Phase Separation Mediated Sub-Nuclear Compartmentalization of Androgen Receptors
Abstract
:1. Introduction
2. Androgen Receptor-Mediated Gene Transcription
3. Spatial Organization and Androgen Receptor Function
4. Androgen Receptor Mode of Action in the Context of the 3D Genome
5. Androgen Receptor Foci: Phase-Separated Gene Transcription Regulatory Hubs?
6. Therapeutic Targeting of the AR’s LLPS Capacity in Disease
7. Conclusions
8. Knowledge Gaps
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lamont, K.R.; Tindall, D.J. Androgen Regulation of Gene Expression. Adv. Cancer Res. 2010, 107, 137–162. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- van Royen, M.E.; van Cappellen, W.A.; de Vos, C.; Houtsmuller, A.B.; Trapman, J. Stepwise Androgen Receptor Dimerization. J. Cell Sci. 2012, 125, 1970–1979. [Google Scholar] [CrossRef]
- van Royen, M.E.; Cunha, S.M.; Brink, M.C.; Mattern, K.A.; Nigg, A.L.; Dubbink, H.J.; Verschure, P.J.; Trapman, J.; Houtsmuller, A.B. Compartmentalization of Androgen Receptor Protein–Protein Interactions in Living Cells. J. Cell Biol. 2007, 177, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Martins, V.R.; Pratt, W.B.; Terracio, L.; Hirst, M.A.; Ringold, G.M.; Housley, P.R. Demonstration by Confocal Microscopy That Unliganded Overexpressed Glucocorticoid Receptors Are Distributed in a Nonrandom Manner throughout All Planes of the Nucleus. Mol. Endocrinol. 1991, 5, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Isola, J.J. The Effect of Progesterone on the Localization of Progesterone Receptors in the Nuclei of Chick Oviduct Cells. Cell Tissue Res. 1987, 249, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Nin, G.H.; Echeverría, O.M.; Fakan, S.; Traish, A.M.; Wotiz, H.H.; Martin, T.E. Immunoelectron Microscopic Localization of Estrogen Receptor on Pre-MRNA Containing Constituents of Rat Uterine Cell Nuclei. Exp. Cell Res. 1991, 192, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; He, H.; Kong, W.; Li, Z.; Gao, Z.; Xie, D.; Sun, L.; Fan, X.; Jiang, X.; Zheng, Q.; et al. Targeting Androgen Receptor Phase Separation to Overcome Antiandrogen Resistance. Nat. Chem. Biol. 2022, 18, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Farla, P.; Hersmus, R.; Trapman, J.; Houtsmuller, A.B. Antiandrogens Prevent Stable DNA-Binding of the Androgen Receptor. J. Cell Sci. 2005, 118, 4187–4198. [Google Scholar] [CrossRef]
- Huggins, C.; Hodges, C.V. Studies on Prostatic Cancer: I. The Effect of Castration, of Estrogen and of Androgen Injection on Serum Phosphatases in Metastatic Carcinoma of the Prostate. J. Urol. 2002, 168, 9–12. [Google Scholar] [CrossRef]
- Crawford, E.D.; Hou, A.H. The Role of LHRH Antagonists in the Treatment of Prostate Cancer. Oncology 2009, 23, 626–630. [Google Scholar] [PubMed]
- Yavuz, S.; Kabbech, H.; van Staalduinen, J.; Linder, S.; van Cappellen, W.A.; Nigg, A.L.; Abraham, T.E.; Slotman, J.A.; Quevedo, M.; Poot, R.A.; et al. Compartmentalization of Androgen Receptors at Endogenous Genes in Living Cells. Nucleic Acids Res. 2023, 51, 10992–11009. [Google Scholar] [CrossRef] [PubMed]
- Davey, R.A.; Grossmann, M. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin. Biochem. Rev. 2016, 37, 3–15. [Google Scholar]
- Mayayo-Peralta, I.; Gregoricchio, S.; Schuurman, K.; Yavuz, S.; Zaalberg, A.; Kojic, A.; Abbott, N.; Geverts, B.; Beerthuijzen, S.; Siefert, J.; et al. PAXIP1 and STAG2 Converge to Maintain 3D Genome Architecture and Facilitate Promoter/Enhancer Contacts to Enable Stress Hormone-Dependent Transcription. Nucleic Acids Res. 2023, 51, 9576–9593. [Google Scholar] [CrossRef]
- Heemers, H.V.; Tindall, D.J. Androgen Receptor (AR) Coregulators: A Diversity of Functions Converging on and Regulating the AR Transcriptional Complex. Endocr. Rev. 2007, 28, 778–808. [Google Scholar] [CrossRef] [PubMed]
- Menon, T.; Yates, J.A.; Bochar, D.A. Regulation of Androgen-Responsive Transcription by the Chromatin Remodeling Factor CHD8. Mol. Endocrinol. 2010, 24, 1165–1174. [Google Scholar] [CrossRef]
- Jin, F.; Claessens, F.; Fondell, J.D. Regulation of Androgen Receptor-Dependent Transcription by Coactivator MED1 Is Mediated through a Newly Discovered Noncanonical Binding Motif. J. Biol. Chem. 2012, 287, 858–870. [Google Scholar] [CrossRef]
- Meyer, R.; Wolf, S.S.; Obendorf, M. PRMT2, a Member of the Protein Arginine Methyltransferase Family, Is a Coactivator of the Androgen Receptor. J. Steroid Biochem. Mol. Biol. 2007, 107, 1–14. [Google Scholar] [CrossRef]
- Cirillo, L.A.; Lin, F.R.; Cuesta, I.; Friedman, D.; Jarnik, M.; Zaret, K.S. Opening of Compacted Chromatin by Early Developmental Transcription Factors HNF3 (FoxA) and GATA-4. Mol. Cell 2002, 9, 279–289. [Google Scholar] [CrossRef]
- Heinlein, C.A.; Chang, C. Androgen Receptor (AR) Coregulators: An Overview. Endocr. Rev. 2002, 23, 175–200. [Google Scholar] [CrossRef]
- Xu, J.; Li, Q. Review of the in Vivo Functions of the P160 Steroid Receptor Coactivator Family. Mol. Endocrinol. 2003, 17, 1681–1692. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-Q.; Li, J.; Sachs, L.M.; Cole, P.A.; Wong, J. A Role for Cofactor-Cofactor and Cofactor-Histone Interactions in Targeting P300, SWI/SNF and Mediator for Transcription. EMBO J. 2003, 22, 2146–2155. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Wang, C.; Reutens, A.T.; Wang, J.; Angeletti, R.H.; Siconolfi-Baez, L.; Ogryzko, V.; Avantaggiati, M.L.; Pestell, R.G. P300 and P300/CAMP-Response Element-Binding Protein-Associated Factor Acetylate the Androgen Receptor at Sites Governing Hormone-Dependent Transactivation. J. Biol. Chem. 2000, 275, 20853–20860. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.B.; Supakar, A.; Ranganath, A.K.; Moosa, M.M.; Banerjee, P.R. Heterotypic Interactions Can Drive Selective Co-Condensation of Prion-like Low-Complexity Domains of FET Proteins and Mammalian SWI/SNF Complex. Nat. Commun. 2024, 15, 1168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Biswas, M.; Massah, S.; Lee, J.; Lingadahalli, S.; Wong, S.; Wells, C.; Foo, J.; Khan, N.; Morin, H.; et al. Dynamic Phase Separation of the Androgen Receptor and Its Coactivators Key to Regulate Gene Expression. Nucleic Acids Res. 2023, 51, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Houtsmuller, A.B.; Rademakers, S.; Nigg, A.L.; Hoogstraten, D.; J., J.H.; Hoeijmakers; Vermeulen, W. Action of DNA Repair Endonuclease ERCC1/XPF in Living Cells. Science 1999, 284, 958–961. [Google Scholar] [CrossRef]
- Tokunaga, M.; Imamoto, N.; Sakata-Sogawa, K. Highly Inclined Thin Illumination Enables Clear Single-Molecule Imaging in Cells. Nat. Methods 2008, 5, 159–161. [Google Scholar] [CrossRef]
- Rigler, R. Fluorescence Correlations, Single Molecule Detection and Large Number Screening. Applications in Biotechnology. J. Biotechnol. 1995, 41, 177–186. [Google Scholar] [CrossRef]
- Van Royen, M.E.; van Cappellen, W.A.; Geverts, B.; Schmidt, T.; Houtsmuller, A.B.; Schaaf, M.J.M. Androgen Receptor Complexes Probe DNA for Recognition Sequences by Short Random Interactions. J. Cell Sci. 2014, 127, 1406–1416. [Google Scholar] [CrossRef]
- Phair, R.D.; Misteli, T. High Mobility of Proteins in the Mammalian Cell Nucleus. Nature 2000, 404, 604–609. [Google Scholar] [CrossRef]
- van Royen, M.E.; Farla, P.; Mattern, K.A.; Geverts, B.; Trapman, J.; Houtsmuller, A.B. Fluorescence Recovery After Photobleaching (FRAP) to Study Nuclear Protein Dynamics in Living Cells. In Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2008; pp. 363–385. [Google Scholar]
- Stortz, M.; Pecci, A.; Presman, D.M.; Levi, V. Unraveling the Molecular Interactions Involved in Phase Separation of Glucocorticoid Receptor. BMC Biol. 2020, 18, 59. [Google Scholar] [CrossRef] [PubMed]
- Tanida, T.; Matsuda, K.I.; Uemura, T.; Yamaguchi, T.; Hashimoto, T.; Kawata, M.; Tanaka, M. Subcellular Dynamics of Estrogen-Related Receptors Involved in Transrepression through Interactions with Scaffold Attachment Factor B1. Histochem. Cell Biol. 2021, 156, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Spector, D.L.; Lamond, A.I. Nuclear Speckles. Cold Spring Harb. Perspect. Biol. 2011, 3, a000646. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Brzostek, S.; Lee, S.R.; Hollenberg, A.N.; Balk, S.P. Inhibition of the Dihydrotestosterone-Activated Androgen Receptor by Nuclear Receptor Corepressor. Mol. Endocrinol. 2002, 16, 1492–1501. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; Chen, L.-Y.; Zhang, A.; Godavarthy, A.; Xia, F.; Ghosh, J.C.; Li, H.; Chen, J.D. Regulation of Androgen Receptor Activity by the Nuclear Receptor Corepressor SMRT. J. Biol. Chem. 2003, 278, 5052–5061. [Google Scholar] [CrossRef]
- Karvonen, U.; Jänne, O.A.; Palvimo, J.J. Androgen Receptor Regulates Nuclear Trafficking and Nuclear Domain Residency of Corepressor HDAC7 in a Ligand-Dependent Fashion. Exp. Cell Res. 2006, 312, 3165–3183. [Google Scholar] [CrossRef]
- Jones, P.L.; Shi, Y.B. N-CoR-HDAC Corepressor Complexes: Roles in Transcriptional Regulation by Nuclear Hormone Receptors. Curr. Top. Microbiol. Immunol. 2003, 274, 237–268. [Google Scholar] [CrossRef]
- Gronemeyer, H.; Laudet, V. Transcription Factors 3: Nuclear Receptors. Protein Profile 1995, 2, 1173–1308. [Google Scholar] [PubMed]
- Germain, P.; Staels, B.; Dacquet, C.; Spedding, M.; Laudet, V. Overview of Nomenclature of Nuclear Receptors. Pharmacol. Rev. 2006, 58, 685–704. [Google Scholar] [CrossRef] [PubMed]
- Jenster, G.; van der Korput, H.A.G.M.; Trapman, J.; Brinkmann, A.O. Identification of Two Transcription Activation Units in the N-Terminal Domain of the Human Androgen Receptor. J. Biol. Chem. 1995, 270, 7341–7346. [Google Scholar] [CrossRef]
- Özgün, F.; Kaya, Z.; Morova, T.; Geverts, B.; Abraham, T.E.; Houtsmuller, A.B.; van Royen, M.E.; Lack, N.A. DNA Binding Alters ARv7 Dimer Interactions. J. Cell Sci. 2021, 134, jcs258332. [Google Scholar] [CrossRef] [PubMed]
- Farla, P.; Hersmus, R.; Geverts, B.; Mari, P.O.; Nigg, A.L.; Dubbink, H.J.; Trapman, J.; Houtsmuller, A.B. The Androgen Receptor Ligand-Binding Domain Stabilizes DNA Binding in Living Cells. J. Struct. Biol. 2004, 147, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Kaku, N.; Matsuda, K.; Tsujimura, A.; Kawata, M. Characterization of Nuclear Import of the Domain-Specific Androgen Receptor in Association with the Importin Alpha/Beta and Ran-Guanosine 5’-Triphosphate Systems. Endocrinology 2008, 149, 3960–3969. [Google Scholar] [CrossRef] [PubMed]
- Zoppi, S.; Marcelli, M.; Deslypere, J.P.; Griffin, J.E.; Wilson, J.D.; McPhaul, M.J. Amino Acid Substitutions in the DNA-Binding Domain of the Human Androgen Receptor Are a Frequent Cause of Receptor-Binding Positive Androgen Resistance. Mol. Endocrinol. 1992, 6, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Gast, A.; Neuschmid-Kaspar, F.; Klocker, H.; Cato, A.C.B. A Single Amino Acid Exchange Abolishes Dimerization of the Androgen Receptor and Causes Reifenstein Syndrome. Mol. Cell Endocrinol. 1995, 111, 93–98. [Google Scholar] [CrossRef]
- Schaaf, M.J.M.; Lewis-Tuffin, L.J.; Cidlowski, J.A. Ligand-Selective Targeting of the Glucocorticoid Receptor to Nuclear Subdomains Is Associated with Decreased Receptor Mobility. Mol. Endocrinol. 2005, 19, 1501–1515. [Google Scholar] [CrossRef]
- Matsuda, K.; Ochiai, I.; Nishi, M.; Kawata, M. Colocalization and Ligand-Dependent Discrete Distribution of the Estrogen Receptor (ER)α and ERβ. Mol. Endocrinol. 2002, 16, 2215–2230. [Google Scholar] [CrossRef]
- Sheikhhassani, V.; Scalvini, B.; Ng, J.; Heling, L.W.H.J.; Ayache, Y.; Evers, T.M.J.; Estébanez-Perpiñá, E.; McEwan, I.J.; Mashaghi, A. Topological Dynamics of an Intrinsically Disordered N-Terminal Domain of the Human Androgen Receptor. Protein Sci. 2022, 31, e4334. [Google Scholar] [CrossRef]
- Bohrer, L.R.; Liu, P.; Zhong, J.; Pan, Y.; Angstman, J.; Brand, L.J.; Dehm, S.M.; Huang, H. FOXO1 Binds to the TAU5 Motif and Inhibits Constitutively Active Androgen Receptor Splice Variants. Prostate 2013, 73, 1017–1027. [Google Scholar] [CrossRef]
- Basu, S.; Martínez-Cristóbal, P.; Frigolé-Vivas, M.; Pesarrodona, M.; Lewis, M.; Szulc, E.; Bañuelos, C.A.; Sánchez-Zarzalejo, C.; Bielskutė, S.; Zhu, J.; et al. Rational Optimization of a Transcription Factor Activation Domain Inhibitor. Nat. Struct. Mol. Biol. 2023, 30, 1958–1969. [Google Scholar] [CrossRef]
- Saitoh, M.; Takayanagi, R.; Goto, K.; Fukamizu, A.; Tomura, A.; Yanase, T.; Nawata, H. The Presence of Both the Amino- and Carboxyl-Terminal Domains in the AR Is Essential for the Completion of a Transcriptionally Active Form with Coactivators and Intranuclear Compartmentalization Common to the Steroid Hormone Receptors: A Three-Dimensional Imaging Study. Mol. Endocrinol. 2002, 16, 694–706. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Kawate, H.; Ohnaka, K.; Nawata, H.; Takayanagi, R. Nuclear Compartmentalization of N-CoR and Its Interactions with Steroid Receptors. Mol. Cell Biol. 2006, 26, 6633–6655. [Google Scholar] [CrossRef]
- Arnett-Mansfield, R.L.; Graham, J.D.; Hanson, A.R.; Mote, P.A.; Gompel, A.; Scurr, L.L.; Gava, N.; de Fazio, A.; Clarke, C.L. Focal Subnuclear Distribution of Progesterone Receptor Is Ligand Dependent and Associated with Transcriptional Activity. Mol. Endocrinol. 2007, 21, 14–29. [Google Scholar] [CrossRef]
- Stortz, M.; Presman, D.M.; Bruno, L.; Annibale, P.; Dansey, M.V.; Burton, G.; Gratton, E.; Pecci, A.; Levi, V. Mapping the Dynamics of the Glucocorticoid Receptor within the Nuclear Landscape. Sci. Rep. 2017, 7, 6219. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Liu, M.; Sauve, A.A.; Jiao, X.; Zhang, X.; Wu, X.; Powell, M.J.; Yang, T.; Gu, W.; Avantaggiati, M.L.; et al. Hormonal Control of Androgen Receptor Function through SIRT1. Mol. Cell Biol. 2006, 26, 8122–8135. [Google Scholar] [CrossRef]
- Wang, L.; Hsu, C.-L.; Chang, C. Androgen Receptor Corepressors: An Overview. Prostate 2005, 63, 117–130. [Google Scholar] [CrossRef]
- Yu, X.; Yi, P.; Hamilton, R.A.; Shen, H.; Chen, M.; Foulds, C.E.; Mancini, M.A.; Ludtke, S.J.; Wang, Z.; O’Malley, B.W. Structural Insights of Transcriptionally Active, Full-Length Androgen Receptor Coactivator Complexes. Mol. Cell 2020, 79, 812–823.e4. [Google Scholar] [CrossRef]
- Alen, P.; Claessens, F.; Verhoeven, G.; Rombauts, W.; Peeters, B. The Androgen Receptor Amino-Terminal Domain Plays a Key Role in P160 Coactivator-Stimulated Gene Transcription. Mol. Cell Biol. 1999, 19, 6085–6097. [Google Scholar] [CrossRef]
- He, B.; Kemppainen, J.A.; Voegel, J.J.; Gronemeyer, H.; Wilson, E.M. Activation Function 2 in the Human Androgen Receptor Ligand Binding Domain Mediates Interdomain Communication with the NH2-Terminal Domain. J. Biol. Chem. 1999, 274, 37219–37225. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.E.; Suino-Powell, K.M.; Li, J.; He, Y.; Mackeigan, J.P.; Melcher, K.; Yong, E.-L.; Xu, H.E. Identification of SRC3/AIB1 as a Preferred Coactivator for Hormone-Activated Androgen Receptor. J. Biol. Chem. 2010, 285, 9161–9171. [Google Scholar] [CrossRef]
- Marques, R.B.; Dits, N.F.; Erkens-Schulze, S.; van Ijcken, W.F.J.; van Weerden, W.M.; Jenster, G. Modulation of Androgen Receptor Signaling in Hormonal Therapy-Resistant Prostate Cancer Cell Lines. PLoS ONE 2011, 6, e23144. [Google Scholar] [CrossRef] [PubMed]
- Pfundt, R.; Smit, F.; Jansen, C.; Aalders, T.; Straatman, H.; van der Vliet, W.; Isaacs, J.; van Kessel, A.G.; Schalken, J. Identification of Androgen-Responsive Genes That Are Alternatively Regulated in Androgen-Dependent and Androgen-Independent Rat Prostate Tumors. Genes. Chromosom. Cancer 2005, 43, 273–283. [Google Scholar] [CrossRef]
- Li, H.; Lovci, M.T.; Kwon, Y.-S.; Rosenfeld, M.G.; Fu, X.-D.; Yeo, G.W. Determination of Tag Density Required for Digital Transcriptome Analysis: Application to an Androgen-Sensitive Prostate Cancer Model. Proc. Natl. Acad. Sci. USA 2008, 105, 20179–20184. [Google Scholar] [CrossRef]
- Carroll, J.S.; Liu, X.S.; Brodsky, A.S.; Li, W.; Meyer, C.A.; Szary, A.J.; Eeckhoute, J.; Shao, W.; Hestermann, E.V.; Geistlinger, T.R.; et al. Chromosome-Wide Mapping of Estrogen Receptor Binding Reveals Long-Range Regulation Requiring the Forkhead Protein FoxA1. Cell 2005, 122, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Welboren, W.-J.; van Driel, M.A.; Janssen-Megens, E.M.; van Heeringen, S.J.; Sweep, F.C.; Span, P.N.; Stunnenberg, H.G. ChIP-Seq of ERalpha and RNA Polymerase II Defines Genes Differentially Responding to Ligands. EMBO J. 2009, 28, 1418–1428. [Google Scholar] [CrossRef]
- Kuo, T.; Lew, M.J.; Mayba, O.; Harris, C.A.; Speed, T.P.; Wang, J.-C. Genome-Wide Analysis of Glucocorticoid Receptor-Binding Sites in Myotubes Identifies Gene Networks Modulating Insulin Signaling. Proc. Natl. Acad. Sci. USA 2012, 109, 11160–11165. [Google Scholar] [CrossRef]
- Yin, P.; Roqueiro, D.; Huang, L.; Owen, J.K.; Xie, A.; Navarro, A.; Monsivais, D.; Coon V, J.S.; Kim, J.J.; Dai, Y.; et al. Genome-Wide Progesterone Receptor Binding: Cell Type-Specific and Shared Mechanisms in T47D Breast Cancer Cells and Primary Leiomyoma Cells. PLoS ONE 2012, 7, e29021. [Google Scholar] [CrossRef]
- Kato, T.A. FISH with Whole Chromosome Painting Probes. Methods Mol. Biol. 2023, 2519, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Bolzer, A.; Kreth, G.; Solovei, I.; Koehler, D.; Saracoglu, K.; Fauth, C.; Müller, S.; Eils, R.; Cremer, C.; Speicher, M.R.; et al. Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes. PLoS Biol. 2005, 3, e157. [Google Scholar] [CrossRef]
- Dekker, J.; Rippe, K.; Dekker, M.; Kleckner, N. Capturing Chromosome Conformation. Science 2002, 295, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Tavoosidana, G.; Sjölinder, M.; Göndör, A.; Mariano, P.; Wang, S.; Kanduri, C.; Lezcano, M.; Singh Sandhu, K.; Singh, U.; et al. Circular Chromosome Conformation Capture (4C) Uncovers Extensive Networks of Epigenetically Regulated Intra- and Interchromosomal Interactions. Nat. Genet. 2006, 38, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Belton, J.-M.; McCord, R.P.; Gibcus, J.H.; Naumova, N.; Zhan, Y.; Dekker, J. Hi-C: A Comprehensive Technique to Capture the Conformation of Genomes. Methods 2012, 58, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Lieberman-Aiden, E.; van Berkum, N.L.; Williams, L.; Imakaev, M.; Ragoczy, T.; Telling, A.; Amit, I.; Lajoie, B.R.; Sabo, P.J.; Dorschner, M.O.; et al. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 2009, 326, 289–293. [Google Scholar] [CrossRef]
- Dixon, J.R.; Selvaraj, S.; Yue, F.; Kim, A.; Li, Y.; Shen, Y.; Hu, M.; Liu, J.S.; Ren, B. Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions. Nature 2012, 485, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Sexton, T.; Yaffe, E.; Kenigsberg, E.; Bantignies, F.; Leblanc, B.; Hoichman, M.; Parrinello, H.; Tanay, A.; Cavalli, G. Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome. Cell 2012, 148, 458–472. [Google Scholar] [CrossRef]
- Wutz, G.; Várnai, C.; Nagasaka, K.; Cisneros, D.A.; Stocsits, R.R.; Tang, W.; Schoenfelder, S.; Jessberger, G.; Muhar, M.; Hossain, M.J.; et al. Topologically Associating Domains and Chromatin Loops Depend on Cohesin and Are Regulated by CTCF, WAPL, and PDS5 Proteins. EMBO J. 2017, 36, 3573–3599. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, S.; Cui, K.; Tang, Q.; Zhao, K. Hi-TrAC Detects Active Sub-TADs and Reveals Internal Organizations of Super-Enhancers. Nucleic Acids Res. 2023, 51, 6172–6189. [Google Scholar] [CrossRef]
- Davidson, I.F.; Bauer, B.; Goetz, D.; Tang, W.; Wutz, G.; Peters, J.-M. DNA Loop Extrusion by Human Cohesin. Science 2019, 366, 1338–1345. [Google Scholar] [CrossRef]
- Altıntaş, U.B.; Seo, J.-H.; Giambartolomei, C.; Ozturan, D.; Fortunato, B.J.; Nelson, G.M.; Goldman, S.R.; Adelman, K.; Hach, F.; Freedman, M.L.; et al. Decoding the Epigenetics and Chromatin Loop Dynamics of Androgen Receptor-Mediated Transcription. bioRxiv 2023. [Google Scholar] [CrossRef]
- Taberlay, P.C.; Achinger-Kawecka, J.; Lun, A.T.L.; Buske, F.A.; Sabir, K.; Gould, C.M.; Zotenko, E.; Bert, S.A.; Giles, K.A.; Bauer, D.C.; et al. Three-Dimensional Disorganization of the Cancer Genome Occurs Coincident with Long-Range Genetic and Epigenetic Alterations. Genome Res. 2016, 26, 719–731. [Google Scholar] [CrossRef]
- Dong, H.-Y.; Ding, L.; Zhou, T.-R.; Yan, T.; Li, J.; Liang, C. FOXA1 in Prostate Cancer. Asian J. Androl. 2023, 25, 287–295. [Google Scholar] [CrossRef]
- Shah, N.; Brown, M. The Sly Oncogene: FOXA1 Mutations in Prostate Cancer. Cancer Cell 2019, 36, 119–121. [Google Scholar] [CrossRef]
- Ramanand, S.G.; Chen, Y.; Yuan, J.; Daescu, K.; Lambros, M.B.; Houlahan, K.E.; Carreira, S.; Yuan, W.; Baek, G.; Sharp, A.; et al. The Landscape of RNA Polymerase II-Associated Chromatin Interactions in Prostate Cancer. J. Clin. Investig. 2020, 130, 3987–4005. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, C.; Shen, Y.; Nephew, K.P.; Wang, Q. Androgen Receptor-Driven Chromatin Looping in Prostate Cancer. Trends Endocrinol. Metab. 2011, 22, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Tettey, T.T.; Rinaldi, L.; Hager, G.L. Long-Range Gene Regulation in Hormone-Dependent Cancer. Nat. Rev. Cancer 2023, 23, 657–672. [Google Scholar] [CrossRef]
- Zhang, Z.; Chng, K.R.; Lingadahalli, S.; Chen, Z.; Liu, M.H.; Do, H.H.; Cai, S.; Rinaldi, N.; Poh, H.M.; Li, G.; et al. An AR-ERG Transcriptional Signature Defined by Long-Range Chromatin Interactomes in Prostate Cancer Cells. Genome Res. 2019, 29, 223–235. [Google Scholar] [CrossRef]
- Stavreva, D.A.; Coulon, A.; Baek, S.; Sung, M.-H.; John, S.; Stixova, L.; Tesikova, M.; Hakim, O.; Miranda, T.; Hawkins, M.; et al. Dynamics of Chromatin Accessibility and Long-Range Interactions in Response to Glucocorticoid Pulsing. Genome Res. 2015, 25, 845–857. [Google Scholar] [CrossRef]
- D’Ippolito, A.M.; McDowell, I.C.; Barrera, A.; Hong, L.K.; Leichter, S.M.; Bartelt, L.C.; Vockley, C.M.; Majoros, W.H.; Safi, A.; Song, L.; et al. Pre-Established Chromatin Interactions Mediate the Genomic Response to Glucocorticoids. Cell Syst. 2018, 7, 146–160.e7. [Google Scholar] [CrossRef]
- Kocanova, S.; Raynal, F.; Goiffon, I.; Oksuz, B.A.; Baú, D.; Kamgoué, A.; Cantaloube, S.; Zhan, Y.; Lajoie, B.; Marti-Renom, M.A.; et al. Enhancer-Driven 3D Chromatin Domain Folding Modulates Transcription in Human Mammary Tumor Cells. Life Sci. Alliance 2024, 7, e202302154. [Google Scholar] [CrossRef]
- Barshad, G.; Lewis, J.J.; Chivu, A.G.; Abuhashem, A.; Krietenstein, N.; Rice, E.J.; Ma, Y.; Wang, Z.; Rando, O.J.; Hadjantonakis, A.-K.; et al. RNA Polymerase II Dynamics Shape Enhancer–Promoter Interactions. Nat. Genet. 2023, 55, 1370–1380. [Google Scholar] [CrossRef]
- Stelloo, S.; Bergman, A.M.; Zwart, W. Androgen Receptor Enhancer Usage and the Chromatin Regulatory Landscape in Human Prostate Cancers. Endocr. Relat. Cancer 2019, 26, R267–R285. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, L.; Fettweis, G.; Kim, S.; Garcia, D.A.; Fujiwara, S.; Johnson, T.A.; Tettey, T.T.; Ozbun, L.; Pegoraro, G.; Puglia, M.; et al. The Glucocorticoid Receptor Associates with the Cohesin Loader NIPBL to Promote Long-Range Gene Regulation. Sci. Adv. 2022, 8, eabj8360. [Google Scholar] [CrossRef]
- Vélot, L.; Lessard, F.; Bérubé-Simard, F.-A.; Tav, C.; Neveu, B.; Teyssier, V.; Boudaoud, I.; Dionne, U.; Lavoie, N.; Bilodeau, S.; et al. Proximity-Dependent Mapping of the Androgen Receptor Identifies Kruppel-like Factor 4 as a Functional Partner. Mol. Cell Proteom. 2021, 20, 100064. [Google Scholar] [CrossRef] [PubMed]
- van Schie, J.J.M.; de Lint, K.; Molenaar, T.M.; Moronta Gines, M.; Balk, J.A.; Rooimans, M.A.; Roohollahi, K.; Pai, G.M.; Borghuis, L.; Ramadhin, A.R.; et al. CRISPR Screens in Sister Chromatid Cohesion Defective Cells Reveal PAXIP1-PAGR1 as Regulator of Chromatin Association of Cohesin. Nucleic Acids Res. 2023, 51, 9594–9609. [Google Scholar] [CrossRef] [PubMed]
- Urbanucci, A.; Barfeld, S.J.; Kytölä, V.; Itkonen, H.M.; Coleman, I.M.; Vodák, D.; Sjöblom, L.; Sheng, X.; Tolonen, T.; Minner, S.; et al. Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer. Cell Rep. 2017, 19, 2045–2059. [Google Scholar] [CrossRef]
- Linares-Saldana, R.; Kim, W.; Bolar, N.A.; Zhang, H.; Koch-Bojalad, B.A.; Yoon, S.; Shah, P.P.; Karnay, A.; Park, D.S.; Luppino, J.M.; et al. BRD4 Orchestrates Genome Folding to Promote Neural Crest Differentiation. Nat. Genet. 2021, 53, 1480–1492. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Y.; Wang, L.; Zhang, J.; Karnes, R.J.; Kohli, M.; Wang, G.; Huang, H. Alterations of Androgen Receptor-Regulated Enhancer RNAs (ERNAs) Contribute to Enzalutamide Resistance in Castration-Resistant Prostate Cancer. Oncotarget 2016, 7, 38551–38565. [Google Scholar] [CrossRef]
- Hsieh, C.-L.; Fei, T.; Chen, Y.; Li, T.; Gao, Y.; Wang, X.; Sun, T.; Sweeney, C.J.; Lee, G.-S.M.; Chen, S.; et al. Enhancer RNAs Participate in Androgen Receptor-Driven Looping That Selectively Enhances Gene Activation. Proc. Natl. Acad. Sci. USA 2014, 111, 7319–7324. [Google Scholar] [CrossRef]
- Zhang, Y.; Pitchiaya, S.; Cieślik, M.; Niknafs, Y.S.; Tien, J.C.-Y.; Hosono, Y.; Iyer, M.K.; Yazdani, S.; Subramaniam, S.; Shukla, S.K.; et al. Analysis of the Androgen Receptor-Regulated LncRNA Landscape Identifies a Role for ARLNC1 in Prostate Cancer Progression. Nat. Genet. 2018, 50, 814–824. [Google Scholar] [CrossRef]
- Ghildiyal, R.; Sawant, M.; Renganathan, A.; Mahajan, K.; Kim, E.H.; Luo, J.; Dang, H.X.; Maher, C.A.; Feng, F.Y.; Mahajan, N.P. Loss of Long Noncoding RNA NXTAR in Prostate Cancer Augments Androgen Receptor Expression and Enzalutamide Resistance. Cancer Res. 2022, 82, 155–168. [Google Scholar] [CrossRef]
- Takayama, K.-I.; Fujimura, T.; Suzuki, Y.; Inoue, S. Identification of Long Non-Coding RNAs in Advanced Prostate Cancer Associated with Androgen Receptor Splicing Factors. Commun. Biol. 2020, 3, 393. [Google Scholar] [CrossRef] [PubMed]
- Misawa, A.; Takayama, K.; Urano, T.; Inoue, S. Androgen-Induced Long Noncoding RNA (LncRNA) SOCS2-AS1 Promotes Cell Growth and Inhibits Apoptosis in Prostate Cancer Cells. J. Biol. Chem. 2016, 291, 17861–17880. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-L.; Wang, L.-Y.; Yu, Y.-L.; Chen, H.-W.; Srivastava, S.; Petrovics, G.; Kung, H.-J. A Long Noncoding RNA Connects C-Myc to Tumor Metabolism. Proc. Natl. Acad. Sci. USA 2014, 111, 18697–18702. [Google Scholar] [CrossRef]
- Stelloo, S.; Nevedomskaya, E.; Kim, Y.; Schuurman, K.; Valle-Encinas, E.; Lobo, J.; Krijgsman, O.; Peeper, D.S.; Chang, S.L.; Feng, F.Y.-C.; et al. Integrative Epigenetic Taxonomy of Primary Prostate Cancer. Nat. Commun. 2018, 9, 4900. [Google Scholar] [CrossRef]
- Sharma, N.L.; Massie, C.E.; Ramos-Montoya, A.; Zecchini, V.; Scott, H.E.; Lamb, A.D.; MacArthur, S.; Stark, R.; Warren, A.Y.; Mills, I.G.; et al. The Androgen Receptor Induces a Distinct Transcriptional Program in Castration-Resistant Prostate Cancer in Man. Cancer Cell 2013, 23, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Toropainen, S.; Niskanen, E.A.; Malinen, M.; Sutinen, P.; Kaikkonen, M.U.; Palvimo, J.J. Global Analysis of Transcription in Castration-Resistant Prostate Cancer Cells Uncovers Active Enhancers and Direct Androgen Receptor Targets. Sci. Rep. 2016, 6, 33510. [Google Scholar] [CrossRef]
- Liu, G.; Sprenger, C.; Wu, P.-J.; Sun, S.; Uo, T.; Haugk, K.; Epilepsia, K.S.; Plymate, S. MED1 Mediates Androgen Receptor Splice Variant Induced Gene Expression in the Absence of Ligand. Oncotarget 2015, 6, 288–304. [Google Scholar] [CrossRef] [PubMed]
- Asangani, I.A.; Dommeti, V.L.; Wang, X.; Malik, R.; Cieslik, M.; Yang, R.; Escara-Wilke, J.; Wilder-Romans, K.; Dhanireddy, S.; Engelke, C.; et al. Therapeutic Targeting of BET Bromodomain Proteins in Castration-Resistant Prostate Cancer. Nature 2014, 510, 278–282. [Google Scholar] [CrossRef]
- Contreras-Martos, S.; Piai, A.; Kosol, S.; Varadi, M.; Bekesi, A.; Lebrun, P.; Volkov, A.N.; Gevaert, K.; Pierattelli, R.; Felli, I.C.; et al. Linking Functions: An Additional Role for an Intrinsically Disordered Linker Domain in the Transcriptional Coactivator CBP. Sci. Rep. 2017, 7, 4676. [Google Scholar] [CrossRef]
- Lavery, D.N.; McEwan, I.J. Functional Characterization of the Native NH 2 -Terminal Transactivation Domain of the Human Androgen Receptor: Binding Kinetics for Interactions with TFIIF and SRC-1a. Biochemistry 2008, 47, 3352–3359. [Google Scholar] [CrossRef]
- Boija, A.; Klein, I.A.; Sabari, B.R.; Dall’Agnese, A.; Coffey, E.L.; Zamudio, A.V.; Li, C.H.; Shrinivas, K.; Manteiga, J.C.; Hannett, N.M.; et al. Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains. Cell 2018, 175, 1842–1855.e16. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.A.; Johnson, T.A.; Presman, D.M.; Fettweis, G.; Wagh, K.; Rinaldi, L.; Stavreva, D.A.; Paakinaho, V.; Jensen, R.A.M.; Mandrup, S.; et al. An Intrinsically Disordered Region-Mediated Confinement State Contributes to the Dynamics and Function of Transcription Factors. Mol. Cell 2021, 81, 1484–1498.e6. [Google Scholar] [CrossRef]
- Nair, S.J.; Yang, L.; Meluzzi, D.; Oh, S.; Yang, F.; Friedman, M.J.; Wang, S.; Suter, T.; Alshareedah, I.; Gamliel, A.; et al. Phase Separation of Ligand-Activated Enhancers Licenses Cooperative Chromosomal Enhancer Assembly. Nat. Struct. Mol. Biol. 2019, 26, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Hyman, A.A.; Weber, C.A.; Jülicher, F. Liquid-Liquid Phase Separation in Biology. Annu. Rev. Cell Dev. Biol. 2014, 30, 39–58. [Google Scholar] [CrossRef]
- Ryu, J.-K.; Hwang, D.-E.; Choi, J.-M. Current Understanding of Molecular Phase Separation in Chromosomes. Int. J. Mol. Sci. 2021, 22, 10736. [Google Scholar] [CrossRef]
- Erdel, F.; Rippe, K. Formation of Chromatin Subcompartments by Phase Separation. Biophys. J. 2018, 114, 2262–2270. [Google Scholar] [CrossRef]
- Chong, S.; Dugast-Darzacq, C.; Liu, Z.; Dong, P.; Dailey, G.M.; Cattoglio, C.; Heckert, A.; Banala, S.; Lavis, L.; Darzacq, X.; et al. Imaging Dynamic and Selective Low-Complexity Domain Interactions That Control Gene Transcription. Science 2018, 361, eaar2555. [Google Scholar] [CrossRef]
- Romero, P.; Obradovic, Z.; Li, X.; Garner, E.C.; Brown, C.J.; Dunker, A.K. Sequence Complexity of Disordered Protein. Proteins 2001, 42, 38–48. [Google Scholar] [CrossRef]
- Wagh, K.; Garcia, D.A.; Upadhyaya, A. Phase Separation in Transcription Factor Dynamics and Chromatin Organization. Curr. Opin. Struct. Biol. 2021, 71, 148–155. [Google Scholar] [CrossRef]
- Riback, J.A.; Zhu, L.; Ferrolino, M.C.; Tolbert, M.; Mitrea, D.M.; Sanders, D.W.; Wei, M.-T.; Kriwacki, R.W.; Brangwynne, C.P. Composition-Dependent Thermodynamics of Intracellular Phase Separation. Nature 2020, 581, 209–214. [Google Scholar] [CrossRef]
- Alberti, S.; Gladfelter, A.; Mittag, T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell 2019, 176, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Kuang, J.; Li, P.; Zhai, Z.; Fan, Y.; Xu, H.; Zhao, C.; Li, W.; Li, X.; Liang, Z.; Huang, T.; et al. Exclusion of HDAC1/2 Complexes by Oncogenic Nuclear Condensates. Mol. Cancer 2024, 23, 85. [Google Scholar] [CrossRef] [PubMed]
- Giudice, J.; Jiang, H. Splicing Regulation through Biomolecular Condensates and Membraneless Organelles. Nat. Rev. Mol. Cell Biol. 2024, 25, 683–700. [Google Scholar] [CrossRef] [PubMed]
- Klosin, A.; Oltsch, F.; Harmon, T.; Honigmann, A.; Jülicher, F.; Hyman, A.A.; Zechner, C. Phase Separation Provides a Mechanism to Reduce Noise in Cells. Science 2020, 367, 464–468. [Google Scholar] [CrossRef]
- Ghamari, A.; van de Corput, M.P.C.; Thongjuea, S.; van Cappellen, W.A.; van Ijcken, W.; van Haren, J.; Soler, E.; Eick, D.; Lenhard, B.; Grosveld, F.G. In Vivo Live Imaging of RNA Polymerase II Transcription Factories in Primary Cells. Genes. Dev. 2013, 27, 767–777. [Google Scholar] [CrossRef]
- Russo, J.W.; Nouri, M.; Balk, S.P. Androgen Receptor Interaction with Mediator Complex Is Enhanced in Castration-Resistant Prostate Cancer by CDK7 Phosphorylation of MED1. Cancer Discov. 2019, 9, 1490–1492. [Google Scholar] [CrossRef]
- Jiang, P.; Hu, Q.; Ito, M.; Meyer, S.; Waltz, S.; Khan, S.; Roeder, R.G.; Zhang, X. Key Roles for MED1 LxxLL Motifs in Pubertal Mammary Gland Development and Luminal-Cell Differentiation. Proc. Natl. Acad. Sci. USA 2010, 107, 6765–6770. [Google Scholar] [CrossRef]
- Ahmed, J.; Meszaros, A.; Lazar, T.; Tompa, P. DNA–binding Domain as the Minimal Region Driving RNA–dependent Liquid–Liquid Phase Separation of Androgen Receptor. Protein Sci. 2021, 30, 1380–1392. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, L.; Dai, T.; Qin, Z.; Lu, H.; Zhang, L.; Zhou, F. Liquid-Liquid Phase Separation in Human Health and Diseases. Signal Transduct. Target. Ther. 2021, 6, 290. [Google Scholar] [CrossRef] [PubMed]
- Zbinden, A.; Pérez-Berlanga, M.; De Rossi, P.; Polymenidou, M. Phase Separation and Neurodegenerative Diseases: A Disturbance in the Force. Dev. Cell 2020, 55, 45–68. [Google Scholar] [CrossRef]
- Kroschwald, S.; Maharana, S.; Simon, A. Hexanediol: A Chemical Probe to Investigate the Material Properties of Membrane-Less Compartments. Matters 2017. [Google Scholar] [CrossRef]
- Barrientos, E.C.R.; Otto, T.A.; Mouton, S.N.; Steen, A.; Veenhoff, L.M. A Survey of the Specificity and Mechanism of 1,6 Hexanediol-Induced Disruption of Nuclear Transport. Nucleus 2023, 14, 2240139. [Google Scholar] [CrossRef]
- De Mol, E.; Fenwick, R.B.; Phang, C.T.W.; Buzón, V.; Szulc, E.; de la Fuente, A.; Escobedo, A.; García, J.; Bertoncini, C.W.; Estébanez-Perpiñá, E.; et al. EPI-001, A Compound Active against Castration-Resistant Prostate Cancer, Targets Transactivation Unit 5 of the Androgen Receptor. ACS Chem. Biol. 2016, 11, 2499–2505. [Google Scholar] [CrossRef] [PubMed]
- Maurice-Dror, C.; Le Moigne, R.; Vaishampayan, U.; Montgomery, R.B.; Gordon, M.S.; Hong, N.H.; DiMascio, L.; Perabo, F.; Chi, K.N. A Phase 1 Study to Assess the Safety, Pharmacokinetics, and Anti-Tumor Activity of the Androgen Receptor n-Terminal Domain Inhibitor Epi-506 in Patients with Metastatic Castration-Resistant Prostate Cancer. Investig. New Drugs 2022, 40, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Pachynski, R.K.; Iannotti, N.; Laccetti, A.L.; Carthon, B.C.; Chi, K.N.; Smith, M.R.; Vogelzang, N.J.; Tu, W.; Kwan, E.M.; Wyatt, A.W.; et al. Oral EPI-7386 in Patients with Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2023, 41, 177. [Google Scholar] [CrossRef]
- Laccetti, A.L.; Chatta, G.S.; Iannotti, N.; Kyriakopoulos, C.; Villaluna, K.; Le Moigne, R.; Cesano, A. Phase 1/2 Study of EPI-7386 in Combination with Enzalutamide (Enz) Compared with Enz Alone in Subjects with Metastatic Castration-Resistant Prostate Cancer (MCRPC). J. Clin. Oncol. 2023, 41, 179. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yavuz, S.; Abraham, T.E.; Houtsmuller, A.B.; van Royen, M.E. Phase Separation Mediated Sub-Nuclear Compartmentalization of Androgen Receptors. Cells 2024, 13, 1693. https://doi.org/10.3390/cells13201693
Yavuz S, Abraham TE, Houtsmuller AB, van Royen ME. Phase Separation Mediated Sub-Nuclear Compartmentalization of Androgen Receptors. Cells. 2024; 13(20):1693. https://doi.org/10.3390/cells13201693
Chicago/Turabian StyleYavuz, Selçuk, Tsion E. Abraham, Adriaan B. Houtsmuller, and Martin E. van Royen. 2024. "Phase Separation Mediated Sub-Nuclear Compartmentalization of Androgen Receptors" Cells 13, no. 20: 1693. https://doi.org/10.3390/cells13201693
APA StyleYavuz, S., Abraham, T. E., Houtsmuller, A. B., & van Royen, M. E. (2024). Phase Separation Mediated Sub-Nuclear Compartmentalization of Androgen Receptors. Cells, 13(20), 1693. https://doi.org/10.3390/cells13201693