Coming of Age for BTK Inhibitor Therapy: A Review of Zanubrutinib in Waldenström Macroglobulinemia
Abstract
:1. Introduction: Background on Waldenström Macroglobulinemia
2. Zanubrutinib Pharmacokinetic (PK) and Pharmacodynamic Data
Recent Developments
3. Zanubrutinib Safety and Efficacy
Recent Developments
4. Health Economics and Outcomes Research
4.1. Early Estimates of Costs for Treating WM
4.2. Zanubrutinib: A Cost-Effective Treatment for WM
5. Future Directions
5.1. Zanubrutinib Treatment Combinations in WM
5.2. Looking to Ibrutinib and Acalabrutinib Combinations for Inspiration
5.3. Chimeric Antigen Receptor (CAR) T-Cell Therapy
5.4. Resistance to Covalent BTK Inhibitors
5.5. Newer BTK Therapies for WM
5.6. Important Considerations for BTK Inhibitor Therapy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castillo, J.J.; Advani, R.H.; Branagan, A.R.; Buske, C.; Dimopoulos, M.A.; D’Sa, S.; Kersten, M.J.; Leblond, V.; Minnema, M.C.; Owen, R.G.; et al. Consensus treatment recommendations from the tenth International Workshop for Waldenström Macroglobulinaemia. Lancet Haematol. 2020, 7, e827–e837. [Google Scholar] [CrossRef]
- Yin, X.; Chen, L.; Fan, F.; Yan, H.; Zhang, Y.; Huang, Z.; Sun, C.; Hu, Y. Trends in incidence and mortality of Waldenström macroglobulinemia: A population-based study. Front. Oncol. 2020, 10, 1712. [Google Scholar] [CrossRef] [PubMed]
- Herrinton, L.J.; Weiss, N.S. Incidence of Waldenström’s macroglobulinemia. Blood 1993, 82, 3148–3150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Sanz, R.; Montoto, S.; Torrequebrada, A.; De Coca, A.G.; Petit, J.; Sureda, A.; Rodríguez-García, J.A.; Massó, P.; Pérez-Aliaga, A.; Monteagudo, M.D.; et al. Waldenström macroglobulinaemia: Presenting features and outcome in a series with 217 cases. Br. J. Haematol. 2001, 115, 575–582. [Google Scholar] [CrossRef]
- Kristinsson, S.Y.; Eloranta, S.; Dickman, P.W.; Andersson, T.M.; Turesson, I.; Landgren, O.; Björkholm, M. Patterns of survival in lymphoplasmacytic lymphoma/Waldenström macroglobulinemia: A population-based study of 1,555 patients diagnosed in Sweden from 1980 to 2005. Am. J. Hematol. 2013, 88, 60–65. [Google Scholar] [CrossRef]
- Advani, P.; Paulus, A.; Ailawadhi, S. Updates in prognostication and treatment of Waldenström’s macroglobulinemia. Hematol. Oncol. Stem Cell 2019, 12, 179–188. [Google Scholar] [CrossRef]
- Treon, S.P.; Tripsas, C.K.; Ciccarelli, B.T.; Manning, R.J.; Patterson, C.J.; Sheehy, P.; Hunter, Z.R. Patients with Waldenström macroglobulinemia commonly present with iron deficiency and those with severely depressed transferrin saturation levels show response to parenteral iron administration. Clin. Lymphoma Myeloma Leuk 2013, 13, 241–243. [Google Scholar] [CrossRef]
- Gustine, J.N.; Meid, K.; Hunter, Z.R.; Xu, L.; Treon, S.P.; Castillo, J.J. MYD88 mutations can be used to identify malignant pleural effusions in Waldenström macroglobulinaemia. Br. J. Haematol. 2018, 180, 578–581. [Google Scholar] [CrossRef]
- Vos, J.M.; Gustine, J.; Rennke, H.G.; Hunter, Z.; Manning, R.J.; Dubeau, T.E.; Meid, K.; Minnema, M.C.; Kersten, M.J.; Treon, S.P.; et al. Renal disease related to Waldenström macroglobulinaemia: Incidence, pathology and clinical outcomes. Br. J. Haematol. 2016, 175, 623–630. [Google Scholar] [CrossRef]
- Castillo, J.J.; D’Sa, S.; Lunn, M.P.; Minnema, M.C.; Tedeschi, A.; Lansigan, F.; Palomba, M.L.; Varettoni, M.; Garcia-Sanz, R.; Nayak, L.; et al. Central nervous system involvement by Waldenström macroglobulinaemia (Bing-Neel syndrome): A multi-institutional retrospective study. Br. J. Haematol. 2016, 172, 709–715. [Google Scholar] [CrossRef]
- Treon, S.P.; Xu, L.; Guerrera, M.L.; Jimenez, C.; Hunter, Z.R.; Liu, X.; Demos, M.; Gustine, J.; Chan, G.; Munshi, M.; et al. Genomic landscape of Waldenström macroglobulinemia and its impact on treatment strategies. J. Clin. Oncol. 2020, 38, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Treon, S.P.; Xu, L.; Yang, G.; Zhou, Y.; Liu, X.; Cao, Y.; Sheehy, P.; Manning, R.J.; Patterson, C.J.; Tripsas, C.; et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N. Engl. J. Med. 2012, 367, 826–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Zhou, Y.; Liu, X.; Xu, L.; Cao, Y.; Manning, R.J.; Patterson, C.J.; Buhrlage, S.J.; Gray, N.; Tai, Y.T.; et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. Blood 2013, 122, 1222–1232. [Google Scholar] [CrossRef] [PubMed]
- Hunter, Z.R.; Xu, L.; Yang, G.; Zhou, Y.; Liu, X.; Cao, Y.; Manning, R.J.; Tripsas, C.; Patterson, C.J.; Sheehy, P.; et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood 2014, 123, 1637–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, J.J.; Moreno, D.F.; Arbelaez, M.I.; Hunter, Z.R.; Treon, S.P. CXCR4 mutations affect presentation and outcomes in patients with Waldenström macroglobulinemia: A systematic review. Expert Rev. Hematol. 2019, 12, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Zanwar, S.; Abeykoon, J.P. Treatment paradigm in Waldenström macroglobulinemia: Frontline therapy and beyond. Adv. Hematol. 2022, 13, 20406207221093962. [Google Scholar] [CrossRef] [PubMed]
- Mato, A.R.; Roeker, L.E.; Lamanna, N.; Allan, J.N.; Leslie, L.; Pagel, J.M.; Patel, K.; Osterborg, A.; Wojenski, D.; Kamdar, M.; et al. Outcomes of COVID-19 in patients with CLL: A multicenter international experience. Blood 2020, 136, 1134–1143. [Google Scholar] [CrossRef]
- Parry, H.; McIlroy, G.; Bruton, R.; Ali, M.; Stephens, C.; Damery, S.; Otter, A.; McSkeane, T.; Rolfe, H.; Faustini, S.; et al. Antibody responses after first and second COVID-19 vaccination in patients with chronic lymphocytic leukaemia. Blood Cancer J. 2021, 11, 136. [Google Scholar] [CrossRef]
- Pal Singh, S.; Dammeijer, F.; Hendriks, R.W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol. Cancer 2018, 17, 57. [Google Scholar] [CrossRef]
- Calquence (Acalabrutinib) [Package Insert]; AstraZeneca Pharmaceuticals LP: Wilmington, DE, USA, 2019.
- Brukinsa (Zanubrutinib) [Package Insert]; BeiGene USA: San Mateo, CA, USA, 2021.
- Imbruvica (Ibrutinib) [Package Insert]; Pharmacyclics LLC: Sunnyvale, CA, USA, 2019.
- Treon, S.P.; Gustine, J.; Meid, K.; Yang, G.; Xu, L.; Liu, X.; Demos, M.; Kofides, A.; Tsakmaklis, N.; Chen, J.G.; et al. Ibrutinib monotherapy in symptomatic, treatment-naïve patients with Waldenström Macroglobulinemia. J. Clin. Oncol. 2018, 36, 2755–2761. [Google Scholar] [CrossRef] [Green Version]
- Treon, S.P.; Tripsas, C.K.; Meid, K.; Warren, D.; Varma, G.; Green, R.; Argyropoulos, K.V.; Yang, G.; Cao, Y.; Xu, L.; et al. Ibrutinib in previously treated Waldenström’s macroglobulinemia. N. Engl. J. Med. 2015, 372, 1430–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimopoulos, M.A.; Tedeschi, A.; Trotman, J.; García-Sanz, R.; Macdonald, D.; Leblond, V.; Mahe, B.; Herbaux, C.; Tam, C.; Orsucci, L.; et al. Phase 3 trial of ibrutinib plus rituximab in Waldenström’s macroglobulinemia. N. Engl. J. Med. 2018, 378, 2399–2410. [Google Scholar] [CrossRef] [PubMed]
- Sarosiek, S.; Gustine, J.; Flynn, C.A.; Leventoff, C.; White, T.P.; Meid, K.; Treon, S.P.; Castillo, J.J. Dose reductions related to adverse effects in patients with Waldenström Macroglobulinemia treated with the BTK-inhibitor ibrutinib. Blood 2021, 138 (Suppl. 1), 3529. [Google Scholar] [CrossRef]
- Abeykoon, J.P.; Zanwar, S.; Ansell, S.M.; Gertz, M.A.; Kumar, S.; Manske, M.; Novak, A.J.; King, R.; Greipp, P.; Go, R.; et al. Ibrutinib monotherapy outside of clinical trial setting in Waldenström macroglobulinaemia: Practice patterns, toxicities and outcomes. Br. J. Haematol. 2020, 188, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Sharman, J.P.; Black-Shinn, J.L.; Clark, J.; Bitman, B. Understanding Ibrutinib Treatment Discontinuation Patterns for Chronic Lymphocytic Leukemia. Blood 2017, 130 (Suppl. 1), 4060. [Google Scholar] [CrossRef]
- Mato, A.R.; Nabhan, C.; Thompson, M.C.; Lamanna, N.; Brander, D.M.; Hill, B.; Howlett, C.; Skarbnik, A.; Cheson, B.D.; Zent, C.; et al. Toxicities and outcomes of 616 ibrutinib-treated patients in the United States: A real-world analysis. Haematologica 2018, 103, 874–879. [Google Scholar] [CrossRef]
- Huntington, S.F.; Soulos, P.R.; Barr, P.M.; Jacobs, R.; Lansigan, F.; Odejide, O.O.; Schwartzberg, L.S.; Davidoff, A.J.; Gross, C.P. Utilization and Early Discontinuation of First-Line Ibrutinib for Patients with Chronic Lymphocytic Leukemia Treated in the Community Oncology Setting in the United States. Blood 2019, 134 (Suppl. 1), 797. [Google Scholar] [CrossRef]
- Barf, T.; Covey, T.; Izumi, R.; van de Kar, B.; Gulrajani, M.; van Lith, B.; van Hoek, M.; de Zwart, E.; Mittag, D.; Demont, D.; et al. Acalabrutinib (acp-196): A covalent Bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile. J. Pharm. Exp. 2017, 363, 240–252. [Google Scholar] [CrossRef]
- Owen, R.G.; McCarthy, H.; Rule, S.; D’Sa, S.; Thomas, S.K.; Tournilhac, O.; Forconi, F.; Kersten, M.J.; Zinzani, P.L.; Iyengar, S.; et al. Acalabrutinib monotherapy in patients with Waldenström macroglobulinemia: A single-arm, multicentre, phase 2 study. Lancet Haematol. 2020, 7, e112–e121. [Google Scholar] [CrossRef]
- Byrd, J.C.; Hillmen, P.; Ghia, P.; Kater, A.P.; Chanan-Khan, A.; Furman, R.R.; O’Brien, S.; Yenerel, M.N.; Illés, A.; Kay, N.; et al. Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: Results of the first randomized phase III trial. J. Clin. Oncol. 2021, 39, 3441–3452. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Hu, N.; Yu, D.; Zhou, C.; Shi, G.; Zhang, B.; Wei, M.; Liu, J.; Luo, L.; et al. Discovery of zanubrutinib (BGB-3111), a novel, potent, and selective covalent inhibitor of Bruton’s tyrosine kinase. J. Med. Chem. 2019, 62, 7923–7940. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. FDA Approves Zanubrutinib for Waldenström’s Macroglobulinemia. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-zanubrutinib-waldenstroms-macroglobulinemia (accessed on 2 February 2022).
- Lim, K.J.C.; Tam, C.S. Zanubrutinib for the treatment of Waldenström Macroglobulinemia. Expert Rev. Hematol. 2020, 13, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Sarosiek, S.; Sermer, D.; Branagan, A.R.; Treon, S.P.; Castillo, J.J. Zanubrutinib for the treatment of adults with Waldenstrom macroglobulinemia. Expert Rev. Anticancer 2022, 22, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S.; Trotman, J.; Opat, S.; Burger, J.A.; Cull, G.; Gottlieb, D.; Harrup, R.; Johnston, P.B.; Marlton, P.; Munoz, J.; et al. Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL. Blood 2019, 134, 851–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, Y.C.; Tang, Z.; Novotny, W.; Tawashi, M.; Li, T.K.; Coleman, H.A.; Sahasranaman, S. Evaluation of drug interaction potential of zanubrutinib with cocktail probes representative of CYP3A4, CYP2C9, CYP2C19, P-gp and BCRP. Br. J. Clin. Pharmacol. 2021, 87, 2926–2936. [Google Scholar] [CrossRef] [PubMed]
- Mu, S.; Tang, Z.; Novotny, W.; Tawashi, M.; Li, T.K.; Ou, Y.; Sahasranaman, S. Effect of rifampin and itraconazole on the pharmacokinetics of zanubrutinib (a Bruton’s tyrosine kinase inhibitor) in Asian and non-Asian healthy subjects. Cancer Chemother Pharm. 2020, 85, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Ou, Y.C.; Liu, L.; Tariq, B.; Wang, K.; Jindal, A.; Tang, Z.; Gao, Y.; Sahasranaman, S. Population pharmacokinetic analysis of the BTK inhibitor zanubrutinib in healthy volunteers and patients with B-cell malignancies. Clin. Transl. Sci. 2021, 14, 764–772. [Google Scholar] [CrossRef]
- Tam, C.S.; Dimopoulos, M.A.; Garcia-Sanz, R.; Trotman, J.; Opat, S.; Roberts, A.W.; Owen, R.G.; Song, Y.; Xu, W.; Zhu, J.; et al. Pooled safety analysis of zanubrutinib monotherapy in patients with B-cell malignancies. Blood Adv. 2021, 6, 1296–1308. [Google Scholar] [CrossRef]
- Trotman, J.; Opat, S.; Gottlieb, D.; Simpson, D.; Marlton, P.; Cull, G.; Munoz, J.; Tedeschi, A.; Roberts, A.W.; Seymour, J.F.; et al. Zanubrutinib for the treatment of patients with Waldenström macroglobulinemia: 3 years of follow-up. Blood 2020, 136, 2027–2037. [Google Scholar] [CrossRef]
- Tam, C.S.; Opat, S.; D’Sa, S.; Jurczak, W.; Lee, H.P.; Cull, G.; Owen, R.G.; Marlton, P.; Wahlin, B.E.; Sanz, R.G.; et al. A randomized phase 3 trial of zanubrutinib vs ibrutinib in symptomatic Waldenström macroglobulinemia: The ASPEN study. Blood 2020, 136, 2038–2050. [Google Scholar] [CrossRef]
- Dimopoulos, M.; Sanz, R.G.; Lee, H.P.; Trneny, M.; Varettoni, M.; Opat, S.; D’Sa, S.; Owen, R.G.; Cull, G.; Mulligan, S.; et al. Zanubrutinib for the treatment of MYD88 wild-type Waldenström macroglobulinemia: A substudy of the phase 3 ASPEN trial. Blood Adv. 2020, 4, 6009–6018. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S.L.; Garcia-Sanz, R.; Opat, S.; D’Sa, S.; Jurczak, W.; Lee, H.-P.; Cull, G.; Owen, R.G.; Marlton, P.; Wahlin, B.E.; et al. ASPEN: Long-term follow-up results of a phase 3 randomized trial of zanubrutinib (ZANU) versus ibrutinib (IBR) in patients with Waldenström macroglobulinemia (WM). J. Clin. Oncol. 2022, 40 (Suppl. 16), 7521. [Google Scholar] [CrossRef]
- An, G.; Zhou, D.; Cheng, S.; Zhou, K.; Li, J.; Zhou, J.; Xie, L.; Jin, J.; Zhong, L.; Yan, L.; et al. A phase II trial of the Bruton tyrosine-kinase inhibitor zanubrutinib (BGB-3111) in patients with relapsed/refractory Waldenström macroglobulinemia. Clin Cancer Res. 2021, 27, 5492–5501. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.J.; Yang, K.; Rongzhe, L.; Wang, Y.; Cohen, A.; Zimmerman, T.M.; Zhao, Q.; Gao, X.; Tang, B. Efficacy and safety of zanubrutinib versus rituximab-based chemoimmunotherapy in Waldenström macroglobulinemia (WM): Matching-adjusted indirect comparisons. In Proceedings of the American Society of Clinical Oncology Annual Meeting, Online, 4–8 June 2021; p. 7559. [Google Scholar]
- Boudin, L.; Patient, M.; Roméo, E.; Bladé, J.-S.; de Jauréguiberry, J.-P. Efficacy of ibrutinib as first-line treatment of tumoral Bing-Neel syndrome. Leuk Lymphoma 2018, 59, 2746–2748. [Google Scholar] [CrossRef] [PubMed]
- Cabannes-Hamy, A.; Lemal, R.; Goldwirt, L.; Poulain, S.; Amorim, S.; Pérignon, R.; Berger, J.; Brice, P.; De Kerviler, E.; Bay, J.O.; et al. Efficacy of ibrutinib in the treatment of Bing-Neel syndrome. Am. J. Hematol. 2016, 91, E17–E19. [Google Scholar] [CrossRef] [Green Version]
- Mason, C.; Savona, S.; Rini, J.N.; Castillo, J.J.; Xu, L.; Hunter, Z.R.; Treon, S.P.; Allen, S.L. Ibrutinib penetrates the blood brain barrier and shows efficacy in the therapy of Bing Neel syndrome. Br. J. Haematol. 2017, 179, 339–341. [Google Scholar] [CrossRef]
- O’Neil, D.S.; Francescone, M.A.; Khan, K.; Alobeid, B.; Bachir, A.; O’Connor, O.A.; Sawas, A. A case of Bing-Neel syndrome successfully treated with ibrutinib. Case Rep. Hematol 2018, 2018, 8573105. [Google Scholar] [CrossRef] [Green Version]
- Castillo, J.J.; Itchaki, G.; Paludo, J.; Varettoni, M.; Buske, C.; Eyre, T.A.; Chavez, J.C.; Shain, K.H.; Issa, S.; Palomba, M.L.; et al. Ibrutinib for the treatment of Bing-Neel syndrome: A multicenter study. Blood 2019, 133, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.; Cher, L.; Griffiths, J.; Cohen, A.; Huang, J.; Wang, L.; Gregory, G.; Opat, S. Efficacy of zanubrutinib in the treatment of Bing-Neel syndrome. Hemasphere 2018, 2, e155. [Google Scholar] [CrossRef]
- Yang, K.; Liu, S.; Tang, B.; Castillo, J.J. Real-world treatment pattern, adherence, cost and healthcare resource utilization of commercially-insured patients with Waldenström macroglobulinemia in the United States. In Proceedings of the AMCP Nexus 2021, Denver, CO, USA, 18–21 October 2021; p. 1067324. [Google Scholar]
- Yang, K.; Liu, S.; Irwin, D.; Packnett, E.; Lew, C.R.; Noxon, V.; Tang, B.; Chanan-Khan, A. Productivity loss and indirect costs among non-Hodgkin lymphoma patients and their caregivers. Blood 2021, 138 (Suppl. 1). [Google Scholar] [CrossRef]
- Chanan-Khan, A.; Yang, K.; Liu, S.; Cao, Z.; Baumer, D.; Krishnaswami, S.; Tang, B.; Ailawadhi, S. Real-world disease burden, costs and resource utilization of hospital-based care among mantle cell lymphoma, Waldenström macroglobulinemia, marginal zone lymphoma and chronic lymphocytic leukemia: Disparities and risk factors. Blood 2021, 138 (Suppl. 1), 3048. [Google Scholar] [CrossRef]
- Castillo, J.J.; Yang, K.; Liu, R.; Wang, Y.; Cohen, A.; Zimmerman, T.M.; Zhao, Q.; Wetering, G.v.d.; Gao, X.; Tang, B. Cost-effectiveness of zanubrutinib versus ibrutinib in adult patients with Waldenström macroglobulinemia in the United States. J. Clin. Oncol. 2021, 39 (Suppl. 15), e18856. [Google Scholar] [CrossRef]
- Liu, S.; Yang, K.; Carter, J.; Pham, H.; Balk, M.; Massoudi, M.; Liu, R.; Gao, X.; Tang, B. Zanubrutinib versus ibrutinib to treat adults with Waldenström macroglobulinemia: A cost per response model from a payer perspective in the United States. In Proceedings of the AMCP Nexus 2021, Denver, CO, USA, 18–21 October 2021; p. 1067511. [Google Scholar]
- Wang, X.; Fei, Y.; Liu, X.; Zhang, T.; Li, W.; Jia, X.; Liu, X.; Qiu, L.; Qian, Z.; Zhou, S.; et al. Bortezomib enhances the anti-cancer effect of the novel Bruton’s tyrosine kinase inhibitor (BGB-3111) in mantle cell lymphoma expressing BTK. Aging 2021, 13, 21102–21121. [Google Scholar] [CrossRef]
- Gazyva (Obinutuzumab) [Package Insert]; Genentech, Inc.: San Francisco, CA, USA, 2021.
- Tam, C.S.; Quach, H.; Nicol, A.; Badoux, X.; Rose, H.; Prince, H.M.; Leahy, M.F.; Eek, R.; Wickham, N.; Patil, S.S.; et al. Zanubrutinib (BGB-3111) plus obinutuzumab in patients with chronic lymphocytic leukemia and follicular lymphoma. Blood Adv. 2020, 4, 4802–4811. [Google Scholar] [CrossRef] [PubMed]
- Zinzani, P.L.; Mayer, J.; Auer, R.; Bijou, F.; Oliveira, A.C.d.; Flowers, C.; Merli, M.; Bouabdallah, K.; Ganly, P.S.; Johnson, R.; et al. Zanubrutinib plus obinutuzumab (ZO) versus obinutuzumab (O) monotherapy in patients (pts) with relapsed or refractory (R/R) follicular lymphoma (FL): Primary analysis of the phase 2 randomized ROSEWOOD trial. J. Clin. Oncol. 2022, 40 (Suppl. 16), 7510. [Google Scholar] [CrossRef]
- Tedeschi, A.; Ferrant, E.; Flinn, I.W.; Tam, C.S.; Ghia, P.; Robak, T.; Brown, J.R.; Ramakrishnan, V.; Tian, T.; Kuwahara, S.B. Zanubrutinib in combination with venetoclax for patients with treatment-naïve (TN) chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) with del (17p): Early results from arm D of the SEQUOIA (BGB-3111-304) trial. Blood 2021, 138 (Suppl. 1), 67. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, J.; Lv, C.; Xu, J. Successful management of a patient with refractory primary central nervous system lymphoma by zanubrutinib. Onco. Targets 2021, 14, 3367–3372. [Google Scholar] [CrossRef]
- Othman, J.; Verner, E.; Tam, C.S.; Huang, J.; Lin, L.; Hilger, J.; Trotman, J.; Gasiorowski, R. Severe hemolysis and transfusion reactions after treatment with BGB-3111 and PD-1 antibody for Waldenström macroglobulinemia. Haematologica 2018, 103, e223–e225. [Google Scholar] [CrossRef] [Green Version]
- Rogers, K.A.; Huang, Y.; Ruppert, A.S.; Abruzzo, L.V.; Andersen, B.L.; Awan, F.T.; Bhat, S.A.; Dean, A.; Lucas, M.; Banks, C.; et al. Phase II study of combination obinutuzumab, ibrutinib, and venetoclax in treatment-naïve and relapsed or refractory chronic lymphocytic leukemia. J. Clin. Oncol. 2020, 38, 3626–3637. [Google Scholar] [CrossRef]
- Buske, C.; Tedeschi, A.; Trotman, J.; García-Sanz, R.; MacDonald, D.; Leblond, V.; Mahe, B.; Herbaux, C.; Matous, J.V.; Tam, C.S.; et al. Ibrutinib plus rituximab versus placebo plus rituximab for Waldenström’s macroglobulinemia: Final analysis from the randomized phase III iNNOVATE study. J. Clin. Oncol. 2022, 40, 52–62. [Google Scholar] [CrossRef]
- Burger, J.A.; Sivina, M.; Jain, N.; Kim, E.; Kadia, T.; Estrov, Z.; Nogueras-Gonzalez, G.M.; Huang, X.; Jorgensen, J.; Li, J.; et al. Randomized trial of ibrutinib vs ibrutinib plus rituximab in patients with chronic lymphocytic leukemia. Blood 2019, 133, 1011–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woyach, J.A.; Ruppert, A.S.; Heerema, N.A.; Zhao, W.; Booth, A.M.; Ding, W.; Bartlett, N.L.; Brander, D.M.; Barr, P.M.; Rogers, K.A.; et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N. Engl. J. Med. 2018, 379, 2517–2528. [Google Scholar] [CrossRef] [PubMed]
- Fraser, G.; Cramer, P.; Demirkan, F.; Silva, R.S.; Grosicki, S.; Pristupa, A.; Janssens, A.; Mayer, J.; Bartlett, N.L.; Dilhuydy, M.S.; et al. Updated results from the phase 3 HELIOS study of ibrutinib, bendamustine, and rituximab in relapsed chronic lymphocytic leukemia/small lymphocytic lymphoma. Leukemia 2019, 33, 969–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abeykoon, J.P.; Kumar, S.; Castillo, J.J.; D’Sa, S.; Kastritis, E.; Durot, E.; Uppal, E.; Morel, P.; Paludo, J.; Tawfiq, R.; et al. Bendamustine rituximab (BR) versus ibrutinib (Ibr) as primary therapy for Waldenström macroglobulinemia (WM): An international collaborative study. J. Clin. Oncol. 2022, 40 (Suppl. 16), 7566. [Google Scholar] [CrossRef]
- Brown, J.R.; Barrientos, J.C.; Barr, P.M.; Flinn, I.W.; Burger, J.A.; Tran, A.; Clow, F.; James, D.F.; Graef, T.; Friedberg, J.W.; et al. The Bruton tyrosine kinase inhibitor ibrutinib with chemoimmunotherapy in patients with chronic lymphocytic leukemia. Blood 2015, 125, 2915–2922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treon, S.P.; Meid, K.; Hunter, Z.R.; Flynn, C.A.; Sarosiek, S.R.; Leventoff, C.R.; White, T.P.; Cao, Y.; Roccaro, A.M.; Sacco, A.; et al. Phase 1 study of ibrutinib and the CXCR4 antagonist ulocuplumab in CXCR4-mutated Waldenström macroglobulinemia. Blood 2021, 138, 1535–1539. [Google Scholar] [CrossRef] [PubMed]
- Batlevi, C.L.; Palomba, M.L.; Park, J.; Mead, E.; Santomasso, B.; Riviere, I.; Wang, X.; Senechal, B.; Furman, R.; Yang, J.; et al. Phase I clinical trial of CD19-Targeted 19-28Z/4-1BBL “armored” CAR T Cells in patients with relapsed or refractory NHL and CLL including Richter transformation. Hematol. Oncol. 2019, 37, 166–167. [Google Scholar] [CrossRef] [Green Version]
- Bansal, R.; Jurcic, J.G.; Sawas, A.; Mapara, M.Y.; Reshef, R. Chimeric antigen receptor T cells for treatment of transformed Waldenström macroglobulinemia. Leuk Lymphoma 2020, 61, 465–468. [Google Scholar] [CrossRef]
- Wierda, W.G.; Dorritie, K.A.; Munoz, J.; Stephens, D.M.; Solomon, S.R.; Gillenwater, H.H.; Gong, L.; Yang, L.; Ogasawara, K.; Thorpe, J.; et al. Transcend CLL 004: Phase 1 cohort of lisocabtagene maraleucel (liso-cel) in combination with ibrutinib for patients with relapsed/refractory (R/R) chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). Blood 2020, 136, 39–40. [Google Scholar] [CrossRef]
- Gauthier, J.; Hirayama, A.V.; Purushe, J.; Hay, K.A.; Lymp, J.; Li, D.H.; Yeung, C.C.S.; Sheih, A.; Pender, B.S.; Hawkins, R.M.; et al. Feasibility and efficacy of CD19-targeted CAR T cells with concurrent ibrutinib for CLL after ibrutinib failure. Blood 2020, 135, 1650–1660. [Google Scholar] [CrossRef]
- Xu, L.; Tsakmaklis, N.; Yang, G.; Chen, J.G.; Liu, X.; Demos, M.; Kofides, A.; Patterson, C.J.; Meid, K.; Gustine, J.; et al. Acquired mutations associated with ibrutinib resistance in Waldenström macroglobulinemia. Blood 2017, 129, 2519–2525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.G.; Liu, X.; Munshi, M.; Xu, L.; Tsakmaklis, N.; Demos, M.G.; Kofides, A.; Guerrera, M.L.; Chan, G.G.; Patterson, C.J.; et al. BTK(Cys481Ser) drives ibrutinib resistance via ERK1/2 and protects BTK(wild-type) MYD88-mutated cells by a paracrine mechanism. Blood 2018, 131, 2047–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woyach, J.A.; Furman, R.R.; Liu, T.M.; Ozer, H.G.; Zapatka, M.; Ruppert, A.S.; Xue, L.; Li, D.H.; Steggerda, S.M.; Versele, M.; et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 2014, 370, 2286–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estupiñán, H.Y.; Wang, Q.; Berglöf, A.; Schaafsma, G.C.P.; Shi, Y.; Zhou, L.; Mohammad, D.K.; Yu, L.; Vihinen, M.; Zain, R.; et al. BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib. Leukemia 2021, 35, 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, I.; Bodo, J.; Hill, B.T.; Almasan, A. Cooperative miRNA-dependent PTEN regulation drives resistance to BTK inhibition in B-cell lymphoid malignancies. Cell Death Dis. 2021, 12, 1061. [Google Scholar] [CrossRef]
- Reiff, S.D.; Mantel, R.; Smith, L.L.; Greene, J.T.; Muhowski, E.M.; Fabian, C.A.; Goettl, V.M.; Tran, M.; Harrington, B.K.; Rogers, K.A.; et al. The BTK inhibitor ARQ 531 targets ibrutinib-resistant CLL and Richter transformation. Cancer Discov. 2018, 8, 1300–1315. [Google Scholar] [CrossRef]
- Mato, A.R.; Shah, N.N.; Jurczak, W.; Cheah, C.Y.; Pagel, J.M.; Woyach, J.A.; Fakhri, B.; Eyre, T.A.; Lamanna, N.; Patel, M.R.; et al. Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): A phase 1/2 study. Lancet 2021, 397, 892–901. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J.; Tan, L.; Munshi, M.; Liu, X.; Kofides, A.; Chen, J.G.; Tsakmaklis, N.; Demos, M.G.; Guerrera, M.L.; et al. The HCK/BTK inhibitor KIN-8194 is active in MYD88-driven lymphomas and overcomes mutated BTKCys481 ibrutinib resistance. Blood 2021, 138, 1966–1979. [Google Scholar] [CrossRef]
- Thibaud, S.; Tremblay, D.; Bhalla, S.; Zimmerman, B.; Sigel, K.; Gabrilove, J. Protective role of Bruton tyrosine kinase inhibitors in patients with chronic lymphocytic leukaemia and COVID-19. Br. J. Haematol. 2020, 190, e73–e76. [Google Scholar] [CrossRef]
- Roschewski, M.; Lionakis, M.S.; Sharman, J.P.; Roswarski, J.; Goy, A.; Monticelli, M.A.; Roshon, M.; Wrzesinski, S.H.; Desai, J.V.; Zarakas, M.A.; et al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci. Immunol. 2020, 5, eabd0110. [Google Scholar] [CrossRef]
- Maynard, S.; Ros-Soto, J.; Chaidos, A.; Innes, A.; Paleja, K.; Mirvis, E.; Buti, N.; Sharp, H.; Palanicawandar, R.; Milojkovic, D. The role of ibrutinib in COVID-19 hyperinflammation: A case report. Int. J. Infect. Dis. 2021, 105, 274–276. [Google Scholar] [CrossRef] [PubMed]
- Treon, S.P.; Castillo, J.J.; Skarbnik, A.P.; Soumerai, J.D.; Ghobrial, I.M.; Guerrera, M.L.; Meid, K.; Yang, G. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19-infected patients. Blood 2020, 135, 1912–1915. [Google Scholar] [CrossRef] [PubMed]
ClinicalTrials.gov ID | Title | Agents | Phase | Eligibility |
---|---|---|---|---|
NCT04463953 | Zanubrutinib, Ixazomib and Dexamethasone in Patients with Treatment Naive Waldenstrom’s Macroglobulinemia | Zanubrutinib, ixazomib, and dexamethasone | 2 | TN |
NCT04116437 | Zanubrutinib (BGB-3111) in Participants With Previously Treated B-Cell Lymphoma Intolerant of Prior Bruton Tyrosine Kinase Inhibitor (BTKi) Treatment | Zanubrutinib | 2 | Ibrutinib or acalabrutinib intolerant |
NCT04172246 | Study of Zanubrutinib in Japanese Participants With B-Cell Malignancies | Zanubrutinib | 1/2 | R/R |
NCT03053440 | A Study Comparing BGB-3111 and Ibrutinib in Participants WithWaldenström’s Macroglobulinemia (WM) (ASPEN) | Zanubrutinib and ibrutinib | 3 | No prior BTK inhibitor exposure |
ClinicalTrials.gov ID | Title | BTKi Combination Agents | Phase | Eligibility |
---|---|---|---|---|
NCT03620903 | Efficacy of First Line B-RI for Treatment Naive Waldenström’s Macroglobulinemia | Bortezomib, rituximab, and ibrutinib | 2 | TN |
NCT04062448 | A Study of Ibrutinib in Combination with Rituximab, in Japanese Participants with Waldenstrom’s Macroglobulinemia (WM) | Ibrutinib and rituximab | 2 | Japanese |
NCT03225716 | A Study of Ulocuplumab And Ibrutinib in Symptomatic Patients with Mutated CXCR4 Waldenstrom’s Macroglobulinemia | Ulocuplumab and ibrutinib | 1/2 | MYD88 and CXCR4 mutated disease |
NCT04263480 | Efficacy and Safety of Carfilzomib in Combination with Ibrutinib vs. Ibrutinib in Waldenström’s Macroglobulinemia (CZAR-1) | Carfilzomib and ibrutinib | 3 | No prior exposure to a BTKi or carfilzomib |
NCT04274738 | A Study of Mavorixafor in Combination with Ibrutinib in Participants with Waldenstrom’s Macroglobulinemia (WM) Whose Tumors Express Mutations in MYD88 and CXCR4 | Ibrutinib and mavorixafor | 1 | MYD88L265P and CXCR4WHIM mutations |
NCT04061512 | Rituximab and Ibrutinib (RI) Versus Dexamethasone, Rituximab and Cyclophosphamide (DRC) as Initial Therapy for Waldenström’s Macroglobulinaemia (RAINBOW) | Ibrutinib and rituximab | 2/3 | TN |
NCT04273139 | Ibrutinib + Venetoclax in Untreated WM | Ibrutinib and venetoclax | 2 | MYD88 mutation |
NCT04260217 | APG-2575 Single Agent or in Combination with Ibrutinib or Rituximab in Patients with Waldenström Macroglobulinemia (MAPLE-1) | Ibrutinib and lisaftoclax (APG-2575) | 1b/2 | TN |
NCT03679624 | Daratumumab Plus Ibrutinib in Patients with Waldenström’s Macroglobulinemia | Daratumumab and ibrutinib | 2 | Ibrutinib-naive or current treatment on ibrutinib with a plateaued response |
NCT02332980 | Pembrolizumab Alone or with Idelalisib or Ibrutinib in Treating Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia or Other Low-Grade B-Cell Non-Hodgkin Lymphomas | Ibrutinib and pembrolizumab | 2 | R/R |
NCT01955499 | Lenalidomide and Ibrutinib in Treating Patients with Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma | Ibrutinib and lenalidomide | 1 | R/R |
NCT03479268 | Pevonedistat and Ibrutinib in Treating Participants with Relapsed or Refractory CLL or Non-Hodgkin Lymphoma | Pevonedistat and ibrutinib | 1 | R/R |
NCT01479842 | Rituxan/Bendamustine/PCI-32765 in Relapsed DLBCL, MCL, or Indolent Non-Hodgkin’s Lymphoma | Ibrutinib (PCI-32765), rituximab, and bendamustine | 1 | R/R |
NCT04624906 | Bendamustine, Rituximab and Acalabrutinib in Waldenstrom’s Macroglobulinemia (BRAWM) | Acalabrutinib, bendamustine, and rituximab | 2 | TN |
NCT05065554 | ACALA-R In Anti-MAG Neuropathy Mediated Neuropathy | Acalabrutinib and rituximab | 2 | Sensory neuropathy |
NCT02362035 | ACP-196 (Acalabrutinib) in Combination WITH Pembrolizumab, for Treatment of Hematologic Malignancies (KEYNOTE145) | Acalabrutinib and pembrolizumab | 1b/2 | Hematological malignancy |
NCT04883437 | Acalabrutinib and Obinutuzumab for the Treatment of Previously Untreated Follicular Lymphoma or Other Indolent Non-Hodgkin Lymphomas | Acalabrutinib and obinutuzumab | 2 | TN |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, J.; Paludo, J.; Sarosiek, S.; Castillo, J.J. Coming of Age for BTK Inhibitor Therapy: A Review of Zanubrutinib in Waldenström Macroglobulinemia. Cells 2022, 11, 3287. https://doi.org/10.3390/cells11203287
Muñoz J, Paludo J, Sarosiek S, Castillo JJ. Coming of Age for BTK Inhibitor Therapy: A Review of Zanubrutinib in Waldenström Macroglobulinemia. Cells. 2022; 11(20):3287. https://doi.org/10.3390/cells11203287
Chicago/Turabian StyleMuñoz, Javier, Jonas Paludo, Shayna Sarosiek, and Jorge J. Castillo. 2022. "Coming of Age for BTK Inhibitor Therapy: A Review of Zanubrutinib in Waldenström Macroglobulinemia" Cells 11, no. 20: 3287. https://doi.org/10.3390/cells11203287