Unraveling the Mystery of Energy-Sensing Enzymes and Signaling Pathways in Tumorigenesis and Their Potential as Therapeutic Targets for Cancer
Abstract
1. Introduction
2. Transcriptomic Profiling and Pathway Analysis
3. Shutting Down Mitochondrial Genes—Inhibition of Mitochondrial Biogenesis Pathways
4. Genes/Proteins Associated with Energy Sensing
4.1. Kinases, Enzymes, and Sensors of Energy Metabolism
4.2. Sirtuin, a Metabolic Sensor
4.3. Soluble Guanylyl Cyclase, an ATP Sensor
4.4. Phosphatidylinositol-5-phosphate 4-kinase-β, a GTP Sensor
4.5. Glucokinase, a Glucose Sensor
4.6. Glutamine Metabolism
5. Pathways Associated with Energy Sensors and Metabolism
5.1. AMPK Signaling Pathway
5.2. ERK/MAPK Signaling Pathway
5.3. HIF-1α Signaling Pathway
5.4. Glutamine and Glutaminergic Receptor Signaling Pathway
5.5. p53 Signaling Pathway
5.6. Autophagy Pathway
5.7. PI3K/AKT/mTOR Signaling Pathway
6. Therapeutic Routes Involving Targeting of Energy Sensing
6.1. Metabolic Therapy: The Inhibition of Tumor Cell Energy Metabolism
6.2. New Generation of Selective JAK Inhibitors
6.3. Nucleic Acid Sensing
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- WHO. Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 19 October 2022).
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Iommarini, L.; Ghelli, A.; Gasparre, G.; Porcelli, A.M. Mitochondrial metabolism and energy sensing in tumor progression. Biochim. Biophys. Acta BBA-Bioenerg. 2017, 1858, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Owen, O.E.; Kalhan, S.C.; Hanson, R.W. The key role of anaplerosis and cataplerosis for citric acid cycle function. J. Biol. Chem. 2002, 277, 30409–30412. [Google Scholar] [CrossRef] [PubMed]
- Schiliro, C.A.-O.; Firestein, B.A.-O. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells 2021, 10, 1056. [Google Scholar] [CrossRef]
- Shi, X.; Young, S.; Cai, K.; Yang, J.; Morahan, G. Cancer susceptibility genes: Update and systematic perspectives. Innovation 2022, 3, 100277. [Google Scholar] [CrossRef]
- Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef]
- Green, D.R.; Galluzzi, L.; Kroemer, G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 2011, 333, 1109–1112. [Google Scholar] [CrossRef]
- Wagner, A.; Kosnacova, H.; Chovanec, M.; Jurkovicova, D. Mitochondrial genetic and epigenetic regulations in cancer: Therapeutic potential. Int. J. Mol. Sci. 2022, 23, 7897. [Google Scholar] [CrossRef]
- Fuhrmann, D.C.; Brüne, B. Mitochondrial composition and function under the control of hypoxia. Redox Biol. 2017, 12, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Kopinski, P.K.; Singh, L.N.; Zhang, S.; Lott, M.T.; Wallace, D.C. Mitochondrial DNA variation and cancer. Nat. Rev. Cancer 2021, 21, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Hvinden, I.C.; Cadoux-Hudson, T.; Schofield, C.J.; McCullagh, J.S.O. Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep. Med. 2021, 2, 100469. [Google Scholar] [CrossRef]
- Sheehan, C.; Muir, A. The requirement for mitochondrial respiration in cancer varies with disease stage. PLoS Biol. 2022, 20, e3001800. [Google Scholar] [CrossRef]
- Ferreira, T.; Rodriguez, S. Mitochondrial DNA: Inherent complexities relevant to genetic analyses. Genes 2024, 15, 617. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Fan, G.; Shan, P.; Qiu, X.; Dong, S.; Liao, L.; Yu, C.; Wang, T.; Gu, X.; Li, Q.; et al. Regulation of energy homeostasis by the ubiquitin-independent regγ proteasome. Nat. Commun. 2016, 7, 12497. [Google Scholar] [CrossRef]
- Grummt, I.; Pikaard, C.S. Epigenetic silencing of rna polymerase i transcription. Nat. Rev. Mol. Cell Biol. 2003, 4, 641–649. [Google Scholar] [CrossRef]
- Murayama, A.; Ohmori, K.; Fujimura, A.; Minami, H.; Yasuzawa-Tanaka, K.; Kuroda, T.; Oie, S.; Daitoku, H.; Okuwaki, M.; Nagata, K.; et al. Epigenetic control of rdna loci in response to intracellular energy status. Cell 2008, 133, 627–639. [Google Scholar] [CrossRef]
- Jariel-Encontre, I.; Bossis, G.; Piechaczyk, M. Ubiquitin-independent degradation of proteins by the proteasome. Biochim. Biophys. Acta 2008, 1786, 153–177. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, M.S. Autophagy as a crosstalk mediator of metabolic organs in regulation of energy metabolism. Rev. Endocr. Metab. Disord. 2014, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Ralston, A. Simultaneous gene transcription and translation in bacteria. Nat. Educ. 2008, 1, 4. [Google Scholar]
- Scull, C.E.; Dandpat, S.S.; Romero, R.A.; Walter, N.G. Transcriptional riboswitches integrate timescales for bacterial gene expression control. Front. Mol. Biosci. 2020, 7, 607158. [Google Scholar] [CrossRef]
- Croteau, E.; Renaud, J.M.; Richard, M.A.; Ruddy, T.D.; Bénard, F.; deKemp, R.A. Pet metabolic biomarkers for cancer. Biomark. Cancer 2016, 8, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Flores, D.; Gripo, A.-A.; Rodríguez, A.-B.; Franco, L. Consequences of glucose enriched diet on oncologic patients. Appl. Sci. 2023, 13, 2757. [Google Scholar] [CrossRef]
- Wallace, D.C. Bioenergetics in human evolution and disease: Implications for the origins of biological complexity and the missing genetic variation of common diseases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20120267. [Google Scholar] [CrossRef]
- Kasperski, A.; Kasperska, R. Bioenergetics of life, disease and death phenomena. Theory Biosci. 2018, 137, 155–168. [Google Scholar] [CrossRef]
- Scagliola, A.; Mainini, F.; Cardaci, S. The tricarboxylic acid cycle at the crossroad between cancer and immunity. Antioxid. Redox Signal 2020, 32, 834–852. [Google Scholar] [CrossRef]
- Freyssenet, D. Energy sensing and regulation of gene expression in skeletal muscle. J. Appl. Physiol. 2007, 102, 529–540. [Google Scholar] [CrossRef]
- Sumita, K.; Lo, Y.H.; Takeuchi, K.; Senda, M.; Kofuji, S.; Ikeda, Y.; Terakawa, J.; Sasaki, M.; Yoshino, H.; Majd, N.; et al. The lipid kinase pi5p4kβ is an intracellular gtp sensor for metabolism and tumorigenesis. Mol. Cell 2016, 61, 187–198. [Google Scholar] [CrossRef]
- Takeuchi, K.; Senda, M.; Lo, Y.H.; Kofuji, S.; Ikeda, Y.; Sasaki, A.T.; Senda, T. Structural reverse genetics study of the pi5p4kβ-nucleotide complexes reveals the presence of the gtp bioenergetic system in mammalian cells. FEBS J. 2016, 283, 3556–3562. [Google Scholar] [CrossRef]
- Boison, D. Adenosine kinase: Exploitation for therapeutic gain. Pharmacol. Rev. 2013, 65, 906–943. [Google Scholar] [CrossRef]
- Boison, D.; Jarvis, M.F. Adenosine kinase: A key regulator of purinergic physiology. Biochem. Pharmacol. 2021, 187, 114321. [Google Scholar] [CrossRef]
- Sacha, T. Imatinib in chronic myeloid leukemia: An overview. Mediterr. J. Hematol. Infect. Dis. 2014, 6, e2014007. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.G. Amp-activated protein kinase: An energy sensor that regulates all aspects of cell function. Genes. Dev. 2011, 25, 1895–1908. [Google Scholar] [CrossRef] [PubMed]
- Moser, T.S.; Schieffer, D.; Cherry, S. Amp-activated kinase restricts rift valley fever virus infection by inhibiting fatty acid synthesis. PLoS Pathog. 2012, 8, e1002661. [Google Scholar] [CrossRef] [PubMed]
- Keerthana, C.K.; Rayginia, T.P.; Shifana, S.C.; Anto, N.P.; Kalimuthu, K.; Isakov, N.; Anto, R.J. The role of ampk in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front. Immunol. 2023, 14, 1114582. [Google Scholar] [CrossRef]
- Jeon, S.M. Regulation and function of ampk in physiology and diseases. Exp. Mol. Med. 2016, 48, e245. [Google Scholar] [CrossRef]
- DeMille, D.; Grose, J.H. Pas kinase: A nutrient sensing regulator of glucose homeostasis. IUBMB Life 2013, 65, 921–929. [Google Scholar] [CrossRef]
- Haigis, M.C.; Sinclair, D.A. Mammalian sirtuins: Biological insights and disease relevance. Annu. Rev. Pathol. 2010, 5, 253–295. [Google Scholar] [CrossRef]
- Li, X. Sirt1 and energy metabolism. Acta Biochim. Biophys. Sin. 2013, 45, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Cantó, C.; Jiang, L.Q.; Deshmukh, A.S.; Mataki, C.; Coste, A.; Lagouge, M.; Zierath, J.R.; Auwerx, J. Interdependence of ampk and sirt1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010, 11, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, J.; Mills, K.F.; Yoon, M.J.; Imai, S. Nicotinamide mononucleotide, a key nad(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011, 14, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Tuteja, N.; Chandra, M.; Tuteja, R.; Misra, M.K. Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J. Biomed. Biotechnol. 2004, 2004, 227–237. [Google Scholar] [CrossRef]
- Ruiz-Stewart, I.; Tiyyagura, S.R.; Lin, J.E.; Kazerounian, S.; Pitari, G.M.; Schulz, S.; Martin, E.; Murad, F.; Waldman, S.A. Guanylyl cyclase is an atp sensor coupling nitric oxide signaling to cell metabolism. Proc. Natl. Acad. Sci. USA 2004, 101, 37–42. [Google Scholar] [CrossRef]
- Liu, R.; Kang, Y.; Chen, L. Activation mechanism of human soluble guanylate cyclase by stimulators and activators. Nat. Commun. 2021, 12, 5492. [Google Scholar] [CrossRef]
- Lima, K.; Coelho-Silva, J.L.; Kinker, G.S.; Pereira-Martins, D.A.; Traina, F.; Fernandes, P.; Markus, R.P.; Lucena-Araujo, A.R.; Machado-Neto, J.A. Pip4k2a and pip4k2c transcript levels are associated with cytogenetic risk and survival outcomes in acute myeloid leukemia. Cancer Genet. 2019, 233–234, 56–66. [Google Scholar] [CrossRef]
- Bulley, S.J.; Clarke, J.H.; Droubi, A.; Giudici, M.L.; Irvine, R.F. Exploring phosphatidylinositol 5-phosphate 4-kinase function. Adv. Biol. Regul. 2015, 57, 193–202. [Google Scholar] [CrossRef]
- Smith, R.L.; Soeters, M.R.; Wüst, R.C.I.; Houtkooper, R.H. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr. Rev. 2018, 39, 489–517. [Google Scholar] [CrossRef]
- Efeyan, A.; Comb, W.C.; Sabatini, D.M. Nutrient-sensing mechanisms and pathways. Nature 2015, 517, 302–310. [Google Scholar] [CrossRef]
- Choi, Y.K.; Park, K.G. Targeting glutamine metabolism for cancer treatment. BioMol. Ther. 2018, 26, 19–28. [Google Scholar] [CrossRef]
- Yang, L.; Venneti, S.; Nagrath, D. Glutaminolysis: A hallmark of cancer metabolism. Annu. Rev. Biomed. Eng. 2017, 19, 163–194. [Google Scholar] [CrossRef]
- Jin, J.; Byun, J.-K.; Choi, Y.-K.; Park, K.-G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med. 2023, 55, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Ung, C.Y.; Onoufriadis, A.; Parsons, M.; McGrath, J.A.; Shaw, T.J. Metabolic perturbations in fibrosis disease. Int. J. Biochem. Cell Biol. 2021, 139, 106073. [Google Scholar] [CrossRef] [PubMed]
- Still, E.R.; Yuneva, M.O. Hopefully devoted to q: Targeting glutamine addiction in cancer. Br. J. Cancer 2017, 116, 1375–1381. [Google Scholar] [CrossRef]
- Li, T.; Copeland, C.; Le, A. Glutamine metabolism in cancer. In The Heterogeneity of Cancer Metabolism; Le, A., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 17–38. [Google Scholar]
- Faubert, B.; Boily, G.; Izreig, S.; Griss, T.; Samborska, B.; Dong, Z.; Dupuy, F.; Chambers, C.; Fuerth, B.J.; Viollet, B.; et al. Ampk is a negative regulator of the warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013, 17, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.M.; Donnelly, L.A.; Emslie-Smith, A.M.; Alessi, D.R.; Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005, 330, 1304–1305. [Google Scholar] [CrossRef] [PubMed]
- Kurelac, I.; Umesh Ganesh, N.; Iorio, M.; Porcelli, A.M.; Gasparre, G. The multifaceted effects of metformin on tumor microenvironment. Semin. Cell Dev. Biol. 2020, 98, 90–97. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef]
- Yang, W.; Zheng, Y.; Xia, Y.; Ji, H.; Chen, X.; Guo, F.; Lyssiotis, C.A.; Aldape, K.; Cantley, L.C.; Lu, Z. Erk1/2-dependent phosphorylation and nuclear translocation of pkm2 promotes the warburg effect. Nat. Cell Biol. 2012, 14, 1295–1304. [Google Scholar] [CrossRef]
- Papa, S.; Choy, P.M.; Bubici, C. The erk and jnk pathways in the regulation of metabolic reprogramming. Oncogene 2019, 38, 2223–2240. [Google Scholar] [CrossRef] [PubMed]
- McKeown, S.R. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br. J. Radiol. 2014, 87, 20130676. [Google Scholar] [CrossRef]
- Infantino, V.; Santarsiero, A.; Convertini, P.; Todisco, S.; Iacobazzi, V. Cancer cell metabolism in hypoxia: Role of hif-1 as key regulator and therapeutic target. Int. J. Mol. Sci. 2021, 22, 5703. [Google Scholar] [CrossRef]
- Semenza, G.L. Hif-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Investig. 2013, 123, 3664–3671. [Google Scholar] [CrossRef] [PubMed]
- Ema, M.; Hirota, K.; Mimura, J.; Abe, H.; Yodoi, J.; Sogawa, K.; Poellinger, L.; Fujii-Kuriyama, Y. Molecular mechanisms of transcription activation by hlf and hif1alpha in response to hypoxia: Their stabilization and redox signal-induced interaction with cbp/p300. EMBO J. 1999, 18, 1905–1914. [Google Scholar] [CrossRef]
- Pan, M.; Reid, M.A.; Lowman, X.H.; Kulkarni, R.P.; Tran, T.Q.; Liu, X.; Yang, Y.; Hernandez-Davies, J.E.; Rosales, K.K.; Li, H.; et al. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat. Cell Biol. 2016, 18, 1090–1101. [Google Scholar] [CrossRef]
- Graeber, T.G.; Peterson, J.F.; Tsai, M.; Monica, K.; Fornace, A.J.; Giaccia, A.J. Hypoxia induces accumulation of p53 protein, but activation of a g1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. Cell Biol. 1994, 14, 6264–6277. [Google Scholar] [PubMed]
- Shen, J.; Wang, Q.; Mao, Y.; Gao, W.; Duan, S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm 2023, 4, e288. [Google Scholar] [CrossRef]
- Rodriguez, O.C.; Choudhury, S.; Kolukula, V.; Vietsch, E.E.; Catania, J.; Preet, A.; Reynoso, K.; Bargonetti, J.; Wellstein, A.; Albanese, C.; et al. Dietary downregulation of mutant p53 levels via glucose restriction: Mechanisms and implications for tumor therapy. Cell Cycle 2012, 11, 4436–4446. [Google Scholar] [CrossRef]
- Hernández Borrero, L.J.; El-Deiry, W.S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188556. [Google Scholar] [CrossRef]
- Levine, B.; Yuan, J. Autophagy in cell death: An innocent convict? J. Clin. Investig. 2005, 115, 2679–2688. [Google Scholar] [CrossRef]
- Yu, L.; Chen, Y.; Tooze, S.A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy 2018, 14, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Pattingre, S.; Bauvy, C.; Codogno, P. Amino acids interfere with the erk1/2-dependent control of macroautophagy by controlling the activation of raf-1 in human colon cancer ht-29 cells. J. Biol. Chem. 2003, 278, 16667–16674. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Lei, Y.; Cong, C.; Tan, D.; Zhou, X. Research progress on the pi3k/akt signaling pathway in gynecological cancer (review). Mol. Med. Rep. 2019, 19, 4529–4535. [Google Scholar] [CrossRef] [PubMed]
- Osaki, M.; Oshimura, M.; Ito, H. Pi3k-akt pathway: Its functions and alterations in human cancer. Apoptosis 2004, 9, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Rascio, F.; Spadaccino, F.; Rocchetti, M.T.; Castellano, G.; Stallone, G.; Netti, G.S.; Ranieri, E. The pathogenic role of pi3k/akt pathway in cancer onset and drug resistance: An updated review. Cancers 2021, 13, 3949. [Google Scholar] [CrossRef]
- Szymonowicz, K.; Oeck, S.; Malewicz, N.M.; Jendrossek, V. New insights into protein kinase b/akt signaling: Role of localized akt activation and compartment-specific target proteins for the cellular radiation response. Cancers 2018, 10, 78. [Google Scholar] [CrossRef]
- Barra, F.; Evangelisti, G.; Ferro Desideri, L.; Di Domenico, S.; Ferraioli, D.; Vellone, V.G.; De Cian, F.; Ferrero, S. Investigational pi3k/akt/mtor inhibitors in development for endometrial cancer. Expert. Opin. Investig. Drugs 2019, 28, 131–142. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. Pi3k/akt/mtor signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- Kim, J.; Guan, K.L. Mtor as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 2019, 21, 63–71. [Google Scholar] [CrossRef]
- Tapia, O.; Riquelme, I.; Leal, P.; Sandoval, A.; Aedo, S.; Weber, H.; Letelier, P.; Bellolio, E.; Villaseca, M.; Garcia, P.; et al. The pi3k/akt/mtor pathway is activated in gastric cancer with potential prognostic and predictive significance. Virchows Arch. 2014, 465, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Laplante, M.; Sabatini, D.M. Mtor signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef]
- Pena-Leon, V.; Perez-Lois, R.; Seoane, L.M. Mtor pathway is involved in energy homeostasis regulation as a part of the gut-brain axis. Int. J. Mol. Sci. 2020, 21, 5715. [Google Scholar] [CrossRef]
- Cota, D.; Proulx, K.; Smith, K.A.; Kozma, S.C.; Thomas, G.; Woods, S.C.; Seeley, R.J. Hypothalamic mtor signaling regulates food intake. Science 2006, 312, 927–930. [Google Scholar] [CrossRef]
- Guppy, M.; Leedman, P.; Zu, X.; Russell, V. Contribution by different fuels and metabolic pathways to the total atp turnover of proliferating mcf-7 breast cancer cells. Biochem. J. 2002, 364, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Sánchez, R.; Rodríguez-Enríquez, S.; Marín-Hernández, A.; Saavedra, E. Energy metabolism in tumor cells. FEBS J. 2007, 274, 1393–1418. [Google Scholar] [CrossRef]
- Martin, M.; Beauvoit, B.; Voisin, P.J.; Canioni, P.; Guérin, B.; Rigoulet, M. Energetic and morphological plasticity of c6 glioma cells grown on 3-d support; effect of transient glutamine deprivation. J. Bioenerg. Biomembr. 1998, 30, 565–578. [Google Scholar] [CrossRef]
- DeBerardinis, R.J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Dang, C.V.; Lewis, B.C.; Dolde, C.; Dang, G.; Shim, H. Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J. Bioenerg. Biomembr. 1997, 29, 345–354. [Google Scholar] [CrossRef]
- Rashid, A.; Pizer, E.S.; Moga, M.; Milgraum, L.Z.; Zahurak, M.; Pasternack, G.R.; Kuhajda, F.P.; Hamilton, S.R. Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia. Am. J. Pathol. 1997, 150, 201–208. [Google Scholar]
- Nguyen, T.T.T.; Zhang, Y.; Shang, E.; Shu, C.; Torrini, C.; Zhao, J.; Bianchetti, E.; Mela, A.; Humala, N.; Mahajan, A.; et al. Hdac inhibitors elicit metabolic reprogramming by targeting super-enhancers in glioblastoma models. J. Clin. Investig. 2020, 130, 3699–3716. [Google Scholar] [CrossRef]
- Kherlopian, A.R.; Song, T.; Duan, Q.; Neimark, M.A.; Po, M.J.; Gohagan, J.K.; Laine, A.F. A review of imaging techniques for systems biology. BMC Syst. Biol. 2008, 2, 74. [Google Scholar] [CrossRef] [PubMed]
- Tanner, L.B.; Goglia, A.G.; Wei, M.H.; Sehgal, T.; Parsons, L.R.; Park, J.O.; White, E.; Toettcher, J.E.; Rabinowitz, J.D. Four key steps control glycolytic flux in mammalian cells. Cell Syst. 2018, 7, 49–62.e8. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Enríquez, S.; Vital-González, P.A.; Flores-Rodríguez, F.L.; Marín-Hernández, A.; Ruiz-Azuara, L.; Moreno-Sánchez, R. Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells. Toxicol. Appl. Pharmacol. 2006, 215, 208–217. [Google Scholar] [CrossRef]
- Kroemer, G.; Pouyssegur, J. Tumor cell metabolism: Cancer’s achilles’ heel. Cancer Cell 2008, 13, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Ban, J.; Xia, Y.; Zhou, F.; Yuan, C.; Jia, H.; Huang, H.; Jiang, M.; Liang, M.; Li, Z.; et al. Echinacea purpurea-derived homogeneous polysaccharide exerts anti-tumor efficacy via facilitating m1 macrophage polarization. Innovation 2023, 4, 100391. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; He, C.; Li, J.; Gao, Y.Z.; Wang, Z.; Wei, Y. Emerging paradigms in exploring the interactions among diet, probiotics, and cancer immunotherapeutic response. Innovation 2023, 4, 100456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gao, Q.; Ren, X.; Luo, M.; Liu, Y.; Liu, P.; Ye, Y.; Chen, X.; Liu, H.; Han, L. Characterization of intratumor microbiome in cancer immunotherapy. Innovation 2023, 4, 100482. [Google Scholar] [CrossRef]
- Speirs, C.; Williams, J.J.L.; Riches, K.; Salt, I.P.; Palmer, T.M. Linking energy sensing to suppression of jak-stat signalling: A potential route for repurposing ampk activators? Pharmacol. Res. 2018, 128, 88–100. [Google Scholar] [CrossRef]
- Kong, L.-Z.; Kim, S.-M.; Wang, C.; Lee, S.Y.; Oh, S.-C.; Lee, S.; Jo, S.; Kim, T.-D. Understanding nucleic acid sensing and its therapeutic applications. Exp. Mol. Med. 2023, 55, 2320–2331. [Google Scholar] [CrossRef]
- Motwani, M.; Pesiridis, S.; Fitzgerald, K.A. DNA sensing by the cgas-sting pathway in health and disease. Nat. Rev. Genet. 2019, 20, 657–674. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, J.; Alu, A.; Han, X.; Wei, Y.; Wei, X. Cgas-sting pathway in cancer biotherapy. Mol. Cancer 2020, 19, 136. [Google Scholar] [CrossRef] [PubMed]
- Iurescia, S.; Fioretti, D.; Rinaldi, M. Targeting cytosolic nucleic acid-sensing pathways for cancer immunotherapies. Front. Immunol. 2018, 9, 711. [Google Scholar] [CrossRef] [PubMed]
Ingenuity Canonical Pathways | −log (p-Value) | z-Score | Molecules |
---|---|---|---|
Tumor Microenvironment Pathway | 8.83 | −2.77 | AKT3, CCL2, CFLAR, COL1A1, COL1A2, COL3A1, CSF1, CXCL12, EGF, FGF1, FGF2, FGF7, FN1, FOS, FOXO1, FOXO4, HGF, HLA-E, IGF1, IL6, IL6R, ITGB3, JUN, LEP, LEPR, MMP1, MMP10, MMP11, MMP13, MMP24, MMP28, MMP3, MMP9, MRAS, MYC, OSM, PDCD1LG2, PDGFA, PDGFD, PIK3C2G, PIK3R1, PTGS2, RASD1, RRAS2, SLC2A4, SPP1, TSLP, VEGFD |
ERK/MAPK Signaling | 4.68 | −2.95 | CREB3L1, CREB3L4, CREB5, DUSP1, DUSP6, ELF5, ESR1, ETS1, ETS2, FOS, FYN, HSPB1, HSPB7, ITGA1, ITGA10, ITGA6, ITGA7, ITGA9, ITGB3, ITGB4, ITGB8, KSR1, MRAS, MYC, PAK3, PAK5, PIK3C2G, PIK3R1, PLA2G4A, PLA2G5, PLCG2, PPARG, PPM1J, PPM1L, PPP1R14A, PPP1R14B, PPP2R1B, PPP2R2C, PRKAR2B, PRKCA, RAPGEF3, RASD1, RRAS2, TLN2 |
HIF1α Signaling | 4.31 | −4.62 | ADM, AKT3, BMP6, CAMK1, EDN1, EGF, EGLN3, FGF2, FLT4, FOXP3, HGF, HSPA6, IGF1, IL6, IL6R, JUN, KDR, LDHB, MAP2K6, MET, MMP1, MMP10, MMP11, MMP13, MMP24, MMP28, MMP3, MMP9, MRAS, PIK3C2G, PIK3R1, PLCG2, PRKCA, PRKD1, PRKD3, RASD1, RRAS2, SLC2A4, TF, TGFA, VEGFD, VIM |
Integration of Energy Metabolism | 4.73 | −3.30 | ACSL4, ADCY4, ADCY5, ADIPOQ, ADRA2A, CACNB3, CD36, GNAI1, GNG11, GNG12, GNG2, GNG7, ITPR1, ITPR2, KCNB1, KCNJ11, MLXIPL, PFKFB1, PLCB1, PPP2R1B, PRKAR2B, PRKCA, RAPGEF3, STXBP1, VAMP2 |
AMPK Signaling | 3.17 | −3.15 | ACACB, ADIPOQ, ADRA1A, ADRA2A, ADRB1, ADRB2, AK4, AK5, AK8, AKT3, CCNA2, CREB3L1, CREB3L4, CREB5, FOXO1, FOXO4, GNAI1, GNAL, GNAZ, GNG11, GNG12, GNG2, GNG7, IRS1, IRS2, KAT2B, LEP, LIPE, MRAS, PFKFB1, PFKFB3, PIK3C2G, PIK3R1, PPARGC1A, PPM1F, PPM1J, PPM1L, PPP2R1B, PPP2R2C, PRKAR2B, RAB3A, RAB9B, SLC2A4 |
RAR Activation | 3.14 | −4.56 | ACVR1C, ACVR2A, ADCY4, ADCY5, ADH1B, ADH1C, AKR1C3, AKT3, ALDH1A1, ALDH1A2, ALDH1A3, CNGA1, COL10A1, COL1A1, COL1A2, COL3A1, CRABP2, CREB3L1, CREB3L4, CREB5, DHRS3, DRD2, DUSP1, EDA, EGF, FABP5, FOS, GUCY1A1, HOXA3, HOXA5, HOXD3, HOXD4, HSD17B6, IL17B, IL17D, IL33, IL6, JUN, KAT2B, KIT, KLF2, LEP, LIF, LIPE, LRAT, LTB, MAPK10, MEIS1, MEIS2, MMP1, MMP11, MMP13, MMP3, MMP9, MPPED2, NR2F1, NR2F6, NRIP2, OSM, PDE11A, PDE1A, PDE1B, PDE1C, PDE2A, PDE3A, PDE3B, PDE5A, PDE7B, PDE9A, PIK3C2G, PIK3R1, PPARG, PPARGC1A, PRKAR2B, RARB, RBP4, RBP7, RDH16, RDH5, RET, RHOJ, RHOQ, RHOU, RND1, RND3, RPS6KA2, RXRG, SDR16C5, SOCS3, STAT5A, STAT5B, STRA6, TGFBR2, TGFBR3, TNFSF12, TNFSF4, ZBTB16 |
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages | 3.23 | −3.88 | AKT3, APOC1, APOD, CAT, CLU, FOS, HOXA10, IFNGR1, JUN, MAP3K5, MAP3K8, MAPK10, NGFR, PIK3C2G, PIK3R1, PLCG2, PPARA, PPM1J, PPM1L, PPP1R14A, PPP1R14B, PPP2R1B, PPP2R2C, PRKCA, PRKD1, PRKD3, RBP4, RHOJ, RHOQ, RHOU, RND1, RND3, S100A8, SIRPA, TLR4, TNFRSF1B |
Glutaminergic Receptor Signaling Pathway | 3.32 | −5.25 | ADCY4, ADCY5, AKT3, CACNA2D1, CACNB3, CACNG4, CREB3L1, CREB3L4, CREB5, GABRB3, GABRD, GABRE, GABRP, GNAI1, GNAL, GPLD1, GRIA4, GRIK5, GUCY1A1, ITPR1, ITPR2, LCAT, NR3C1, PIK3C2G, PIK3R1, PLA2G4A, PLA2G5, PLA2R1, PLAAT3, PLAAT5, PLB1, PLCB1, PLCE1, PLCG2, PLCH2, PLCL2, PLD1, PNPLA2, PRKAR2B, PRKCA, PRKD1, PRKD3, SCN2A, SCN2B, SCN3A, SCN3B, SCN4A, SCN4B, SCN7A, SLC1A3, SLC1A7, SLC38A5, STX1B, TRPC1, VAMP2 |
Glycosaminoglycan Metabolism | 3.16 | −2.06 | B3GNT3, B4GALT6, BGN, CHPF, CSGALNACT1, DCN, DSEL, FMOD, GPC3, HMMR, HPSE2, LYVE1, OGN, OMD, PRELP, SDC1, ST3GAL6, UST, VCAN |
p53 Signaling | 2.45 | 0.24 | AKT3, BBC3, BIRC5, CCND2, CDKN2A, CHEK1, E2F1, GADD45G, JUN, KAT2B, PCNA, PIK3C2G, PIK3R1, PLAGL1, PMAIP1, SERPINB5, SNAI2, TP53AIP1, TP63, TRIM29 |
PPAR Signaling | 2.33 | 2.52 | FOS, IL1R1, IL1RL2, IL33, JUN, MRAS, NGFR, NR2F1, PDGFA, PDGFD, PDGFRA, PPARA, PPARG, PPARGC1A, PTGS2, RASD1, RRAS2, STAT5A, STAT5B, TNFRSF1B, TRAF2 |
Autophagy | 2.01 | −1.50 | AKT3, BMP6, CREB3L1, CREB3L4, CREB5, DAPK2, E2F1, EGF, FGF2, FOS, FOXO1, GABARAPL1, HGF, IGF1, IRS1, IRS2, JUN, MAP1LC3C, MAPK10, MYC, NGFR, NOD2, PIK3C2G, PIK3R1, PPM1J, PPM1L, PPP2R1B, PPP2R2C, PRKAR2B, RAB7B, SESN1, SLC7A5, TGFA, TLR4, TNFRSF1B |
PI3K/AKT Signaling | 1.62 | −0.90 | AKT3, FOXO1, GDF15, GHR, IFNLR1, IL11RA, IL17RD, IL1R1, IL1RL2, IL20RA, IL22RA1, IL6R, ITGA1, ITGA10, ITGA6, ITGA7, ITGA9, ITGB3, ITGB4, ITGB8, MAP3K5, MAP3K8, MRAS, PIK3R1, PPM1J, PPM1L, PPP2R1B, PPP2R2C, PTGS2, RASD1, RRAS2 |
Triacylglycerol Degradation | 0.77 | −2.64 | AADAC, ABHD6, ALDH2, CES1, LIPE, LPL, MGLL, PLB1, PNPLA2 |
Triglyceride Metabolism | 1.18 | −2.64 | CAV1, FABP4, FABP5, LIPE, LPIN1, MGLL, PLIN1 |
mTOR Signaling | 0.54 | −3.71 | AKT3, EIF3L, EIF4A1, GPLD1, IRS1, MRAS, PIK3C2G, PIK3R1, PLD1, PPM1J, PPM1L, PPP2R1B, PPP2R2C, PRKCA, PRKD1, PRKD3, RASD1, RHOJ, RHOQ, RHOU, RND1, RND3, RPS6KA2, RPS6KA3, RRAS2, VEGFD |
Xenobiotic Metabolism AHR Signaling Pathway | 0.33 | −2.53 | ABCG2, ALDH1A1, ALDH1A2, ALDH1A3, ALDH1L1, ALDH2, GSTM2, GSTP1, HDAC4, IL6 |
Sirtuin Signaling Pathway | 0.32 | −1.17 | ABCA1, ACADL, ACSS2, CPS1, DUSP6, E2F1, EPAS1, FOXO1, FOXO4, GABARAPL1, GADD45G, IDH2, JUN, LDHB, LDHD, MAP1LC3C, MAPK15, MYC, PCK1, PFKFB3, PPARA, PPARG, PPARGC1A, RARB, SOD2, SOD3, TUBA1C, TUBA3C/TUBA3D |
Mitochondrial Biogenesis | 0.41 | −2.12 | ACSS2, CHD9, IDH2, MEF2C, PPARA, PPARGC1A, PPARGC1B, SOD2 |
Mitochondrial Dysfunction | 0.46 | −1.49 | ACADL, ATP1A2, ATP1B2, BBC3, CACNA2D1, CACNB3, CACNG4, CAPN11, CAPN9, CLIC2, COX6C, COX7A1, CREB3L1, CREB3L4, CREB5, FBXW7, GPX3, GSTM2, GSTP1, HAP1, IDH2, ITPR1, ITPR2, LRRK2, MAOA, MAOB, MAP3K5, MAPK10, PIK3C2G, PIK3R1, PPARG, PPARGC1A, PRKAR2B, PRKN, RAPGEF3, SNCA, SOD2 |
TCA Cycle and Respiratory Electron Transport | 0.62 | −1.41 | ADHFE1, IDH2, LDHB, ME1, ME3, PDK4, PDP2, SLC16A3 |
Energy-Sensing Molecules | Molecules Whose Changes in Concentration Are Sensed |
---|---|
AMP-activated protein kinase (AMPK) | AMP and glycogen |
Cytosolic guanylyl cyclase (cGC) and Basic helix loop helix-leucine zipper partner for the Max-like protein, Mlx (MondoA) | ATP |
Guanylyl cyclase | cGMP |
Phosphatidylinositol-5-phosphate 4-kinase-β (PI5PK4β) | GTP |
Hypoxia-inducible factor 1 (HIF1) | Molecular oxygen (O2) |
Peroxisome proliferator-activated receptors (PPARS) | Intracellular free fatty acids |
Sirtuin 1, 3 (Sirt1 and Sirt3) proteins and AMPK | NAD+ |
Glucokinase | Glucose |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirza, Z.; Karim, S. Unraveling the Mystery of Energy-Sensing Enzymes and Signaling Pathways in Tumorigenesis and Their Potential as Therapeutic Targets for Cancer. Cells 2024, 13, 1474. https://doi.org/10.3390/cells13171474
Mirza Z, Karim S. Unraveling the Mystery of Energy-Sensing Enzymes and Signaling Pathways in Tumorigenesis and Their Potential as Therapeutic Targets for Cancer. Cells. 2024; 13(17):1474. https://doi.org/10.3390/cells13171474
Chicago/Turabian StyleMirza, Zeenat, and Sajjad Karim. 2024. "Unraveling the Mystery of Energy-Sensing Enzymes and Signaling Pathways in Tumorigenesis and Their Potential as Therapeutic Targets for Cancer" Cells 13, no. 17: 1474. https://doi.org/10.3390/cells13171474
APA StyleMirza, Z., & Karim, S. (2024). Unraveling the Mystery of Energy-Sensing Enzymes and Signaling Pathways in Tumorigenesis and Their Potential as Therapeutic Targets for Cancer. Cells, 13(17), 1474. https://doi.org/10.3390/cells13171474