesteros, R.; et al. CSF Chitinase 3-like-1 Association with Disability of Primary Progressive MS. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e815. [Google Scholar] [CrossRef]
- Tamam, Y.; Gunes, B.; Akbayir, E.; Kizilay, T.; Karaaslan, Z.; Koral, G.; Duzel, B.; Kucukali, C.I.; Gunduz, T.; Kurtuncu, M.; et al. CSF Levels of HoxB3 and YKL-40 May Predict Conversion from Clinically Isolated Syndrome to Relapsing Remitting Multiple Sclerosis. Mult. Scler. Relat. Disord. 2021, 48, 102697. [Google Scholar] [CrossRef]
- Momtazmanesh, S.; Shobeiri, P.; Saghazadeh, A.; Teunissen, C.E.; Burman, J.; Szalardy, L.; Klivenyi, P.; Bartos, A.; Fernandes, A.; Rezaei, N. Neuronal and Glial CSF Biomarkers in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Rev. Neurosci. 2021, 32, 573–595. [Google Scholar] [CrossRef] [PubMed]
- Ruder, J.; Dinner, G.; Maceski, A.; Berenjeno-Correa, E.; Müller, A.M.; Jelcic, I.; Kuhle, J.; Martin, R. Dynamics of Inflammatory and Neurodegenerative Biomarkers after Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. Int. J. Mol. Sci. 2022, 23, 10946. [Google Scholar] [CrossRef]
- Oset, M.; Domowicz, M.; Wildner, P.; Siger, M.; Karlińska, I.; Stasiołek, M.; Świderek-Matysiak, M. Predictive Value of Brain Atrophy, Serum Biomarkers and Information Processing Speed for Early Disease Progression in Multiple Sclerosis. Front. Neurol. 2023, 14, 1223220. [Google Scholar] [CrossRef]
- Bojesen, S.E.; Johansen, J.S.; Nordestgaard, B.G. Plasma YKL-40 Levels in Healthy Subjects from the General Population. Clin. Chim. Acta 2011, 412, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Johansen, J.S.; Stoltenberg, M.; Hansen, M.; Florescu, A.; Hørslev-Petersen, K.; Lorenzen, I.; Price, P.A. Serum YKL-40 Concentrations in Patients with Rheumatoid Arthritis: Relation to Disease Activity. Rheumatology 1999, 38, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Schultz, N.A.; Johansen, J.S. YKL-40—A Protein in the Field of Translational Medicine: A Role as a Biomarker in Cancer Patients? Cancers 2010, 2, 1453–1491. [Google Scholar] [CrossRef] [PubMed]
- Modvig, S.; Degn, M.; Horwitz, H.; Cramer, S.P.; Larsson, H.B.W.; Wanscher, B.; Sellebjerg, F.; Frederiksen, J.L. Relationship between Cerebrospinal Fluid Biomarkers for Inflammation, Demyelination and Neurodegeneration in Acute Optic Neuritis. PLoS ONE 2013, 8, e77163. [Google Scholar] [CrossRef]
- Khalil, M.; Pirpamer, L.; Hofer, E.; Voortman, M.M.; Barro, C.; Leppert, D.; Benkert, P.; Ropele, S.; Enzinger, C.; Fazekas, F.; et al. Serum Neurofilament Light Levels in Normal Aging and Their Association with Morphologic Brain Changes. Nat. Commun. 2020, 11, 812. [Google Scholar] [CrossRef] [PubMed]
- Vågberg, M.; Norgren, N.; Dring, A.; Lindqvist, T.; Birgander, R.; Zetterberg, H.; Svenningsson, A. Levels and Age Dependency of Neurofilament Light and Glial Fibrillary Acidic Protein in Healthy Individuals and Their Relation to the Brain Parenchymal Fraction. PLoS ONE 2015, 10, e0135886. [Google Scholar] [CrossRef] [PubMed]
- Harp, C.; Thanei, G.-A.; Jia, X.; Kuhle, J.; Leppert, D.; Schaedelin, S.; Benkert, P.; von Büdingen, H.-C.; Hendricks, R.; Herman, A. Development of an Age-Adjusted Model for Blood Neurofilament Light Chain. Ann. Clin. Transl. Neurol. 2022, 9, 444–453. [Google Scholar] [CrossRef]
- Lycke, J.N.; Karlsson, J.E.; Andersen, O.; Rosengren, L.E. Neurofilament Protein in Cerebrospinal Fluid: A Potential Marker of Activity in Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 1998, 64, 402–404. [Google Scholar] [CrossRef] [PubMed]
- Malmeström, C.; Haghighi, S.; Rosengren, L.; Andersen, O.; Lycke, J. Neurofilament Light Protein and Glial Fibrillary Acidic Protein as Biological Markers in MS. Neurology 2003, 61, 1720–1725. [Google Scholar] [CrossRef]
- Rosengren, L.E.; Wikkelsø, C.; Hagberg, L. A Sensitive ELISA for Glial Fibrillary Acidic Protein: Application in CSF of Adults. J. Neurosci. Methods 1994, 51, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Di Rosa, M.; Tibullo, D.; Saccone, S.; Distefano, G.; Basile, M.S.; Di Raimondo, F.; Malaguarnera, L. CHI3L1 Nuclear Localization in Monocyte Derived Dendritic Cells. Immunobiology 2016, 221, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Jatczak-Pawlik, I.; Ewiak-Paszyńska, A.; Domowicz, M.; Jurewicz, A.; Stasiołek, M. Intracellular Accumulation and Secretion of YKL-40 (CHI3L1) in the Course of DMSO-Induced HL-60 Cell Differentiation. Pharmaceuticals 2024, 17, 443. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Park, H.-J.; Lim, S.; Koo, J.-H.; Lee, H.-G.; Choi, J.O.; Oh, J.H.; Ha, S.-J.; Kang, M.-J.; Lee, C.-M.; et al. Regulation of Chitinase-3-like-1 in T Cell Elicits Th1 and Cytotoxic Responses to Inhibit Lung Metastasis. Nat. Commun. 2018, 9, 503. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, S.; Wang, Q.; Zhang, X. Tumor-Recruited M2 Macrophages Promote Gastric and Breast Cancer Metastasis via M2 Macrophage-Secreted CHI3L1 Protein. J. Hematol. Oncol 2017, 10, 36. [Google Scholar] [CrossRef]
- Yeo, I.J.; Lee, C.-K.; Han, S.-B.; Yun, J.; Hong, J.T. Roles of Chitinase 3-like 1 in the Development of Cancer, Neurodegenerative Diseases, and Inflammatory Diseases. Pharmacol. Ther. 2019, 203, 107394. [Google Scholar] [CrossRef]
- Starossom, S.C.; Campo Garcia, J.; Woelfle, T.; Romero-Suarez, S.; Olah, M.; Watanabe, F.; Cao, L.; Yeste, A.; Tukker, J.J.; Quintana, F.J.; et al. Chi3l3 Induces Oligodendrogenesis in an Experimental Model of Autoimmune Neuroinflammation. Nat. Commun. 2019, 10, 217. [Google Scholar] [CrossRef] [PubMed]
- Bonneh-Barkay, D.; Wang, G.; LaFramboise, W.A.; Wiley, C.A.; Bissel, S.J. Exacerbation of Experimental Autoimmune Encephalomyelitis in the Absence of Breast Regression Protein-39/Chitinase 3-like-1. J. Neuropathol. Exp. Neurol. 2012, 71, 948–958. [Google Scholar] [CrossRef]
- Cantó, E.; Espejo, C.; Costa, C.; Montalban, X.; Comabella, M. Breast Regression Protein-39 Is Not Required for Experimental Autoimmune Encephalomyelitis Induction. Clin. Immunol. 2015, 160, 133–141. [Google Scholar] [CrossRef] [PubMed]
IFNβ | Mitoxantron | GA | Daclizumab | Natalizumab | Fingolimod | ||
---|---|---|---|---|---|---|---|
Switched from IFNβ | Switched from Natalizumab | ||||||
CSF | Decrease [74] | Decrease [76] | — | Decrease [106] | Decrease [74,76,98,111] | Decrease [75] | Increase [75] |
Serum | Increase [112] * | Without changes [76] | Increase [112] ** | — | — | — | — |
Without changes [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jatczak-Pawlik, I.; Jurewicz, A.; Domowicz, M.; Ewiak-Paszyńska, A.; Stasiołek, M. CHI3L1 in Multiple Sclerosis—From Bench to Clinic. Cells 2024, 13, 2086. https://doi.org/10.3390/cells13242086
Jatczak-Pawlik I, Jurewicz A, Domowicz M, Ewiak-Paszyńska A, Stasiołek M. CHI3L1 in Multiple Sclerosis—From Bench to Clinic. Cells. 2024; 13(24):2086. https://doi.org/10.3390/cells13242086
Chicago/Turabian StyleJatczak-Pawlik, Izabela, Anna Jurewicz, Małgorzata Domowicz, Alicja Ewiak-Paszyńska, and Mariusz Stasiołek. 2024. "CHI3L1 in Multiple Sclerosis—From Bench to Clinic" Cells 13, no. 24: 2086. https://doi.org/10.3390/cells13242086
APA StyleJatczak-Pawlik, I., Jurewicz, A., Domowicz, M., Ewiak-Paszyńska, A., & Stasiołek, M. (2024). CHI3L1 in Multiple Sclerosis—From Bench to Clinic. Cells, 13(24), 2086. https://doi.org/10.3390/cells13242086