Sustained Elevated Circulating Activin A Impairs Global Longitudinal Strain in Pregnant Rats: A Potential Mechanism for Preeclampsia-Related Cardiac Dysfunction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Protocols
2.2. Maternal Blood Pressure Measurement
2.3. Echocardiography with Speckle Tracking Technology
2.4. Western Blotting
2.5. Histology for Detection of Cardiac Fibrosis
2.6. Biochemical Analyses
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Cardiac Dysfunction in Preeclampsia Is Associated with Elevated Activin A
4.2. Mechanisms of Activin A-Induced Cardiac Dysfunction
4.3. The Relationship between Activin A and Recognized Markers of Cardiac Dysfunction
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morton, A. Physiological Changes and Cardiovascular Investigations in Pregnancy. Heart Lung Circ. 2021, 30, e6–e15. [Google Scholar] [CrossRef] [PubMed]
- ACOG. Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin Summary, Number 222. Obstet. Gynecol. 2020, 135, 1492–1495. [Google Scholar] [CrossRef] [PubMed]
- Ananth, C.V.; Keyes, K.M.; Wapner, R.J. Pre-eclampsia rates in the United States, 1980–2010: Age-period-cohort analysis. BMJ 2013, 347, f6564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutcheon, J.A.; Lisonkova, S.; Joseph, K.S. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 391–403. [Google Scholar] [CrossRef]
- Shraga, Y.; Pariente, G.; Rotem, R.; Baumfeld, Y.; Miodownik, S.; Weintraub, A.Y. Changes in trends over time for the specific contribution of different risk factors for pre-eclampsia. Arch. Gynecol. Obstet. 2020, 302, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Bosio, P.M.; McKenna, P.J.; Conroy, R.; O’Herlihy, C. Maternal central hemodynamics in hypertensive disorders of pregnancy. Obstet. Gynecol. 1999, 94, 978–984. [Google Scholar] [PubMed]
- Rang, S.; Wolf, H.; van Montfrans, G.A.; Karemaker, J.M. Serial assessment of cardiovascular control shows early signs of developing pre-eclampsia. J. Hypertens. 2004, 22, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Salas, S.P.; Marshall, G.; Gutierrez, B.L.; Rosso, P. Time course of maternal plasma volume and hormonal changes in women with preeclampsia or fetal growth restriction. Hypertension 2006, 47, 203–208. [Google Scholar] [CrossRef]
- Ajmi, H.; Abid, D.; Milouchi, S.; Louati, D.; Sghaier, A.; Choura, D.; Chaaben, K.; Abid, L.; Kammoun, S. Interest of speckle tracking in the detection of cardiac involvement in pregnant women with hypertensive disorder. Pregnancy Hypertens. 2018, 11, 136–141. [Google Scholar] [CrossRef]
- Buddeberg, B.S.; Sharma, R.; O’Driscoll, J.M.; Kaelin Agten, A.; Khalil, A.; Thilaganathan, B. Cardiac maladaptation in term pregnancies with preeclampsia. Pregnancy Hypertens. 2018, 13, 198–203. [Google Scholar] [CrossRef]
- Cong, J.; Fan, T.; Yang, X.; Shen, J.; Cheng, G.; Zhang, Z. Maternal cardiac remodeling and dysfunction in preeclampsia: A three-dimensional speckle-tracking echocardiography study. Int. J. Cardiovasc. Imaging 2015, 31, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Kraker, K.; Schütte, T.; O’Driscoll, J.; Birukov, A.; Patey, O.; Herse, F.; Müller, D.N.; Thilaganathan, B.; Haase, N.; Dechend, R. Speckle Tracking Echocardiography: New Ways of Translational Approaches in Preeclampsia to Detect Cardiovascular Dysfunction. Int. J. Mol. Sci. 2020, 21, 1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostafavi, A.; Tase Zar, Y.; Nikdoust, F.; Tabatabaei, S.A. Comparison of left ventricular systolic function by 2D speckle-tracking echocardiography between normal pregnant women and pregnant women with preeclampsia. J. Cardiovasc. Thorac. Res. 2019, 11, 309–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahul, S.; Rhee, J.; Hacker, M.R.; Gulati, G.; Mitchell, J.D.; Hess, P.; Mahmood, F.; Arany, Z.; Rana, S.; Talmor, D. Subclinical left ventricular dysfunction in preeclamptic women with preserved left ventricular ejection fraction: A 2D speckle-tracking imaging study. Circ. Cardiovasc. Imaging 2012, 5, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Zhou, Q.; Peng, Q.; Yang, Z. Left ventricular function of patients with pregnancy-induced hypertension evaluated using velocity vector imaging echocardiography and N-terminal pro-brain natriuretic peptide. Echocardiography 2018, 35, 459–466. [Google Scholar] [CrossRef]
- Bakrania, B.A.; Spradley, F.T.; Drummond, H.A.; LaMarca, B.; Ryan, M.J.; Granger, J.P. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. Compr. Physiol. 2020, 11, 1315–1349. [Google Scholar]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef]
- Ganzevoort, W.; Rep, A.; Bonsel, G.J.; de Vries, J.I.; Wolf, H. Plasma volume and blood pressure regulation in hypertensive pregnancy. J. Hypertens. 2004, 22, 1235–1242. [Google Scholar] [CrossRef]
- Boardman, H.; Lamata, P.; Lazdam, M.; Verburg, A.; Siepmann, T.; Upton, R.; Bilderbeck, A.; Dore, R.; Smedley, C.; Kenworthy, Y.; et al. Variations in Cardiovascular Structure, Function, and Geometry in Midlife Associated With a History of Hypertensive Pregnancy. Hypertension 2020, 75, 1542–1550. [Google Scholar] [CrossRef] [Green Version]
- deMartelly, V.A.; Dreixler, J.; Tung, A.; Mueller, A.; Heimberger, S.; Fazal, A.A.; Naseem, H.; Lang, R.; Kruse, E.; Yamat, M.; et al. Long-Term Postpartum Cardiac Function and Its Association With Preeclampsia. J. Am. Heart Assoc. 2021, 10, e018526. [Google Scholar] [CrossRef]
- Shahul, S.; Ramadan, H.; Nizamuddin, J.; Mueller, A.; Paterl, V.; Dreixler, J.; Tung, A.; Lang, R.M.; Weinert, L.; Nasim, R.; et al. Activin A and Late Postpartum Cardiac Dysfunction Among Women With Hypertensive Disorders of Pregnancy. Hypertension 2018, 72, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Bovee, E.M.; Gulati, M.; Maas, A.H. Novel Cardiovascular Biomarkers Associated with Increased Cardiovascular Risk in Women With Prior Preeclampsia/HELLP Syndrome: A Narrative Review. Eur. Cardiol. 2021, 16, e36. [Google Scholar] [CrossRef] [PubMed]
- Muttukrishna, S.; Tannetta, D.; Groome, N.; Sargent, I. Activin and follistatin in female reproduction. Mol. Cell. Endocrinol. 2004, 225, 45–56. [Google Scholar] [CrossRef]
- Fukushima, N.; Matsuura, K.; Akazawa, H.; Honda, A.; Nagai, T.; Takahashi, T.; Seki, A.; Murasaki, K.M.; Shimizu, T.; Okano, T.; et al. A crucial role of activin A-mediated growth hormone suppression in mouse and human heart failure. PLoS ONE 2011, 6, e27901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoudabady, M.; Mathieu, M.; Dewachter, L.; Hadad, I.; Ray, L.; Jespers, P.; Brimioulle, S.; Naeije, R.; McEntee, K. Activin-A, transforming growth factor-beta, and myostatin signaling pathway in experimental dilated cardiomyopathy. J. Card. Fail. 2008, 14, 703–709. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, Y.; Liu, H.; Yang, J.; Yang, C.; Liu, M.; Liu, Y.; Yang, P.; Liu, Z. The expression and role of activin A and follistatin in heart failure rats after myocardial infarction. Int. J. Cardiol. 2013, 168, 2994–2997. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, Z.; Yin, R.; Nie, J.; Fu, Y.; Ying, R. Knockdown of dual oxidase 1 suppresses activin A-induced fibrosis in cardiomyocytes via the reactive oxygen species-dependent pyroptotic pathway. Int. J. Biochem. Cell Biol. 2021, 131, 105902. [Google Scholar] [CrossRef]
- Yndestad, A.; Ueland, T.; Øie, E.; Florholmen, G.; Halvorsen, B.; Attramadal, H.; Simonsen, S.; Frøland, S.S.; Gullestad, L.; Christensen, G.; et al. Elevated levels of activin A in heart failure: Potential role in myocardial remodeling. Circulation 2004, 109, 1379–1385. [Google Scholar] [CrossRef] [Green Version]
- Bersinger, N.A.; Groome, N.; Muttukrishna, S. Pregnancy-associated and placental proteins in the placental tissue of normal pregnant women and patients with pre-eclampsia at term. Eur. J. Endocrinol. 2002, 147, 785–793. [Google Scholar] [CrossRef] [Green Version]
- Bersinger, N.A.; Smarason, A.K.; Muttukrishna, S.; Groome, N.P.; Redman, C.W. Women with preeclampsia have increased serum levels of pregnancy-associated plasma protein A (PAPP-A), inhibin A, activin A and soluble E-selectin. Hypertens. Pregnancy 2003, 22, 45–55. [Google Scholar] [CrossRef]
- Casagrandi, D.; Bearfield, C.; Geary, J.; Redman, C.W.; Muttukrishna, S. Inhibin, activin, follistatin, activin receptors and beta-glycan gene expression in the placental tissue of patients with pre-eclampsia. Mol. Hum. Reprod. 2003, 9, 199–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Antona, D.; Reis, F.M.; Benedetto, C.; Evans, L.W.; Groome, N.P.; de Kretser, D.M.; Wallace, E.M.; Petraglia, F. Increased maternal serum activin A but not follistatin levels in pregnant women with hypertensive disorders. J. Endocrinol. 2000, 165, 157–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diesch, C.H.; Holzgreve, W.; Hahn, S.; Zhong, X.Y. Comparison of activin A and cell-free fetal DNA levels in maternal plasma from patients at high risk for preeclampsia. Prenat. Diagn. 2006, 26, 1267–1270. [Google Scholar] [CrossRef] [PubMed]
- Florio, P.; Ciarmela, P.; Luisi, S.; Palumbo, M.A.; Lambert-Messerlian, G.; Severi, F.M.; Petraglia, F. Pre-eclampsia with fetal growth restriction: Placental and serum activin A and inhibin A levels. Gynecol. Endocrinol. 2002, 16, 365–372. [Google Scholar] [CrossRef]
- Keelan, J.A.; Taylor, R.; Schellenberg, J.C.; Groome, N.P.; Mitchell, M.D.; North, R.A. Serum activin A, inhibin A, and follistatin concentrations in preeclampsia or small for gestational age pregnancies. Obstet. Gynecol. 2002, 99, 267–274. [Google Scholar] [PubMed]
- Laivuori, H.; Kaaja, R.; Turpeinen, U.; Stenman, U.H.; Ylikorkala, O. Serum activin A and inhibin A elevated in pre-eclampsia: No relation to insulin sensitivity. Br. J. Obstet. Gynaecol. 1999, 106, 1298–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manuelpillai, U.; Schneider-Kolsky, M.; Dole, A.; Wallace, E.M. Activin A and activin receptors in gestational tissue from preeclamptic pregnancies. J. Endocrinol. 2001, 171, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Muttukrishna, S.; Hyett, J.; Paine, M.; Moodley, J.; Groome, N.; Rodeck, C. Uterine vein and maternal urinary levels of activin A and inhibin A in pre-eclampsia patients. Clin. Endocrinol. 2006, 64, 469–473. [Google Scholar] [CrossRef]
- Muttukrishna, S.; Knight, P.G.; Groome, N.P.; Redman, C.W.; Ledger, W.L. Activin A and inhibin A as possible endocrine markers for pre-eclampsia. Lancet 1997, 349, 1285–1288. [Google Scholar] [CrossRef]
- Petraglia, F.; Aguzzoli, L.; Gallinelli, A.; Florio, P.; Zonca, M.; Benedetto, C.; Woodruff, K. Hypertension in pregnancy: Changes in activin A maternal serum concentration. Placenta 1995, 16, 447–454. [Google Scholar] [CrossRef]
- Silver, H.M.; Lambert-Messerlian, G.M.; Reis, F.M.; Diblasio, A.M.; Petraglia, F.; Canick, J.A. Mechanism of increased maternal serum total activin a and inhibin a in preeclampsia. J. Soc. Gynecol. Investig. 2002, 9, 308–312. [Google Scholar] [CrossRef]
- Silver, H.M.; Lambert-Messerlian, G.M.; Star, J.A.; Hogan, J.; Canick, J.A. Comparison of maternal serum total activin A and inhibin A in normal, preeclamptic, and nonproteinuric gestationally hypertensive pregnancies. Am. J. Obstet. Gynecol. 1999, 180, 1131–1137. [Google Scholar] [CrossRef]
- Yair, D.; Eshed-Englender, T.; Kupferminc, M.J.; Geva, E.; Frenkel, J.; Sherman, D. Serum levels of inhibin B, unlike inhibin A and activin A, are not altered in women with preeclampsia. Am. J. Reprod. Immunol. 2001, 45, 180–187. [Google Scholar] [CrossRef]
- Ay, E.; Kavak, Z.N.; Elter, K.; Gokaslan, H.; Pekin, T. Screening for pre-eclampsia by using maternal serum inhibin A, activin A, human chorionic gonadotropin, unconjugated estriol, and alpha-fetoprotein levels and uterine artery Doppler in the second trimester of pregnancy. Aust. N. Z. J. Obstet. Gynaecol. 2005, 45, 283–288. [Google Scholar] [CrossRef]
- Florio, P.; Reis, F.M.; Pezzani, I.; Luisi, S.; Severi, F.M.; Petraglia, F. The addition of activin A and inhibin A measurement to uterine artery Doppler velocimetry to improve the early prediction of pre-eclampsia. Ultrasound Obstet. Gynecol. 2003, 21, 165–169. [Google Scholar] [CrossRef]
- Madazli, R.; Kuseyrioglu, B.; Uzun, H.; Uludag, S.; Ocak, V. Prediction of preeclampsia with maternal mid-trimester placental growth factor, activin A, fibronectin and uterine artery Doppler velocimetry. Int. J. Gynaecol. Obstet. 2005, 89, 251–257. [Google Scholar] [CrossRef]
- Muttukrishna, S.; North, R.A.; Morris, J.; Schellenberg, J.C.; Taylor, R.S.; Asselin, J.; Ledger, W.; Groome, N.; Redman, C.W. Serum inhibin A and activin A are elevated prior to the onset of pre-eclampsia. Hum. Reprod. 2000, 15, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Ong, C.Y.; Liao, A.W.; Munim, S.; Spencer, K.; Nicolaides, K.H. First-trimester maternal serum activin A in pre-eclampsia and fetal growth restriction. J. Matern. Fetal Neonatal Med. 2004, 15, 176–180. [Google Scholar] [CrossRef]
- Spencer, K.; Yu, C.K.; Savvidou, M.; Papageorghiou, A.T.; Nicolaides, K.H. Prediction of pre-eclampsia by uterine artery Doppler ultrasonography and maternal serum pregnancy-associated plasma protein-A, free beta-human chorionic gonadotropin, activin A and inhibin A at 22 + 0 to 24 + 6 weeks’ gestation. Ultrasound Obstet. Gynecol. 2006, 27, 658–663. [Google Scholar] [CrossRef]
- Yu, J.; Shixia, C.Z.; Wu, Y.; Duan, T. Inhibin A, activin A, placental growth factor and uterine artery Doppler pulsatility index in the prediction of pre-eclampsia. Ultrasound Obstet. Gynecol. 2011, 37, 528–533. [Google Scholar] [CrossRef]
- Lim, R.; Acharya, R.; Delpachitra, P.; Hobson, S.; Sobey, C.G.; Drummond, G.R.; Wallace, E.M. Activin and NADPH-oxidase in preeclampsia: Insights from in vitro and murine studies. Am. J. Obstet. Gynecol. 2015, 212, 86.e1–86.e12. [Google Scholar] [CrossRef] [PubMed]
- Gutkowska, J.; Granger, J.P.; Lamarca, B.B.; Danalache, B.A.; Wang, D.; Jankowski, M. Changes in cardiac structure in hypertension produced by placental ischemia in pregnant rats: Effect of tumor necrosis factor blockade. J. Hypertens. 2011, 29, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Yue, W.; Wang, D.; Weng, X.; Hall, M.E.; Xu, Y.; Hou, M.; Chen, Y. Systolic overload-induced pulmonary inflammation, fibrosis, oxidative stress and heart failure progression through interleukin-1beta. J. Mol. Cell. Cardiol. 2020, 146, 84–94. [Google Scholar] [CrossRef]
- Wang, H.; Xu, X.; Fassett, J.; Kwak, D.; Liu, X.; Hu, X.; Falls, T.J.; Bell, J.B.; Li, H.; Bitterman, P.; et al. Double-stranded RNA-dependent protein kinase deficiency protects the heart from systolic overload-induced congestive heart failure. Circulation 2014, 129, 1397–1406. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Hou, L.; Kwak, D.; Fassett, J.; Xu, X.; Chen, A.; Chen, W.; Blazar, B.R.; Xu, Y.; Hall, J.L.; et al. Increasing Regulatory T Cells With Interleukin-2 and Interleukin-2 Antibody Complexes Attenuates Lung Inflammation and Heart Failure Progression. Hypertension 2016, 68, 114–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, T.; Komuro, I.; Shiojima, I.; Yazaki, Y. The molecular mechanism of cardiac hypertrophy and failure. Ann. N. Y. Acad. Sci. 1999, 874, 38–48. [Google Scholar] [CrossRef]
- Taegtmeyer, H.; Sen, S.; Vela, D. Return to the fetal gene program: A suggested metabolic link to gene expression in the heart. Ann. N. Y. Acad. Sci. 2010, 1188, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Mueller, C.; McDonald, K.; de Boer, R.A.; Maisel, A.; Cleland, J.G.F.; Kozhuharov, N.; Coats, A.J.S.; Metra, M.; Mebazaa, A.; Ruschitzka, F.; et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur. J. Heart Fail. 2019, 21, 715–731. [Google Scholar] [CrossRef] [Green Version]
- Garrido-Gimenez, C.; Mendoza, M.; Cruz-Lemini, M.; Galian-Gay, L.; Sanchez-Garcia, O.; Granato, C.; Rodriguez-Sureda, V.; Rodriguez-Palomares, J.; Carreras-Moratonas, E.; Cabero-Roura, L.; et al. Angiogenic Factors and Long-Term Cardiovascular Risk in Women That Developed Preeclampsia During Pregnancy. Hypertension 2020, 76, 1808–1816. [Google Scholar] [CrossRef]
- Shahul, S.; Medvedofsky, D.; Wenger, J.B.; Nizamuddin, J.; Brown, S.M.; Bajracharya, S.; Salahuddin, S.; Thadhani, R.; Mueller, A.; Tung, A.; et al. Circulating Antiangiogenic Factors and Myocardial Dysfunction in Hypertensive Disorders of Pregnancy. Hypertension 2016, 67, 1273–1280. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, T.W.; Griffin, K.A.; Bidani, A.K.; Davisson, R.L.; Hall, J.E. Subcommittee of Professional and Public Education of the American Heart Association. Recommendations for blood pressure measurement in humans and experimental animals. Part 2: Blood pressure measurement in experimental animals: A statement for professionals from the subcommittee of professional and public education of the American Heart Association council on high blood pressure research. Hypertension 2005, 45, 299–310. [Google Scholar] [PubMed] [Green Version]
- Roh, J.D.; Hobson, R.; Chaudhari, V.; Quintero, P.; Yeri, A.; Benson, M.; Xiao, C.; Zlotoff, D.; Bezzerides, V.; Houstis, N.; et al. Activin type II receptor signaling in cardiac aging and heart failure. Sci. Transl. Med. 2019, 11, eaau8680. [Google Scholar] [CrossRef] [PubMed]
- Castillero, E.; Akashi, H.; Najjar, M.; Ji, R.; Brandstetter, L.M.; Wang, C.; Liao, X.; Zhang, X.; Sperry, A.; Gailes, M.; et al. Activin type II receptor ligand signaling inhibition after experimental ischemic heart failure attenuates cardiac remodeling and prevents fibrosis. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H378–H390. [Google Scholar] [CrossRef] [PubMed]
- Haland, T.F.; Almaas, V.M.; Hasselberg, N.E.; Saberniak, J.; Leren, I.S.; Hopp, E.; Edvardsen, T.; Haugaa, K.H. Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 613–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, T.; Han, L.; Chen, Y.; Wu, H. Progranulin and Activin A Concentrations are Elevated in Serum from Patients with Acute Exacerbations of Idiopathic Pulmonary Fibrosis. Lung 2021, 199, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, X.; Wei, S.M.; Tang, Y.H.; Zhou, Q.; Huang, C.X. Activin A stimulates the proliferation and differentiation of cardiac fibroblasts via the ERK1/2 and p38-MAPK pathways. Eur. J. Pharmacol. 2016, 789, 319–327. [Google Scholar] [CrossRef]
- Krenz, M.; Robbins, J. Impact of beta-myosin heavy chain expression on cardiac function during stress. J. Am. Coll. Cardiol. 2004, 44, 2390–2397. [Google Scholar] [CrossRef] [Green Version]
- Bakrania, B.A.; Hall, M.E.; Shahul, S.; Granger, J.P. The Reduced Uterine Perfusion Pressure (RUPP) rat model of preeclampsia exhibits impaired systolic function and global longitudinal strain during pregnancy. Pregnancy Hypertens. 2019, 18, 169–172. [Google Scholar] [CrossRef]
- Diez, J. Chronic heart failure as a state of reduced effectiveness of the natriuretic peptide system: Implications for therapy. Eur. J. Heart Fail. 2017, 19, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Kuwahara, K. The natriuretic peptide system in heart failure: Diagnostic and therapeutic implications. Pharmacol. Ther. 2021, 227, 107863. [Google Scholar] [CrossRef]
- Grunewald, C.; Nisell, H.; Carlstrom, K.; Kublickas, M.; Randmaa, I.; Nylund, L. Acute volume expansion in normal pregnancy and preeclampsia. Effects on plasma atrial natriuretic peptide (ANP) and cyclic guanosine monophosphate (cGMP) concentrations and feto-maternal circulation. Acta Obstet. Gynecol. Scand. 1994, 73, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Sagawa, N.; Nanno, H.; Mori, T.; Mukoyama, M.; Itoh, H.; Nakao, K. Impaired guanosine 3′,5′-cyclic phosphate production in severe pregnancy-induced hypertension with high plasma levels of atrial and brain natriuretic peptides. Endocr. J. 1997, 44, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Sandrim, V.C.; Palei, A.C.; Sertorio, J.T.; Amaral, L.M.; Cavalli, R.C.; Tanus-Santos, J.E. Alterations in cyclic GMP levels in preeclampsia may reflect increased B-type natriuretic peptide levels and not impaired nitric oxide activity. Clin. Biochem. 2011, 44, 1012–1014. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Bai, C.; Liu, Y. Interleukin-6 contributes to myocardial damage in pregnant rats with reduced uterine perfusion pressure. Braz. J. Med. Biol. Res. 2018, 51, e6921. [Google Scholar] [CrossRef] [PubMed]
- Richards, C.; Sesperez, K.; Chhor, M.; Ghorbanpour, S.; Rennie, C.; Ming, C.L.C.; Evenhuis, C.; Nikolic, V.; Orlic, N.K.; Mikovic, K.; et al. Characterisation of cardiac health in the reduced uterine perfusion pressure model and a 3D cardiac spheroid model, of preeclampsia. Biol. Sex Differ. 2021, 12, 31. [Google Scholar] [CrossRef]
Sham | Activin A | p-Value | |
---|---|---|---|
n | 10 | 6 | |
Body weight, g | 302 ± 10 | 305 ± 8 | 0.85 |
Fetal weight, g | 2.66 ± 0.124 | 2.74 ± 0.072 | 0.65 |
Placental weight, g | 0.65 ± 0.0213 | 0.64 ± 0.026 | 0.89 |
Heart weight, g | 0.84 ± 0.011 | 0.87 ± 0.064 | 0.24 |
Heart rate, bpm | 405 ± 14 | 408 ± 11 | 0.91 |
Cardiac output, mL/min | 87 ± 5 | 101 ± 5 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakrania, B.A.; Palei, A.C.; Bhattarai, U.; Chen, Y.; Granger, J.P.; Shahul, S. Sustained Elevated Circulating Activin A Impairs Global Longitudinal Strain in Pregnant Rats: A Potential Mechanism for Preeclampsia-Related Cardiac Dysfunction. Cells 2022, 11, 742. https://doi.org/10.3390/cells11040742
Bakrania BA, Palei AC, Bhattarai U, Chen Y, Granger JP, Shahul S. Sustained Elevated Circulating Activin A Impairs Global Longitudinal Strain in Pregnant Rats: A Potential Mechanism for Preeclampsia-Related Cardiac Dysfunction. Cells. 2022; 11(4):742. https://doi.org/10.3390/cells11040742
Chicago/Turabian StyleBakrania, Bhavisha A., Ana C. Palei, Umesh Bhattarai, Yingjie Chen, Joey P. Granger, and Sajid Shahul. 2022. "Sustained Elevated Circulating Activin A Impairs Global Longitudinal Strain in Pregnant Rats: A Potential Mechanism for Preeclampsia-Related Cardiac Dysfunction" Cells 11, no. 4: 742. https://doi.org/10.3390/cells11040742
APA StyleBakrania, B. A., Palei, A. C., Bhattarai, U., Chen, Y., Granger, J. P., & Shahul, S. (2022). Sustained Elevated Circulating Activin A Impairs Global Longitudinal Strain in Pregnant Rats: A Potential Mechanism for Preeclampsia-Related Cardiac Dysfunction. Cells, 11(4), 742. https://doi.org/10.3390/cells11040742