Elucidation of Prebiotics, Probiotics, Postbiotics, and Target from Gut Microbiota to Alleviate Obesity via Network Pharmacology Study
Abstract
:1. Introduction
2. Hypothesis
3. Methods and Materials
4. Results
5. Discussion and Conclusion
Supplementary Materials
Author Contributions
Funding
International Review Board Statement
Informed Consent Statement
Data Availability
Conflicts of Interest
Abbreviations
AKT1 | AKT serine/threonine kinase 1 |
ALB | Albumin |
BC | Between centrality |
BMI | Body mass index |
CIA | Collagen-induced arthritis |
DC | Degree centrality |
IL6 | Interleukin-6 |
MDT | Molecular docking test |
MSMT | Microbiota–substrate–metabolite–target |
PPI | Protein–protein interaction |
RA | Rheumatoid arthritis |
SEA | Similarity ensemble approach |
STP | SwissTargetPrediction |
References
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. PharmacoEconomics 2015, 33, 673. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 1070. [Google Scholar] [CrossRef]
- Weir, C.B.; Jan, A. BMI Classification Percentile And Cut Off Points. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Kelly, T.; Yang, W.; Chen, C.S.; Reynolds, K.; He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. (2005) 2008, 32, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Tchang, B.G.; Aras, M.; Kumar, R.B.; Aronne, L.J. Pharmacologic Treatment of Overweight and Obesity in Adults. In Endotext; MDText.com, Inc.: South Dartmouth, MA, USA, 2021. [Google Scholar]
- Heck, A.M.; Yanovski, J.A.; Calis, K.A. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy 2000, 20, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Cheung, B.M.Y.; Cheung, T.T.; Samaranayake, N.R. Safety of antiobesity drugs. Ther. Adv. Drug Saf. 2013, 4, 171. [Google Scholar] [CrossRef] [PubMed]
- Agus, A.; Clément, K.; Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 2021, 70, 1174–1182. [Google Scholar] [CrossRef]
- Heiss, C.N.; Olofsson, L.E. Gut Microbiota-Dependent Modulation of Energy Metabolism. J. Innate Immun. 2018, 10, 163–171. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Cantone, E.; Cassarano, S.; Tuccinardi, D.; Barrea, L.; Savastano, S.; Colao, A. Gut microbiota: A new path to treat obesity. Int. J. Obes. Suppl. 2019, 9, 10–19. [Google Scholar] [CrossRef]
- Aoun, A.; Darwish, F.; Hamod, N. The Influence of the Gut Microbiome on Obesity in Adults and the Role of Probiotics, Prebiotics, and Synbiotics for Weight Loss. Prev. Nutr. Food Sci. 2020, 25, 113. [Google Scholar] [CrossRef]
- Tomova, A.; Bukovsky, I.; Rembert, E.; Yonas, W.; Alwarith, J.; Barnard, N.D.; Kahleova, H. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front. Nutr. 2019, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.Y.; Li, Q.; Bi, K. shun Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Albillos, A.; de Gottardi, A.; Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020, 72, 558–577. [Google Scholar] [CrossRef] [PubMed]
- Koh, G.C.K.W.; Porras, P.; Aranda, B.; Hermjakob, H.; Orchard, S.E. Analyzing protein-protein interaction networks. J. Proteome Res. 2012, 11, 2014–2031. [Google Scholar] [CrossRef]
- Janjić, V.; Pržulj, N. Biological function through network topology: A survey of the human diseasome. Brief. Funct. Genom. 2012, 11, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Tian, Y.; Zhang, Z. Network Biology in Medicine and Beyond. Circ. Cardiovasc. Genet. 2014, 7, 536. [Google Scholar] [CrossRef]
- Oh, K.; Adnan, M.; Cho, D. Uncovering mechanisms of Zanthoxylum piperitum fruits for the alleviation of rheumatoid arthritis based on network pharmacology. Biology 2021, 10, 703. [Google Scholar] [CrossRef]
- Li, Y.; Li, R.; Zeng, Z.; Li, S.; Liao, S.; Ma, W.; Zhou, C.; Xu, D. Network pharmacology combined with bioinformatics to investigate the mechanism of Xianlinggubao capsule in the treatment of osteoporosis. Phytomedicine Plus 2021, 1, 100049. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef]
- Kwon, J.E.; Lim, J.; Bang, I.; Kim, I.; Kim, D.; Kang, S.C. Fermentation product with new equol-producing Lactobacillus paracasei as a probiotic-like product candidate for prevention of skin and intestinal disorder. J. Sci. Food Agric. 2019, 99, 4200–4210. [Google Scholar] [CrossRef]
- Kang, S.; Tanaka, T.; Narazaki, M.; Kishimoto, T. Targeting Interleukin-6 Signaling in Clinic. Immunity 2019, 50, 1007–1023. [Google Scholar] [CrossRef]
- Somolinos, F.J.; León, C.; Guerrero-Aspizua, S. Drug Repurposing Using Biological Networks. Processes 2021, 9, 1057. [Google Scholar] [CrossRef]
- Oh, K.-K.; Adnan, M.; Cho, D.-H. New Insight into Drugs to Alleviate Atopic March via Network Pharmacology-Based Analysis. Curr. Issues Mol. Biol. 2022, 44, 2257. [Google Scholar] [CrossRef]
- Cheng, L.; Qi, C.; Yang, H.; Lu, M.; Cai, Y.; Fu, T.; Ren, J.; Jin, Q.; Zhang, X. gutMGene: A comprehensive database for target genes of gut microbes and microbial metabolites. Nucleic Acids Res. 2022, 50, D795. [Google Scholar] [CrossRef]
- Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 2007, 25, 197–206. [Google Scholar] [CrossRef]
- Gfeller, D.; Michielin, O.; Zoete, V. Shaping the interaction landscape of bioactive molecules. Bioinformatics 2013, 29, 3073–3079. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.; Saüch, J.; Sanz, F.; Furlong, L.I. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data. Comput. Struct. Biotechnol. J. 2021, 19, 2960–2967. [Google Scholar] [CrossRef] [PubMed]
- Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.org: Leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res. 2019, 47, D1038–D1043. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Chaput, L.; Villoutreix, B.O. Virtual screening web servers: Designing chemical probes and drug candidates in the cyberspace. Brief. Bioinform. 2021, 22, 1790–1818. [Google Scholar] [CrossRef]
- Soo, H.C.; Chung, F.F.L.; Lim, K.H.; Yap, V.A.; Bradshaw, T.D.; Hii, L.W.; Tan, S.H.; See, S.J.; Tan, Y.F.; Leong, C.O.; et al. Cudraflavone C Induces Tumor-Specific Apoptosis in Colorectal Cancer Cells through Inhibition of the Phosphoinositide 3-Kinase (PI3K)-AKT Pathway. PLoS ONE 2017, 12, e0170551. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.; Hyman, J.D.; O’Malley, D.; Karra, S.; Viswanathan, H.S.; Srinivasan, G. Machine learning techniques for fractured media. Adv. Geophys. 2020, 61, 109–150. [Google Scholar] [CrossRef]
- Golbeck, J. Analyzing networks. In Introduction to Social Media Investigation; Elsevier: Amsterdam, The Netherlands, 2015; pp. 221–235. [Google Scholar] [CrossRef]
- Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Modeling 2011, 51, 2778–2786. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.P.; Cao, D.S. Admetlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminformatics 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Bansal, T.; Alaniz, R.C.; Wood, T.K.; Jayaraman, A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. USA 2010, 107, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Hills, R.D.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef]
- Asadi, A.; Shadab Mehr, N.; Mohamadi, M.H.; Shokri, F.; Heidary, M.; Sadeghifard, N.; Khoshnood, S. Obesity and gut–microbiota–brain axis: A narrative review. J. Clin. Lab. Anal. 2022, 36, e24420. [Google Scholar] [CrossRef]
- Jung, Y.S.; Rha, C.S.; Baik, M.Y.; Baek, N.I.; Kim, D.O. A brief history and spectroscopic analysis of soy isoflavones. Food Sci. Biotechnol. 2020, 29, 1605–1617. [Google Scholar] [CrossRef]
- Mayo, B.; Vázquez, L.; Flórez, A.B. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients 2019, 11, E2231. [Google Scholar] [CrossRef] [Green Version]
- Blake, C.; Fabick, K.M.; Setchell, K.D.R.; Lund, T.D.; Lephart, E.D. Neuromodulation by soy diets or equol: Anti-depressive & anti-obesity-like influences, age- & hormone-dependent effects. BMC Neurosci. 2011, 12, 1–13. [Google Scholar] [CrossRef]
- Setchell, K.D.R.; Clerici, C. Equol: Pharmacokinetics and Biological Actions. J. Nutr. 2010, 140, 1363S. [Google Scholar] [CrossRef] [PubMed]
- Ishaq, M.; Khan, A.; Bacha, A.S.; Shah, T.; Hanif, A.; Ahmad, A.A.; Ke, W.; Li, F.; Din, A.U.; Ding, Z.; et al. Microbiota targeted interventions of probiotic lactobacillus as an anti-ageing approach: A review. Antioxidants 2021, 10, 1930. [Google Scholar] [CrossRef] [PubMed]
- Lin, I.C.; Yamashita, S.; Murata, M.; Kumazoe, M.; Tachibana, H. Equol suppresses inflammatory response and bone erosion due to rheumatoid arthritis in mice. J. Nutr. Biochem. 2016, 32, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Wueest, S.; Konrad, D. The role of adipocyte-specific IL-6-type cytokine signaling in FFA and leptin release. Adipocyte 2018, 7, 226. [Google Scholar] [CrossRef]
- Bortoluzzi, S.; Romualdi, C.; Bisognin, A.; Danieli, G.A. Disease genes and intracellular protein networks. Physiol. Genom. 2004, 15, 223–227. [Google Scholar] [CrossRef]
- Jin, J.; Chen, B.; Zhan, X.; Zhou, Z.; Liu, H.; Dong, Y. Network pharmacology and molecular docking study on the mechanism of colorectal cancer treatment using Xiao-Chai-Hu-Tang. PLoS ONE 2021, 16, e0252508. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network pharmacology databases for traditional Chinese medicine: Review and assessment. Front. Pharmacol. 2019, 10, 123. [Google Scholar] [CrossRef]
- Xia, X. Bioinformatics and Drug Discovery. Curr. Top. Med. Chem. 2017, 17, 1709. [Google Scholar] [CrossRef]
- Xu, X.; Fang, C.; Lu, F.; Liu, S. Integrated Network Pharmacology and Gut Microbiota Study on the Mechanism of Huangqin Decoction in Treatment Diabetic Enteritis. Appl. Bionics Biomech. 2022, 2022. [Google Scholar] [CrossRef]
No. | Database | Brief Description | Utilization | URL |
---|---|---|---|---|
1 | ADMETlab 2.0 | A web-based platform to identify physicochemical properties of organic compounds | The pioneering of pharmcokinetics of organic compounds | https://admetmesh.scbdd.com/ (accessed on 4 June2022) |
2 | DisGeNET | A database of target–disease correlations | The pioneering of targets in response to diseases | https://www.disgenet.org/ (accessed on 1 June 2022) |
3 | gutMGene | Online database for identification of targets and metabolites from gut microbiota | The retrieval of targets and metabolites of gut microbes | http://bio-annotation.cn/gutmgene (accessed on 31 May 2022) |
4 | Online Mendelian Inheritance in Man (OMIM) | A collective compendium of human targets and diseases | The correlation of human targets and diseases | https://www.omim.org/ (accessed on 1 June 2022) |
5 | Similarity Ensemble Approach (SEA) | A database of targets related to compounds | The identification of potential targets on compounds | https://sea.bkslab.org/ (accessed on 31 May 2022) |
6 | String | A web-based tool to identify protein–protein interaction networks | The identification of network functional enrichment analysis | https://string-db.org/ (accessed on 1 June 2022) |
7 | SwissADME | A web-based tool for prediction of drug-like properties | The identification of physicochemical properties on compounds | http://www.swissadme.ch/ (accessed on 4 June 2022) |
8 | SwissTargetPrediction (STP) | A web server to explore targets from small molecules | The selection of targets on small molecules | http://www.swisstargetprediction.ch/ (accessed on 31 May 2022) |
9 | VENNY 2.1 | A web-based tool for identification of overlapping elements | The identification and comparison of elements in a Venn diagram | https://bioinfogp.cnb.csic.es/tools/venny/ (accessed on 1 June 2022) |
No. | Target | Degree of Centrality | No. | Target | Degree of Centrality |
---|---|---|---|---|---|
1 | AKT1 | 156 | 54 | ACLY | 21 |
2 | ALB | 147 | 55 | ALOX5 | 21 |
3 | GAPDH | 90 | 56 | BACE1 | 21 |
4 | CASP3 | 88 | 57 | CSK | 20 |
5 | EGFR | 85 | 58 | CYP17A1 | 20 |
6 | IL6 | 80 | 59 | ELANE | 20 |
7 | ACE | 71 | 60 | F3 | 20 |
8 | ESR1 | 71 | 61 | HDAC6 | 20 |
9 | CXCL8 | 65 | 62 | MMP2 | 20 |
10 | APP | 61 | 63 | ADCY5 | 19 |
11 | EP300 | 59 | 64 | ANPEP | 19 |
12 | AR | 58 | 65 | BCHE | 19 |
13 | HIF1A | 58 | 66 | CDK6 | 19 |
14 | HSP90AA1 | 54 | 67 | CHRNA4 | 19 |
15 | CREBBP | 51 | 68 | CYP2C9 | 19 |
16 | FGF2 | 46 | 69 | HDAC4 | 19 |
17 | MAPK1 | 42 | 70 | HNF4A | 19 |
18 | ABCB1 | 39 | 71 | IGFBP3 | 19 |
19 | CASP8 | 39 | 72 | INSR | 19 |
20 | GSK3B | 39 | 73 | ACE2 | 18 |
21 | AHR | 38 | 74 | ADORA2A | 18 |
22 | CASP1 | 37 | 75 | ADRB1 | 18 |
23 | AKT2 | 36 | 76 | FLT3 | 18 |
24 | COMT | 35 | 77 | GSR | 18 |
25 | CYP3A4 | 35 | 78 | HSPA1A | 18 |
26 | ACHE | 34 | 79 | AKR1C3 | 17 |
27 | CNR1 | 34 | 80 | BCL2A1 | 17 |
28 | IL2 | 34 | 81 | DRD2 | 17 |
29 | ABCG2 | 33 | 82 | NOS2 | 17 |
30 | CTSB | 33 | 83 | NR3C1 | 17 |
31 | NOS3 | 32 | 84 | ADORA1 | 16 |
32 | FYN | 31 | 85 | CHEK1 | 16 |
33 | MAPK14 | 30 | 86 | CTSL | 16 |
34 | ADRB2 | 29 | 87 | CYP2D6 | 16 |
35 | MMP9 | 29 | 88 | FGF1 | 16 |
36 | AKR1B1 | 27 | 89 | GRIN1 | 16 |
37 | ARG1 | 27 | 90 | MAPT | 16 |
38 | CYP1A1 | 27 | 91 | MCL1 | 16 |
39 | F2 | 27 | 92 | MET | 16 |
40 | CYP19A1 | 26 | 93 | NFE2L2 | 16 |
41 | ESR2 | 26 | 94 | PPARA | 16 |
42 | IGF1R | 26 | 95 | AOC3 | 15 |
43 | CCR2 | 25 | 96 | CPB2 | 15 |
44 | PPARG | 25 | 97 | REN | 15 |
45 | CD38 | 24 | 98 | ALDH2 | 14 |
46 | CDK1 | 24 | 99 | ALOX15 | 14 |
47 | CDK5 | 24 | 100 | ERN1 | 14 |
48 | CFTR | 24 | 101 | G6PD | 14 |
49 | CYP1A2 | 24 | 102 | LGALS3 | 14 |
50 | HDAC2 | 24 | 103 | MMP3 | 14 |
51 | MAPK8 | 24 | 104 | NOS1 | 14 |
52 | MPO | 23 | 105 | NR0B2 | 14 |
53 | HDAC3 | 22 | 106 | PTGS2 | 14 |
No. | Target | Betweenness Centrality | No. | Target | Betweenness Centrality |
---|---|---|---|---|---|
1 | AKT1 | 1.000000 | 17 | F2 | 0.121939 |
2 | GAPDH | 0.961904 | 18 | AR | 0.119210 |
3 | EGFR | 0.631284 | 19 | GSK3B | 0.111653 |
4 | ALB | 0.605009 | 20 | DRD2 | 0.106535 |
5 | CXCL8 | 0.564944 | 21 | FYN | 0.102145 |
6 | ESR1 | 0.531729 | 22 | NOS2 | 0.100364 |
7 | IL6 | 0.519001 | 23 | HDAC2 | 0.089496 |
8 | CASP3 | 0.345339 | 24 | FLT3 | 0.084114 |
9 | HIF1A | 0.344015 | 25 | HNF4A | 0.078172 |
10 | CYP1A1 | 0.277903 | 26 | GRIN1 | 0.068896 |
11 | COMT | 0.239681 | 27 | CASP1 | 0.068437 |
12 | HSP90AA1 | 0.227377 | 28 | CYP19A1 | 0.067422 |
13 | CYP3A4 | 0.210552 | 29 | CYP2D6 | 0.064594 |
14 | FGF2 | 0.198164 | 30 | CNR1 | 0.063946 |
15 | MAPK1 | 0.136887 | 31 | CYP2C9 | 0.058081 |
16 | MMP9 | 0.131470 | 32 | MAPK8 | 0.057694 |
Grid Box | Hydrogen Bond Interactions | Hydrophobic Interactions | |||||
---|---|---|---|---|---|---|---|
Protein | Ligand | PubChem ID | Binding Energy (kcal/mol) | Center | Dimension | Amino Acid Residue | Amino Acid Residue |
IL6 (PDB ID: 4NI9) | Equol | 91469 | −7.4 | x = 11.213 | x = 40 | Glu110, Asp34, Tyr31 | Gly35, Gln111, Ala114 |
y = 33.474 | y = 40 | ||||||
z = 11.162 | z = 40 | ||||||
3-Indolepropionic acid | 3744 | −7.2 | x = 11.213 | x = 40 | Arg16 | Pro18, Gln17 | |
y = 33.474 | y = 40 | ||||||
z = 11.162 | z = 40 | ||||||
Trimethylamine oxide | 1145 | −3.6 | x = 11.213 | x = 40 | N/A | N/A | |
y = 33.474 | y = 40 | ||||||
z = 11.162 | z = 40 | ||||||
Butyrate | 104775 | −4.4 | x = 11.213 | x = 40 | N/A | N/A | |
y = 33.474 | y = 40 | ||||||
z = 11.162 | z = 40 | ||||||
Acetate | 175 | −3.8 | x = 11.213 | x = 40 | N/A | Arg16 | |
y = 33.474 | y = 40 | ||||||
z = 11.162 | z = 40 | ||||||
AKT1 (PDB ID: 3O96) | Indole | 798 | −5.2 | x = 6.313 | x = 40 | Ser259 | Asp262, Tyr417, Tyr263 |
y = −7.926 | y = 40 | Gln414, His207 | |||||
z = 17.198 | z = 40 |
No. | Compound | Lipinski Rules | Lipinski’s Violations | Bioavailability Score | Topological SurfaceArea (Å2) | |||
---|---|---|---|---|---|---|---|---|
Molecular Weight | Hydrogen Bonding Acceptor | Hydrogen Bonding Donor | Moriguchi Octanol-Water Partition Coefficient | |||||
<500 | <10 | ≤5 | ≤4.15 | ≤1 | >0.1 | <140 | ||
1 | Equol | 242.27 | 3 | 2 | 2.2 | 0 | 0.55 | 49.69 |
Parameter | Metabolite (Postbiotic) |
---|---|
Equol | |
hERG blocker | Non-blocker |
Rat oral acute toxicity | Negative |
Eye corrosion | Negative |
Respiratory toxicity | Negative |
LD50 of acute toxicity | 5.238 mg/kg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, K.-K.; Gupta, H.; Min, B.-H.; Ganesan, R.; Sharma, S.P.; Won, S.-M.; Jeong, J.-J.; Lee, S.-B.; Cha, M.-G.; Kwon, G.-H.; et al. Elucidation of Prebiotics, Probiotics, Postbiotics, and Target from Gut Microbiota to Alleviate Obesity via Network Pharmacology Study. Cells 2022, 11, 2903. https://doi.org/10.3390/cells11182903
Oh K-K, Gupta H, Min B-H, Ganesan R, Sharma SP, Won S-M, Jeong J-J, Lee S-B, Cha M-G, Kwon G-H, et al. Elucidation of Prebiotics, Probiotics, Postbiotics, and Target from Gut Microbiota to Alleviate Obesity via Network Pharmacology Study. Cells. 2022; 11(18):2903. https://doi.org/10.3390/cells11182903
Chicago/Turabian StyleOh, Ki-Kwang, Haripriya Gupta, Byeong-Hyun Min, Raja Ganesan, Satya Priya Sharma, Sung-Min Won, Jin-Ju Jeong, Su-Been Lee, Min-Gi Cha, Goo-Hyun Kwon, and et al. 2022. "Elucidation of Prebiotics, Probiotics, Postbiotics, and Target from Gut Microbiota to Alleviate Obesity via Network Pharmacology Study" Cells 11, no. 18: 2903. https://doi.org/10.3390/cells11182903
APA StyleOh, K.-K., Gupta, H., Min, B.-H., Ganesan, R., Sharma, S. P., Won, S.-M., Jeong, J.-J., Lee, S.-B., Cha, M.-G., Kwon, G.-H., Jeong, M.-K., Hyun, J.-Y., Eom, J.-A., Park, H.-J., Yoon, S.-J., Choi, M.-R., Kim, D. J., & Suk, K.-T. (2022). Elucidation of Prebiotics, Probiotics, Postbiotics, and Target from Gut Microbiota to Alleviate Obesity via Network Pharmacology Study. Cells, 11(18), 2903. https://doi.org/10.3390/cells11182903