Next Article in Journal
Impact of Increasing Maize Densities on Agronomic Performances and the Community Stability of Productivity of Maize/Peanut Intercropping Systems
Previous Article in Journal
Assessment of Ultrasound Assisted Extraction as an Alternative Method for the Extraction of Anthocyanins and Total Phenolic Compounds from Maqui Berries (Aristotelia chilensis (Mol.) Stuntz)
Article Menu
Issue 3 (March) cover image

Export Article

Open AccessArticle
Agronomy 2019, 9(3), 149;

Post-Anthesis Photosynthetic Properties Provide Insights into Yield Potential of Tartary Buckwheat Cultivars

College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
Author to whom correspondence should be addressed.
Received: 21 February 2019 / Revised: 14 March 2019 / Accepted: 18 March 2019 / Published: 21 March 2019
PDF [1945 KB, uploaded 27 March 2019]


Photosynthesis is the basis for plant productivity, and improvement of photosynthetic efficiency is an important way to improve crop yield. However, the relationship between photosynthetic parameters and the yield of Tartary buckwheat (Fagopyrum tataricum) under rainfed conditions is unclear. A two-year field trial was conducted during 2016 and 2017 to assess the photosynthetic capacity of different leaves, dry matter accumulation, and yield of four Tartary buckwheat cultivars from flowering to maturity. The leaves of all cultivars aged gradually after flowering, and the leaf chlorophyll (Chl) and soluble protein (SP) contents, net photosynthetic rates (Pn), transpiration rates (Tr), and stomatal conductance (Gs) tended to decline. The Chl, SP, Pn, Tr, and Gs of cultivars (cvs.) XiQiao2 and QianKu3 were significantly higher than those of LiuKu3 and JiuJiang at each sampling time from 18 days after anthesis to maturity, but the intercellular CO2 content (Ci) showed the opposite trend. Cultivars XiQiao2 and QianKu3 produced more total dry matter (mean 17.1% higher), had higher harvest index (HI, mean 16.4% higher), and yield (mean 29.0% higher) than cvs. LiuKu3 and JiuJiang at maturity, and the difference was remarkably consistent. The yield of all the cultivars was positively correlated with leaf Chl, SP, Pn, Tr, and Gs, but negatively correlated with Ci. At late growth stages, the high-yielding cultivars maintained higher Chl, SP contents, Pn, Tr, and Gs, and showed higher dry matter accumulation and lower Ci than the low-yielding cultivars, consistent with their higher leaf photosynthetic capacity. The important factors determining the yield of Tartary buckwheat were maintaining higher leaf Chl and SP content and photosynthetic capacity and delaying aging during the grain formation stage. Enhanced rates of photosynthesis and dry matter accumulation led to higher post-anthesis accumulation of biomass with a positive impact on grain number and higher yield. View Full-Text
Keywords: Fagopyrum tataricum; chlorophyll content; photosynthetic parameters; dry matter; yield Fagopyrum tataricum; chlorophyll content; photosynthetic parameters; dry matter; yield

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Xiang, D.; Ma, C.; Song, Y.; Wu, Q.; Wu, X.; Sun, Y.; Zhao, G.; Wan, Y. Post-Anthesis Photosynthetic Properties Provide Insights into Yield Potential of Tartary Buckwheat Cultivars. Agronomy 2019, 9, 149.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Agronomy EISSN 2073-4395 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top