Next Article in Journal
Identification of New Hosts of Pseudocercospora fijiensis Suggests Innovative Pest Management Programs for Black Sigatoka Disease in Banana Plantations
Previous Article in Journal
Sustainable Intensification of Sorghum and Pearl Millet Production by Seed Priming, Seed Treatment and Fertilizer Microdosing under Different Rainfall Regimes in Mali
 
 
Order Article Reprints
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Optimizing Genetic Parameters of CSM-CERES Wheat and CSM-CERES Maize for Durum Wheat, Common Wheat, and Maize in Italy

1
Euro-Mediterranean Center on Climate Changes (CMCC) Foundation, IAFES Division, via E. De Nicola 9, 07100 Sassari, Italy
2
Department of Agriculture, University of Sassari, via De Nicola 9, 07100 Sassari, Italy
*
Author to whom correspondence should be addressed.
Agronomy 2019, 9(10), 665; https://doi.org/10.3390/agronomy9100665
Received: 26 September 2019 / Revised: 14 October 2019 / Accepted: 18 October 2019 / Published: 22 October 2019

Abstract

:
The expected increase in population and the pressure posed by climate change on agricultural production require the assessment of future yield levels and the evaluation of the most suitable management options to minimize climate risk and promote sustainable agricultural production. Crop simulation models are widely applied tools to predict crop development and production under different management practices and environmental conditions. The aim of this study was to parameterize CSM-CERES-Wheat and CSM-CERES-Maize models, implemented in the Decision Support System for Agrotechnology Transfer (DSSAT) software, to predict phenology and grain yield of durum wheat, common wheat, and maize in different Italian environments. A 10-year (2001–2010) dataset was used to optimize the genetic parameters for selected varieties of each species and to evaluate the models considering several statistical indexes. The generalized likelihood uncertainty estimation method, and trial and error approach were used to optimize the cultivar-specific parameters of these models. Results show good model performances in reproducing crop phenology and yield for the analyzed crops, especially with the parameters optimized with the trial and error procedure. Highly significant (p ≤ 0.001) correlations between observed and simulated data were found for both anthesis and yield in model calibration and evaluation (p ≤ 0.01 for grain yield of maize in model evaluation). Root mean square error (RMSE) values range from six to nine days for anthesis and from 1.1 to 1.7 t ha−1 for crop yield and index of agreement (d-index) from 0.96 to 0.98 for anthesis and from 0.8 to 0.87 for crop yield. The set of genetic parameters obtained for durum wheat, common wheat, and maize may be applied in further analyses at field, regional, and national scales to guide operational (farmers), strategic, and tactical (policy makers) decisions.

1. Introduction

The expected world population growth, the limited availability of arable land, and the impacts of climate change on cereal production indicate the need to increase the quantity and quality of global grain production to meet the growing demand of food and dietary requirements [1]. Transformative changes in agricultural systems are required to increase the adaptive capacity of the sector, guarantee farmer income, and enhance the fulfillment of Sustainable Development Goals (SDGs) under present and future climatic conditions. However, the choice of adaptation and mitigation strategies is closely related to specific environmental conditions. Crop Simulation Models (CSMs) have been widely tested and applied worldwide to assess the relations between crops and environment and to evaluate the effects of alternative management options in different environmental conditions. CSMs are indeed capable of quantifying the interaction of genotype (G), environment (E), and management (M) and their effects on crop yield and other outputs [2]. Recently, CSMs have become agricultural system models that incorporate the capability to analyze a variety of issues, including changes in soil carbon, greenhouse gas emissions, plant breeding, resource use and efficiency, ecosystem services, pests and diseases, food security, yield-gap analysis, and climate change mitigation and adaptation [3] to support the decision making process. They can be applied as “what if” tools, in addition to field and farm experiments that require large amounts of time and resources to support farmers and policy makers to manage agricultural systems under different conditions, and provide guidelines for a sustainable agricultural management with environmental, social, and economic benefits.
CSMs are generally developed and applied for field-scale simulations, but they have been used from local to global scale by combining with geospatial data using different approaches and purposes, including climate change [4,5,6,7,8,9]. Some studies also evaluated the application of CSMs with seasonal forecast for crop yield predictions [10,11,12]. However, the model applications at large scale are often constrained by limited availability of observations for model calibration and evaluation, which reduce the reliability of model simulations [13]. Notwithstanding the importance of model calibration and evaluation when applied for new locations or new varieties, many studies use coefficients obtained by model developers or from other studies, increasing the uncertainty of model output [14]. An accurate parameterization of crop models at an appropriate scale is required to test their predictive capacity [10] and reduce the degree of uncertainty [15].
Recent literature highlights the need for multi-crop model assessments to reduce the uncertainty associated with model simulations [2,16] and especially for large-scale model intercomparison studies, it is useful to have crop parameters based on a wide range of conditions and tested in different environments.
Long-term observations from different experimental sites result in model calibration with greater robustness, especially if high quality weather, soil, crop management, crop phenology, and production data are available.
This study aims to contribute to the available literature on crop model parameterization to simulate durum wheat (Triticum durum Desf.), common wheat (Triticum aestivum L.), and maize (Zea mays L.) using CSM-CERES-Wheat and CSM-CERES-Maize models and multi-site and multi-year observations. The CSM-CERES-Wheat and CSM-CERES-Maize are commonly used in climate change impact assessment at different scales and are widely tested and applied in model intercomparison studies [2,5,17], providing good performances in reproducing observations [15,18]. This research provides parameterization at a national level for wheat and maize crops considering observations from field trials located in different agroclimatic and management conditions in Italy in order to explore a wide range of G × E × M interactions and obtain robust parameterization to be applied in further studies at both local and national scales.
Wheat and maize are staple cereal crops with a high economic and social relevance for Europe and worldwide, as they provide a large part of the food energy intake for human consumption and livestock feed. According to FAOSTAT [19], maize and wheat are the first two cultivated crops worldwide (in terms of harvested area) and the first and fourth in Europe (in terms of both harvested area and production). In Italy, maize is the main grown cereal, with a production of 6.0 million tons in 2017, followed by wheat (4.2 for durum wheat and 2.8 for common wheat), which together account for 78.6% of the total cereal harvested area and 80.9% of total cereal production [20]. Predicting growth and yield of these crops under present climate conditions and future scenarios is pivotal to guide crop management. Indeed, if the potential effects of sustainable crop management practices, as conservation agriculture [21] and in general climate smart agriculture solutions [22], are quite well explored, especially under the present climate conditions, there is still a paucity of literature exploring the effects of different management practices (e.g., changes in crop calendars, application of precision agriculture, and the use of well adapted crops) as adaptation strategies to cope with climate changes and on the synergic effects between adaptation and mitigation options. The results of this work would serve model applications at field, regional, and national scales to simulate average and interannual variability of crop phenology and yield and inform decision makers and stakeholders on how to manage agricultural systems by sustainably increasing crop productivity and improving their resilience to climate change.

2. Materials and Methods

2.1. CSM-CERES-Wheat and CSM-CERES-Maize

CSM-CERES-Wheat [23,24] and CSM-CERES-Maize [24,25] implemented in the Decision Support System for Agrotechnology Transfer (DSSAT) v.4.6.1.0 [26,27] were applied in this study to simulate phenology and yield of specific varieties of durum wheat, common wheat, and maize in Italy. The DSSAT is a software package that includes independent dynamic models to simulate crop growth, development, and yield of more than 25 crops by considering weather, soil, crop genetics, and agronomic management, for single or multiple seasons, at sites where the minimum input data required for model calibration and operation are available [14,26]. CSMs implemented in DSSAT calculate cropping system processes within a homogeneous area on a daily time-step and simulate crop growth stages as a function of temperature and day length. The potential growth is simulated as a function of photosynthetically active radiation and its interception, where the biomass production is constrained by temperature, nitrogen, and water stress. A number of Cultivar-Specific Parameters (CSPs)determine the life cycle and reproductive growth rate of specific crop varieties by considering phase modifiers (e.g., vernalization and photoperiod sensitivity) and vegetative and reproductive attributes [28]. See Table 1 for the CSPs of wheat and maize considered in DSSAT. Moreover, DSSAT includes specific modules to simulate soil dynamics, soil temperature and water, and nitrogen and carbon processes, including changes in soil organic matter content according to environmental conditions and agronomic management [26,29]. CSMs implemented in DSSAT also consider the effects of the CO2 atmospheric concentration on photosynthesis and water-use efficiency [14].

2.2. Experimental Sites and Minimum Data set for Model Calibration and Evaluation

The minimum data set for model calibration includes soil characteristics, daily weather data of minimum and maximum temperature, precipitation, solar radiation, crop management, and CSPs [26,30].
In this study, observations of anthesis date, grain yield, and crop management (e.g., sowing and harvesting dates, fertilization and irrigation dates and rates, and tillage) were collected for three varieties of durum wheat, common wheat, and maize (see Table 2) from the experimental field trials (Figure 1) of the national network of varietal comparison and published annually in dedicated special issues. See [31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56] for durum wheat, [57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77] for common wheat, and [78,79,80,81,82,83,84,85,86] for maize.
The crop varieties were selected as representative of very-high productivity potential and high/very-high adaptability to different environments (Table 2). The crop management information followed the ordinary practices applied in the variety trials of the different Italian regions (North, Centre, South, and Islands) and were recorded from the available literature, as well as observations of anthesis date and grain yield [31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86]. The size of the experimental plots was 10 m2 for each crop. Sowing density was of 450 plants/m2 for northern and central Italy and 350 plants/m2 for southern-peninsular area, Sicily, and Sardinia for durum wheat, and 450 plants/m2 for common wheat in all sites. For maize, each plot consisted of four rows of 11 m including a transverse portion of 70–80 cm between the various parcels. The plant density (ranging from 5.5 to 7.5 plants/m2 in the different field trials) was obtained with the manual thinning of the plants at the stage of 4th-5th leaf. Wheat sowing dates ranged from the last week of October (in northern and central Italy) to the last week of December (in southern Italy); while sowing dates for maize ranged from the beginning of April to the end of May. The ordinary tillage for wheat is conventional tillage with moldboard plowing in late summer when the soil is in the right humidity conditions and disk harrow and tine harrow before sowing to prepare a proper seedbed. For maize, the ordinary tillage comprised of plowing and harrowing before sowing.
The anthesis date (expressed in dap = days after planting) for phenology and the grain yield (in t ha−1) accounting for biomass production were considered for crop models calibration and evaluation. The observed values of anthesis dates were estimated from the observed heading dates and the observed grain yield values were corrected to 0% water, as required by the CSMs. Weed control, pests, and diseases were not considered.
The main characteristics of each experimental site are given in Table 3.
The daily weather data were collected for the period 2001–2010, from the available weather stations of the national database of the Agricultural Research Council’s Research Unit for Climatology and Meteorology applied to Agriculture (CRA-CMA, 2011) and the regional Italian Agencies. Specifically, data for the Ussana site were provided by the Agency for Agricultural Research of the Autonomous Region of Sardinia (AGRIS Sardegna) and data for experimental sites located in Piedmont (Alessandria Lobbi, Basaluzzo, Candia, Fossano, and Cumiana) were from the Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte). For each experimental field, the nearest available weather stations were considered.
Soil profiles and information were from the ISRIC-WISE v.1.2 data set [90]. For the Ussana experimental site (in Sardinia), the soil profile was provided by AGRIS Sardegna.
All the collected observations (weather, soil, climate, and crop management) were organized in the form required by DSSAT and the experimental files (EXP) were created accordingly.
Before proceeding with the CSM-CERES-Wheat and CSM-CERES-Maize model calibration and evaluation, a sensitivity analysis for CSPs that characterize the development and productivity of each crop variety (Table 1) was performed. A detailed description of the sensitivity analysis and the optimization and evaluation of CSPs for CSM-CERES-Wheat and CSM-CERES-Maize models is presented in the following sections.

2.3. Sensitivity Analysis

A sensitivity analysis was performed to study the influence of each CSP of the CSM-CERES-Wheat and CSM-CERES-Maize models on the variation of model output [91,92], in this case anthesis date and grain yield for durum and common wheat, and grain yield for maize. The sensitivity analysis aims to guide the calibration phase focusing on parameters that mainly affect the model outputs. The analysis was performed considering the experimental sites used in model calibration and calculating the sensitivity index (SI) for each CSP as follows [93]:
SI = ((O2 ‒ O1)/Oavg)/((I2 ‒ I1)/ Iavg),
where I1, I2, and Iavg are the maximum, minimum, and average values of a specific input parameter, while O1, O2, and Oavg are the maximum, minimum, and average values of the crop model output under consideration.

2.4. CSM-CERES-Wheat and CSM-CERES-Maize Calibration and Evaluation

Model calibration and evaluation were performed comparing model simulations with field observations of anthesis dates and crop yields for multiple years and sites (Table 4). Sites were grouped for calibration and evaluation experiments, considering at least two sites—one for calibration and one for evaluation—for each geographical area (North, Center, South, and Islands) (see Figure 1 and Table 4). Overall, 14 experimental sites were selected for durum wheat (67 combinations site × year), 12 sites for common wheat (38 combinations site × year), and 13 sites for maize (23 combinations site × year).
The anthesis date and grain yield were considered for CSM-CERES-Wheat calibration and evaluation, while for the CSM-CERES-Maize crop model, only grain yield was calibrated and evaluated and a date of maturity equal to 132 dap was considered as reported by the producer (Pioneer) for the length of growing period of the selected hybrid.
The CSPs were modified to minimize the differences between model simulations and observations. The Generalized Likelihood Uncertainty Estimation (GLUE) method [94] was applied using the GLUE R program, implemented in DSSAT v.4.6.1.0. GLUE was run 6000 times to obtain the set of CSPs. Moreover, the trial and error (TE) approach [95] was applied to further improve the simulation results by modifying the CSPs through an iterative procedure to minimize the Root-Mean-Square Error (RMSE) as suggested by [96] and optimize other statistical indexes described in the paragraph “Statistical Analysis”.
The DEFAULT cultivar of the WHCER046.CUL file of DSSAT was used as the starting point for model calibration for both durum and common wheat, while for maize, the parameterization started from the MEDIUM SEASON hybrid of the file MZCER046.CUL. The first step simulated by the DSSAT CSMs is crop development and, consequently, the process of parameterization started with the CSPs related to phenological stages (P1V, P1D, and P5 for CSM-CERES-Wheat and P1, P2, and P5 for CSM-CERES-Maize). The coefficients that affect grain yield (G1, G2, and G3 for CSM-CERES-Wheat and G2, G3, and PHINT for CSM-CERES-Maize) were subsequently parameterized. According to the results of sensitivity analysis, only the parameters that showed a sensitivity on anthesis date and grain yield were modified. In the TE method, P1V coefficient was set to 5.0 for both durum and common wheat, as suggested for the varieties that does not require vernalization [97] and the PHINT coefficient was set equal to 95, as the suggested value for durum wheat and common wheat in the Mediterranean area [98]. The G3 coefficient was set equal to 1.8 for durum wheat as the average value of those reported in other studies for the calibration of durum wheat in Italy [99,100]. Finally, the two set of CSPs obtained with GLUE and trial and error were evaluated considering an independent data set of field observations for anthesis dates and crop yields (as reported in Table 3).

2.5. Statistical Analysis

The performance of CSM-CERES-Wheat and CSM-CERES-Maize in calibration and evaluation were evaluated using five statistical indexes, mainly based on the calculation of correlation and differences between simulated (Ei) and observed (Mi) values of each variable, exploring absolute and relative differences: (1) Pearson correlation coefficient (r), (2) coefficient of determination (R2), (3) root-mean-square error (RMSE), (4) coefficient of residual mass (CRM), and (5) index of agreement (d-Index). Since the use of a single statistical index is not sufficient for evaluating simulation models, multiple indexes were selected among the most commonly used indexes in crop model evaluation [14,99]. The identified indexes are calculated as follows:
r =   i = 1 n ( E i E ¯ ) ( M i   M ¯ )   i = 1 n ( E i E ¯ ) 2   i = 1 n ( M i   M ¯ ) 2   ,
R 2 =   [ i = 1 n ( E i E ¯ ) ( M i   M ¯ )   ] 2 i = 1 n ( E i E ¯ ) 2   i = 1 n ( M i   M ¯ ) 2   ,
R M S E   =   i = 1 n ( E i   M i ) 2 n   ,
C R M = 1   i = 1 n E i i = 1 n M i   ,
d - I n d e x   =   1     i = 1 n ( E i     M i ) 2 i = 1 n ( | E i     M ¯ |   +   | M i     M ¯ | ) 2   ,
where Ei and Mi, respectively, represent the simulated and measured annual values of the year i, n is the number of annual values, and E ¯ and M ¯ are the mean simulated and observed data values, respectively.

3. Results

3.1. Sensitivity Analysis

The results of sensitivity analysis of the CSPs for the phenology and grain yield of durum wheat and common wheat are reported in Table 5, while results for maize are displayed in Table 6. The P1D coefficient of CSM-CERES-Wheat crop model was the most sensitive CSP for the anthesis date, especially for Iride cultivar. Regarding grain yield, the coefficients with the highest SI were G1 and G2, followed by the P5 coefficient. The G3 coefficient showed no sensitivity for grain yield of durum wheat and very low sensitivity for grain yield of common wheat. Results for the Eleonora cultivar indicated a high sensitivity of the CSM-CERES-Maize to the P5 coefficient, followed by the P1 and PHINT coefficients. The sensitivity index of the P2 coefficient was very low. The most sensitive parameter on grain yield was P5, followed by the G3 and G2 coefficients. The other coefficients had a minor influence on grain yield.

3.2. CSM-CERES-Wheat and CSM-CERES-Maize Calibration

The set of CSPs obtained with GLUE method TE method are reported in Table 7.
The results of simulated crop phenology and yield are presented in Figure 2 for each analyzed year and the associated statistics are summarized in Table 8, Table 9 and Table 10. Overall, the simulated values of anthesis date were quite well reproduced by CSM-CERES-Wheat for both durum and common wheat, explaining more than 89% of the variation (Figure 2). The correlation between the observed and simulated data was highly significant (p ≤ 0.001) (Table 8). The good correlation between simulated and measured anthesis date was confirmed also by the high values of d-Index (ranging from 0.97 to 0.99) and the values of CRM very close to 0 (Table 8).
The statistical indexes obtained for anthesis with the set of CSPs parameterized with the GLUE method were quite similar to those obtained with the TE procedure, while for grain yield, the TE allowed to improve the values of statistical indexes, especially for durum wheat (Table 9) and maize (Table 10).
The results obtained for CSM-CERES-Wheat calibration for grain yield (Figure 2 and Table 9) showed lower model performances respect to simulation of crop phenology, even if the correlation between the observed and simulated data was highly significant (p ≤ 0.001). In this case, the TE procedure allowed an improvement of the statistical indexes with respect to the set of CSPs obtained with GLUE, in particular for R2 (0.48 vs. 0.34), RMSE (1.54 vs. 2.19 t ha−1), and d-Index (0.82 vs. 0.74) for durum wheat and R2 (0.62 vs. 0.54), RMSE (1.52 vs. 3.72 t ha−1), and d-Index (0.87 vs. 0.52) for common wheat.
The results of CSM-CERES-Maize calibration for grain yield are reported in Figure 2 and Table 10. A mean maturity date of 132 dap (as reported in the literature for an FAO class 700 hybrid) was obtained for the selected years and locations. A good correlation between simulated and observed yield was achieved, particularly with the CSPs optimized through the trial and error approach (0.83 (p ≤ 0.001) versus 0.70 (p ≤ 0.01)) (Table 10).

3.3. CSM-CERES-Wheat and CSM-CERES-Maize Evaluation

The results for model evaluation confirm the good performances of CSM-CERES-Wheat in reproducing crop phenology, with high significant results (p ≤ 0.001) obtained for anthesis with both the sets of CSP parameters (Figure 3 and Table 11).
The simulations of grain yield for wheat with the evaluation dataset showed a good agreement with observations, with not big differences for durum wheat between the two set of CSPs, while for common wheat, the set of CSPs adjusted with the TE procedure allowed to obtain better results, according to the statistical indexes considered (Figure 3 and Table 12). The TE parameterization reduced the RMSE and CRM values (RMSE from 2.74 to 1.73 t ha−1 and CRM from -0.36 to –0.17 for durum wheat and RMSE from 4.02 to 1.60 t ha−1 and CRM from 0.69 to 0.06 for common wheat) and increased the d-Index (from 0.68 to 0.80 for durum wheat and from 0.50 to 0.84 for common wheat) (Table 12).
The performances of CSM-CERES-Maize in the evaluation phase are summarized in Figure 3 and Table 13. Results showed a better correlation between simulated and observed grain yield for maize with the CSPs optimized through the TE approach with respect to the GLUE method (r-values of 0.65 (p ≤ 0.01) versus 0.5 (p ≤ 0.05) and higher values of d-Index and lower values of RMSE and CRM (Table 13).
In summary, the simulated anthesis date and the grain yield of the three crops with the evaluation dataset showed results comparable with the calibration dataset.

4. Discussion

The results of this study offer a set of CSPs for CSM-CERES-Wheat and CSM-CERES-Maize, successfully tested over a large dataset of experimental observations for anthesis date and grain yield of durum and common wheat and grain yield of maize.
The optimized CSPs for durum and common wheat provide simulated values of anthesis date in good agreement with observations data for different Italian environments, both in calibration and evaluation tests, confirming the good performance of CSM-CERES-Wheat in predicting crop phenology. Similar results were reported in other studies [15,99]. The parameterization obtained with GLUE and TE methods shows comparable performances in reproducing anthesis date, while unsatisfactory results were obtained in reproducing crop yield using GLUE, especially for common wheat both in the calibration and evaluation tests. On the contrary, the adjustment of model parameters with the TE procedure allowed to obtain good model performances also in reproducing grain yield, both in the calibration and evaluation phases, although with lower accuracy than in reproducing crop phenology. This is explained by the high number of factors that influence variability in crop production, recorded from North to South Italy. Results for durum wheat show a slight tendency to underestimate the grain yield in model calibration and a low tendency to overestimate it in model evaluation. For common wheat, there is a slight tendency to underestimate grain yield in both calibration and evaluation. Regarding maize, simulated yields show good agreement with observed yields for the studied hybrid, particularly in model calibration with the TE procedure that showed a better model performance than GLUE in reproducing grain yields. The lower simulation performance in reproducing observed maize yields compared to wheat yields may be due to the lower availability of observed data used to optimize the CSPs of maize with respect to the number of the available data used to define the optimal set of CSPs of wheat.
The comparison between the CSPs obtained in this work for CSM-CERES-Wheat and CSM-CERES-Maize and those obtained in other studies for durum wheat, common wheat, and maize in Europe and the Mediterranean Basin [98,99,100,101,102,103,104,105,106,107] has only a limited value due to the differences in the scale of the analysis at which the parameterization was performed. There were differences in the characteristics of the cultivars and in the versions of the crop simulation models used. The results of the statistical analysis (e.g., d-Index or RMSE) of the model performances in reproducing field observations show results similar to, or even better than, those obtained in other studies [14,99,102,108]. The added value of this work is a robust parameterization of the CSM-CERES-Wheat and CSM-CERES-Maize models for three representative varieties of durum wheat, common wheat, and maize, performed over several Italian regions having a wide range of environmental conditions and management options. The parameterizations of CSM-CERES-Wheat and CSM-CERES-Maize models should be further evaluated if applied to simulate other aspects (e.g., date of physiological maturity, leaf area index, etc.) that were not tested in this study. Further improvement of model performance could result from including other experimental sites and additional information of environmental conditions, crop management, crop growth, and production. As in this study, the data used for model parameterization were not collected for crop modeling purposes and the lack of detailed and appropriate data may affect the model results [99,109,110].

5. Conclusions

The set of CSPs found for CSM-CERES-Wheat and CSM-CERES-Maize in this study confirm that the performances of the two crop models are good if applied in Mediterranean environmental conditions to predict phenology and yield of durum wheat, common wheat, and maize. Overall, the CSPs optimized with the TE method show higher performances, especially in reproducing grain yield, with respect to the set of CSPs obtained with GLUE. The set of CSPs optimized considering a wide range of meteoclimatic, pedological, and management conditions allowed to explore the interactions between genotype, environment, and crop management and produce robust parameterization to simulate anthesis date and grain yield of durum and common wheat, and maize grain yield. The derived set of CSPs may serve to further applications of the CSM-CERES-Wheat and CSM-CERES-Maize in geographical areas and for cultivars similar to those considered in this study, taking into consideration that the simulation of other model outputs, not evaluated in this study, require further assessments. The parameterized crop models may be applied to assess the effect of alternative management options on grain yield under the present climate conditions, seasonal forecasts, and/or future climate projections, to support farmers and policy makers in making operational, strategic and tactical decisions. Informing on the optimal agronomic practices is pivotal to help the decision-making process and drive the development of the agricultural sector in line with the principles of the climate-smart agriculture, to increase the adaptive capacity of system to cope with weather and climate hazards and make the agricultural sector more productive and sustainable.

Author Contributions

Conceptualization, V.M. and D.S.; methodology, V.M. and A.G.; validation, A.G. and V.M.; formal analysis, A.G.; data curation, A.G.; writing—original draft preparation, A.G.; writing—review and editing, V.M. and D.S.; supervision, D.S.

Funding

This research was funded by the CMCC Foundation, with internal resources.

Acknowledgments

The authors wish to thank Gavriil Kyriakakis for his contribution in improving the manuscript. The authors also wish to thank the Agricultural Research Agency of Sardinia (AGRIS Sardegna) for providing weather and soil data for San Michele (Ussana) experimental farm.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. FAO. The State of Agricultural Commodity Markets 2018; Agricultural Trade, Climate Change and Food Security: Rome, Italy, 2018; Available online: http://www.fao.org/3/I9542EN/i9542en.pdf (accessed on 18 April 2019).
  2. Rotter, R.P.; Hoffmann, M.P.; Koch, M.; Muller, C. Progress in modelling agricultural impacts of and adaptations to climate change. Curr. Opin. Plant Biol. 2018, 45, 255–261. [Google Scholar] [CrossRef]
  3. Holzworth, D.P.; Snow, V.; Janssen, S.; Athanasiadis, I.N.; Donatelli, M.; Hoogenboom, G.; White, J.W.; Thorburn, P. Agricultural production systems modelling and software: Current status and future prospects. Environ. Model Softw. 2015, 72, 276–286. [Google Scholar] [CrossRef]
  4. Resop, J.P.; Fleisher, D.H.; Wang, Q.; Timlin, D.J.; Reddy, V.R. Combining explanatory crop models with geospatial data for regional analyses of crop yield using field-scale modeling units. Comp. Electron. Agric. 2012, 89, 51–61. [Google Scholar] [CrossRef]
  5. Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA 2013, 111, 3268–3273. [Google Scholar] [CrossRef][Green Version]
  6. Elliott, J.; Kelly, D.; Chryssanthacopoulos, J.; Glotter, M.; Jhunjhnuwala, K.; Best, N.; Wilde, M.; Foster, I. The parallel system for integrating impact models and sectors (pSIMS). Environment 2014, 62, 509–516. [Google Scholar] [CrossRef][Green Version]
  7. Mereu, V.; Carboni, G.; Gallo, A.; Cervigni, R.; Spano, D. Impact of climate change on staple food crop production in Nigeria. Clim. Chang. 2015, 132, 321–336. [Google Scholar] [CrossRef]
  8. Ciscar, J.C.; Ibarreta, D.; Soria, A.; Dosio, A.; Toreti, A.; Ceglar, A.; Fumagalli, D.; Dentener, F.; Lecerf, R.; Zucchini, A.; et al. Climate Impacts in Europe: Final Report of the JRC PESETA III project, EUR 29427 EN; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-97218-8. [CrossRef]
  9. Sheila, V.; Hansen, J.; Sharda, V.; Porter, C.; Aggarwal, P.; Wilkerson, C.J.; Hoogenboom, G. A multi-scale and multi-model gridded framework for forecasting crop production, risk analysis, and climate change impact studies. Environ. Model. Softw. 2019, 115, 144–154. [Google Scholar] [CrossRef]
  10. Han, E.; Amor, V.M.I.; Baethgen, W.E. Climate-Agriculture-Modeling and Decision Tool (CAMDT): A software framework for climate risk management in agriculture. Environ. Model. Softw. 2017, 95, 102–114. [Google Scholar] [CrossRef]
  11. Basso, B.; Liu, L. Seasonal crop yield forecast: Methods, applications, and accuracies. Adv. Agron. 2018. [Google Scholar] [CrossRef]
  12. Jha, P.K.; Athanasiadis, P.; Gualdi, S.; Trabucco, A.; Mereu, V.; Shelia, V.; Hoogenboom, G. Using daily data from seasonal forecasts in dynamic crop models for yield prediction: A case study for rice in Nepal’s Terai. Agric. For. Meteorol. 2019, 265, 349–358. [Google Scholar] [CrossRef]
  13. Angulo, C.; Rötter, R.; Trnka, M.; Pirttioja, N.; Gaiser, T.; Hlavinka, P.; Ewert, F. Characteristic ‘fingerprints’ of crop model responses to weather input data at different spatial resolutions. Eur. J. Agron. 2013, 49, 104–114. [Google Scholar] [CrossRef]
  14. Bao, Y.; Hoogenboom, G.; McClendon, R.W.; Vellidis, G. A comparison of the performance of the CSM-CERES-MAIZE and EPIC models using maize variety trial data. Agric. Syst. 2017, 150, 109–119. [Google Scholar] [CrossRef]
  15. Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Hlavinka, P.; Moriondo, M.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Rumbaur, C.; Takáč, J.; et al. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. Eur. J. Agron. 2011, 35, 103–114. [Google Scholar] [CrossRef][Green Version]
  16. Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Chang. 2013, 3, 827–832. [Google Scholar] [CrossRef][Green Version]
  17. Liu, B.; Martre, P.; Ewert, F.; Porter, J.R.; Challinor, A.J.; Müller, C.; Ruane, A.C.; Waha, K.; Thorburn, P.J.; Aggarwal, P.K.; et al. Global wheat production with 1.5 and 2.0 °C above pre-industrial warming. Glob. Chang. Biol. 2019, 25, 1428–1444. [Google Scholar] [CrossRef]
  18. Bassu, S.; Brisson, N.; Durand, J.-L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Adam, M.; Baron, C.; et al. How do various maize crop models vary in their responses to climate change factors? Glob. Chang. Biol. 2014, 20, 2301–2320. [Google Scholar] [CrossRef]
  19. FAOSTAT. 2017. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 6 August 2019).
  20. ISTAT. Istituto Nazionale di Statistica. Agricoltura e Zootecnia. 2019. Available online: http://agri.istat.it (accessed on 13 October 2019).
  21. González-Sánchez, E.J.; Kassam, A.; Basch, G.; Streit, B.; Holgado-Cabrera, A.; Triviño-Tarradas, P. Conservation Agriculture and its contribution to the achievement of agri-environmental and economic challenges in Europe. AIMS Agric. Food 2016, 1, 387–408. [Google Scholar] [CrossRef]
  22. FAO. Climate-Smart Agriculture Sourcebook. Second Edition. 2017. Available online: http://www.fao.org/3/a-i7994e.pdf (accessed on 24 September 2019).
  23. Ritchie, J.T.; Otter, S. Description and performance of CERES-Wheat: A user-oriented wheat yield model. In ARS Wheat Yield Project, ARS-38; National Technical Information Service: Springfield, VA, USA, 1985; pp. 159–175. [Google Scholar]
  24. Hoogenboom, G.; Jones, J.W.; Porter, C.H.; Wilkens, P.W.; Boote, K.J.; Hunt, L.A.; Tsuji, G.Y. Decision Support System for Agrotechnology Transfer Version 4.5; Overview; University of Hawaii: Honolulu, HI, USA, 2010; Volume 1. [Google Scholar]
  25. Jones, C.A.; Kiniry, J.R. CERES-Maize: A Simulation Model of Maize Growth and Development; Texas A&M University Press: College Station, TX, USA, 1986; 194p. [Google Scholar]
  26. Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
  27. Hoogenboom, G.; Jones, J.W.; Wilkens, P.W.; Porter, C.H.; Boote, K.J.; Hunt, L.A.; Singh, U.; Lizaso, J.I.; White, J.W.; Uryasev, O.; et al. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.6 (http://dssat.net); DSSAT Foundation: Prosser, WA, USA, 2015. [Google Scholar]
  28. Boote, K.J.; Kropff, M.J.; Bindraban, P.S. Physiology and modeling of traits in crop plants: Implications for genetic improvement. Agric. Syst. 2001, 70, 395–420. [Google Scholar] [CrossRef]
  29. White, J.W.; Jones, J.W.; Porter, C.; McMaster, G.S.; Sommer, R. Issues of spatial and temporal scale in modeling the effects of field operations on soil properties. Oper. Res. 2010, 10, 279–299. [Google Scholar] [CrossRef]
  30. Hoogenboom, G.; Jones, J.W.; Traore, P.C.; Boote, K.J. Experiments and Data for Model Evaluation and Application. In Improving Soil Fertility Recommendations in Africa using the Decision Support System for Agrotechnology Transfer (DSSAT); Springer: Dordrecht, The Netherlands, 2012; pp. 9–18. [Google Scholar][Green Version]
  31. Lendini, M.; Dettori, M.; Musio, F.; Giunta, F.; Balmas, V. Scelta delle varietà di grano duro. Risultati 2000–2001 della rete nazionale. Sardegna. L’Informatore Agrario 2001, 57, 31–33. [Google Scholar]
  32. Boggini, G.; Di Prima, G.; Di Miceli, G.; Gallo, G.; Liotta, C.; Lombardo, G.M.; Palumbo, M. Scelta delle varietà di grano duro. Risultati 2001–2002 della rete nazionale. Sicilia. L’Informatore Agrario 2002, 58, 27–30. [Google Scholar]
  33. Ciriciofolo, E.; Belocchi, A.; Biancolatte, E.; Del Puglia, S.; Fornara, M.; Olimpieri, G.; Piccioni, C.; Desiderio, E. Scelta delle varietà di grano duro. Risultati 2001–2002 della rete nazionale. Lazio e Umbria. L’Informatore Agrario 2002, 58, 47–51. [Google Scholar]
  34. Giunta, F.; Pruneddu, G.; Balmas, V. Scelta delle varietà di grano duro. Risultati 2001–2002 della rete nazionale. Sardegna. L’Informatore Agrario 2002, 58, 31–33. [Google Scholar]
  35. Belocchi, A.; Fornara, M.; Ciriciofolo, E.; Biancolatte, E.; Del Puglia, S.; Olimpieri, G.; Vecchiarelli, V.; Gosparini, E.; Piccioni, C.; Desiderio, E. Scelta delle varietà di grano duro. Risultati 2002–2003 della rete nazionale. Lazio e Umbria. LInformatore Agrario 2003, 59, 41–44. [Google Scholar]
  36. Belocchi, A.; Fornara, M.; Ciriciofolo, E.; Biancolatte, E.; Del Puglia, S.; Olimpieri, G.; Vecchiarelli, V.; Gosparini, E.; Piccioni, C.; Desiderio, E. Scelta delle varietà di grano duro. Risultati 2003–2004 della rete nazionale. Lazio e Umbria. L’Informatore Agrario 2004, 60, 36–38. [Google Scholar]
  37. Belocchi, A.; Fornara, M.; Ciriciofolo, E.; Cacciatori, P.; Del Puglia, S.; Olimpieri, G.; Vecchiarelli, V.; Mazzon, V.; Gosparini, E.; Piccioni, C.; et al. Scelta delle varietà di grano duro. Risultati 2004–2005 della rete nazionale. Lazio e Umbria. L’Informatore Agrario 2005, 61, 36–38. [Google Scholar]
  38. Belocchi, A.; Fornara, M.; Mazzon, V.; Ciriciofolo, E.; Cacciatori, P.; Del Puglia, S.; Olimpieri, G.; Vecchiarelli, V.; Gosparini, E.; Arcangeli, A.; et al. Scelta delle varietà di grano duro. Risultati 2005–2006 della rete nazionale. Lazio e Umbria. L’Informatore Agrario 2006, 62, 29–31. [Google Scholar]
  39. Belocchi, A.; Fornara, M.; Ciriciofolo, E.; Cacciatori, P.; Del Puglia, S.; Olimpieri, G.; Vecchiarelli, V.; Piccioni, C.; Mazzon, V.; Arcangeli, A.; et al. Scelta delle varietà di grano duro. Risultati 2006–2007 della rete nazionale. Lazio e Umbria. L’Informatore Agrario 2007, 63, 34–37. [Google Scholar]
  40. Palumbo, M.; Boggini, G.; Di Prima, G.; Gallo, G.; Giambalvo, D.; Lombardo, G.M. Scelta delle varietà di grano duro. Risultati 2002–2003 della rete nazionale. Sicilia. L’Informatore Agrario 2003, 59, 21–24. [Google Scholar]
  41. Palumbo, M.; Di Prima, G.; Gallo, G.; Lombardo, G.M.; Scarpello, C.; Virzì, N. Scelta delle varietà di grano duro. Risultati 2003–2004 della rete nazionale. Sicilia. L’Informatore Agrario 2004, 60, 20–22. [Google Scholar]
  42. Palumbo, M.; Gallo, G.; Lombardo, G.M.; Randazzo, B.; Scarpello, C.; Virzì, N. Scelta delle varietà di grano duro. Risultati 2004–2005 della rete nazionale. Sicilia. L’Informatore Agrario 2005, 61, 20–22. [Google Scholar]
  43. Palumbo, M.; Virzì, N.; Poma, I.; Stringi, L.; Gallo, G.; Lombardo, G.M. Risultati della 37a sperimentazione nazionale 2009–2010. Sicilia. L’Informatore Agrario 2010, 66, 30–32. [Google Scholar]
  44. Pruneddu, G.; Giunta, F.; Dettori, M.; Mameli, L.; Balmas, V.; Murgia, G. Scelta delle varietà di grano duro. Risultati 2002–2003 della rete nazionale. Sardegna. L’Informatore Agrario 2003, 59, 27–29. [Google Scholar]
  45. Pruneddu, G.; Giunta, F.; Dettori, M.; Balmas, V.; Murgia, G. Scelta delle varietà di grano duro. Risultati 2003–2004 della rete nazionale. Sardegna. L’Informatore Agrario 2004, 60, 23–25. [Google Scholar]
  46. Pruneddu, G.; Giunta, F.; Dettori, M.; Mameli, L.; Balmas, V.; Murgia, G. Scelta delle varietà di grano duro. Risultati 2004–2005 della rete nazionale. Sardegna. L’Informatore Agrario 2005, 61, 23–25. [Google Scholar]
  47. Pruneddu, G.; Giunta, F.; Dettori, M.; Mameli, L.; Balmas, V. Scelta delle varietà di grano duro. Risultati 2006–2007 della rete nazionale. Sardegna. L’Informatore Agrario 2007, 63, 20–22. [Google Scholar]
  48. Pruneddu, G.; Motzo, R.; Giunta, F.; Dettori, M.; Mameli, L.; Balmas, V. Risultati della 37a sperimentazione nazionale 2009–2010. Sardegna. L’Informatore Agrario 2010, 66, 33–34. [Google Scholar]
  49. Fornara, M.; Codianni, P.; Laghetti, G.; Landi, G.; Belocchi, A.; Mazzon, V.; Infantino, S.; Pucciarmati, S.; Volpe, N.; Di Fonzo, N.; et al. Scelta delle varietà di grano duro. Risultati 2003–2004 della rete nazionale. Molise e Basilicata. L’Informatore Agrario 2004, 60, 30–32. [Google Scholar]
  50. Fornara, M.; Codianni, P.; Laghetti, G.; Landi, G.; Belocchi, A.; Pucciarmati, S.; Colonna, M.; Giancipoli, G.; Volpe, N.; Cattivelli, L.; et al. Scelta delle varietà di grano duro. Risultati 2004–2005 della rete nazionale. Molise e Basilicata. L’Informatore Agrario 2005, 61, 30–32. [Google Scholar]
  51. Baravelli, M.; Belloni, C.; Converso, R.; Notario, T.; Padovan, S.; Sbicego, P.F.; Pons, R.; Pilati, A.; Pratizzoli, W.; Reggiani, R.; et al. Cereali—Scelta delle varietà di grano duro. Risultati della sperimentazione nazionale 2008–2009. Areale Nord (Emilia-Romagna, Veneto, Friuli, V.G., Lombardia e Piemonte). L’Informatore Agrario. 2009, 65, 26–28. [Google Scholar]
  52. Mazzieri, G.; Elisei, G.; Petrini, A.; Fuselli, D.; Santilocchi, R.; Beldomenico, I.; Ranalli, G.; Travaglini, S.; Piccioni, I.; Puccella, A.; et al. Cereali—Scelta delle varietà di grano duro. Risultati della sperimentazione nazionale 2008–2009. Centro Italia versante adriatico (Marche e Abruzzo). L’Informatore Agrario 2009, 65, 29–31. [Google Scholar]
  53. Mazzieri, G.; Governatori, C.; Petrini, A.; Fuselli, D.; Santilocchi, R.; Bianchelli, M.; Ranalli, G.; Travaglini, S.; Piccioni, I.; Puccella, A.; et al. Risultati della 37a sperimentazione nazionale 2009–2010. Centro Italia versante adriatico (Marche e Abruzzo). L’Informatore Agrario 2010, 66, 20–22. [Google Scholar]
  54. Virzì, N.; Palumbo, M.; Poma, I.; Stringi, L.; Gallo, G.; Lombardo, G.M. Cereali—Scelta delle varietà di grano duro. Risultati della sperimentazione nazionale 2008–2009. Sicilia. L’Informatore Agrario 2009, 65, 38–40. [Google Scholar]
  55. Codianni, P.; De Vita, P.; Papa, R.; Fornara, M.; Belocchi, A.; Mazzon, V.; Gosparini, E.; Preiti, G.; Laghetti, G.; Losavio, F.P.; et al. Risultati della 37a sperimentazione nazionale 2009–2010. Areale Sud peninsulare (Molise, Campania, Puglia, Basilicata e Calabria). L’Informatore Agrario 2010, 66, 27–30. [Google Scholar]
  56. Poli, M.; Innocenti, A.; Baravelli, M.; Belloni, C.; Converso, R.; Notario, T.; Padovan, S.; Sbicego, P.F.; Pons, R.; Pilati, A.; et al. Risultati della 37a sperimentazione nazionale 2009–2010. Areale Nord (Emilia-Romagna, Veneto, Friuli, V.G., Lombardia e Piemonte). L’Informatore Agrario 2010, 66, 17–19. [Google Scholar]
  57. Bottazzi, P.; Neri, L.; Becherini, L.; Serini, C.; Antichi, D.; Invernizzi, C. Scelta delle varietà di grano tenero. Risultati della 32a sperimentazione nazionale. Toscana. L’Informatore Agrario 2005, 61, 32–34. [Google Scholar]
  58. Bottazzi, P.; Becherini, L.; Serini, C.; Antichi, D. Scelta delle varietà di grano tenero. Risultati della 33a sperimentazione nazionale. Toscana. L’Informatore Agrario 2006, 62, 30–31. [Google Scholar]
  59. Bottazzi, P.; Neri, L.; Luciani, B.; Belloni, P.; Antichi, D.; Serini, C.; Viola, P. Scelta delle varietà di grano tenero. Risultati della 35a sperimentazione nazionale. Toscana. L’Informatore Agrario 2008, 64, 38. [Google Scholar]
  60. Codianni, P.; Gallo, A.; Cambrea, M.; Licciardello, S.; Lombardo, G.M.; Gallo, G.; Di Prima, G.; Poma, I.; Infantino, S.; Cattivelli, L. Puglia, Basilicata e Sicilia. Risultati della 32a sperimentazione nazionale. Abruzzo e Molise. L’Informatore Agrario 2005, 61, 40–42. [Google Scholar]
  61. Codianni, P.; De Vita, P.; Carone, F.; Cambrea, M.; Lombardo, G.M.; Gallo, G.; Di Prima, G.; Poma, I.; Giancipoli, G.; Cattivelli, L. Scelta delle varietà di grano tenero. Risultati della 33a sperimentazione nazionale. Puglia, Campania, Basilicata e Sicilia. L’Informatore Agrario 2006, 62, 40–42. [Google Scholar]
  62. Codianni, P.; De Vita, P.; Cattivelli, L.; Palumbo, M.; Licciardello, S.; Gallo, G.; Lombardo, G.M.; Di Prima, G.; Poma, I. Scelta delle varietà di grano tenero. Risultati della 35a sperimentazione nazionale. Puglia, Campania, Basilicata e Sicilia. L’Informatore Agrario 2008, 64, 42. [Google Scholar]
  63. Codianni, P.; De Vita, P.; Palumbo, M.; Spina, A.; Licciardello, S.; Randazzo, B.; Gallo, G.; Lombardo, G.M.; Papa, R. Scelta delle varietà di grano tenero. Risultati della 37a sperimentazione nazionale. Puglia, Campania, Basilicata e Sicilia. L’Informatore Agrario 2010, 66, 32–34. [Google Scholar]
  64. Fornara, M.; Ranalli, G.; Codianni, P.; Belocchi, A.; Cattivelli, L.; Ricci, M.; Galante, V.; Piccioni, I.; Desiderio, E. Scelta delle varietà di grano tenero. Risultati della 32a sperimentazione nazionale. Abruzzo e Molise. L’Informatore Agrario 2005, 61, 38–39. [Google Scholar]
  65. Notario, T.; Boiocchi, H.; Casagrande, L.; Colombari, G.; Severi, D.; Invernizzi, C.; Pons, R. Scelta delle varietà di grano tenero. Risultati della 32a sperimentazione nazionale. Piemonte e Lombardia. L’Informatore Agrario 2005, 61, 17–20. [Google Scholar]
  66. Notario, T.; Casagrande, L.; Colombari, G.; Gai, G.; Pons, R.; Severi, D.; Viola, P. Scelta delle varietà di grano tenero. Risultati della 34a sperimentazione nazionale. Piemonte e Lombardia. L’Informatore Agrario 2007, 63, 15–18. [Google Scholar]
  67. Notario, T.; Evaristi, F.; Evalli, S.; Colombari, G.; Gai, G.; Pons, R.; Pilati, A.; Severi, D.; Viola, P. Scelta delle varietà di grano tenero. Risultati della 35a sperimentazione nazionale. Piemonte e Lombardia. L’Informatore Agrario 2008, 64, 30–31. [Google Scholar]
  68. Notario, T.; Ruscelli, A.; Evalli, S.; Colombari, G.; Pons, R.; Pilati, A.; Severi, D.; Viola, P. Scelta delle varietà di grano tenero. Risultati della 36a sperimentazione nazionale. Piemonte e Lombardia. L’Informatore Agrario 2009, 65, 26–28. [Google Scholar]
  69. Notario, T.; Sanzone, E.; Evalli, S.; Pons, R.; Pilati, A.; Severi, D.; Viola, P. Scelta delle varietà di grano tenero. Risultati della 37a sperimentazione nazionale. Piemonte e Lombardia. L’Informatore Agrario 2010, 66, 18–20. [Google Scholar]
  70. Padovan, S.; Pino, S.; Sbicego, P.F.; Converso, R.; Signor, M.; Barbini, G.; Snidaro, M. Scelta delle varietà di grano tenero. Risultati della 32a sperimentazione nazionale. Veneto e Friuli Venezia Giulia. L’Informatore Agrario 2005, 61, 23–25. [Google Scholar]
  71. Padovan, S.; Sbicego, P.F.; Converso, R.; Signor, M.; Barbini, G.; Snidaro, M. Scelta delle varietà di grano tenero. Risultati della 33a sperimentazione nazionale. Veneto e Friuli Venezia Giulia. L’Informatore Agrario 2006, 62, 20–22. [Google Scholar]
  72. Padovan, S.; Sbicego, P.F.; Bressan, M.; Converso, R.; Signor, M.; Barbini, G.; Snidaro, M. Scelta delle varietà di grano tenero. Risultati della 34a sperimentazione nazionale. Veneto e Friuli Venezia Giulia. L’Informatore Agrario 2007, 63, 20–23. [Google Scholar]
  73. Padovan, S.; Sbicego, P.F.; Converso, R.; Signor, M.; Barbini, G.; Snidaro, M. Scelta delle varietà di grano tenero. Risultati della 35a sperimentazione nazionale. Veneto e Friuli Venezia Giulia. L’Informatore Agrario 2008, 64, 32–33. [Google Scholar]
  74. Spina, A.; Carone, F.; Cattivelli, L.; Codianni, P.; Di Prima, G.; Gallo, G.; Lombardo, G.M.; Matteu, L.; Poma, I.; Palumbo, M. Scelta delle varietà di grano tenero. Risultati della 34a sperimentazione nazionale. Puglia, Campania, Basilicata e Sicilia. L’Informatore Agrario 2007, 63, 40–42. [Google Scholar]
  75. Spina, A.; Codianni, P.; De Vita, P.; Cattivelli, L.; Randazzo, B.; Gallo, G.; Lombardo, G.M.; Palumbo, M. Scelta delle varietà di grano tenero. Risultati della 36a sperimentazione nazionale. Puglia, Campania, Basilicata e Sicilia. L’Informatore Agrario 2009, 65, 41–42. [Google Scholar]
  76. Poli, M.; Innocenti, A.; Rosta, R.; Mazza, L.; Baravelli, M.; Barbieri, S.; Belloni, C.; Reggiani, R.; Foutry, H.; Sarti, A.; et al. Scelta delle varietà di grano tenero. Risultati della 35a sperimentazione nazionale. Emilia-Romagna. L’Informatore Agrario 2008, 64, 34–35. [Google Scholar]
  77. Poli, M.; Baravelli, M.; Belloni, C.; Bolis, L.; Innocenti, A.; Pratizzoli, W.; Reggiani, R.; Righetti, R.; Rosta, R.; Sarti, A.; et al. Scelta delle varietà di grano tenero. Risultati della 37a sperimentazione nazionale. Emilia-Romagna. L’Informatore Agrario 2010, 66, 24–25. [Google Scholar]
  78. Mazzinelli, G.; Verderio, A.; Valoti, P.; Mascheroni, S.; Bossi, A.; Severi, D.; Villa, D.; Ferrero, C.; Pons, R.; Pilati, A.; et al. Cereali—Mais 2009. Risultati degli ibridi di mais di classe Fao 500, 600 e 700. L’Informatore Agrario 2009, 65, 11–35. [Google Scholar]
  79. Mazzinelli, G.; Verderio, A.; Valoti, P.; Mascheroni, S.; Bossi, A.; Laganà, P.; Severi, D.; Villa, D.; Ferrero, C.; Pons, R.; et al. Cereali—Mais 2010. Seminare l’ibrido più adatto di classe Fao 500, 600 e 700. L’Informatore Agrario 2010, 66, 13–35. [Google Scholar]
  80. Mazzinelli, G.; Verderio, A.; Ferrari, A.; Laganà, P.; Introzzi, F.; Valoti, P.; Severi, D.; Villa, D.; Ferrero, C.; Pons, R.; et al. Mais 2011—Gli ibridi in commercio. Classe Fao 500, 600 e 700: Gli ibridi di mais per il 2011. L’Informatore Agrario 2011, 67, 5–25. [Google Scholar]
  81. Verderio, A.; Sartori, G.; Mazzinelli, G.; Bertolini, M.; Valoti, P.; Lombardi, T.; Pozzi, F.; Ferrero, C.; Pons, R.; Ricci, M.; et al. Scelta degli ibridi di mais in commercio. Prove agronomiche degli ibridi commerciali di mais. L’Informatore Agrario 2002, 58, 5–20. [Google Scholar]
  82. Verderio, A.; Sartori, G.; Mazzinelli, G.; Valoti, P.; Valli, F.; Belloni, A.; Lombardi, T.; Pozzi, G.; Ferrero, C.; Pons, R.; et al. Scelta degli ibridi di mais in commercio. Prove agronomiche degli ibridi commerciali di mais. L’Informatore Agrario 2003, 59, 5–23. [Google Scholar]
  83. Verderio, A.; Mazzinelli, G.; Sartori, G.; Valoti, P.; Mascheroni, S.; Valli, F.; Lombardi, T.; Pozzi, G.; Ferrero, C.; Pons, R.; et al. Scelta degli ibridi di mais in commercio. Prove agronomiche degli ibridi commerciali di mais di classe FAO 500, 600 e 700. L’Informatore Agrario 2004, 60, 5–22. [Google Scholar]
  84. Verderio, A.; Mazzinelli, G.; Della Porta, G.; Fumagalli, F.; Valoti, P.; Mascheroni, S.; Peruzzi, P.; Pozzi, T.; Ferrero, C.; Pons, R.; et al. Scelta degli ibridi di mais in commercio. Prove agronomiche degli ibridi commerciali di mais. L’Informatore Agrario 2005, 61, 5–24. [Google Scholar]
  85. Verderio, A.; Mazzinelli, G.; Della Porta, G.; Valoti, P.; Mascheroni, S.; Severi, D.; Gorno, D.; Ferrero, C.; Pons, R.; Pilati, A.; et al. Mais 2007—Gli ibridi in commercio. Prove sugli ibridi di mais di classe FAO 500, 600 e 700. L’Informatore Agrario 2007, 63, 4–23. [Google Scholar]
  86. Verderio, A.; Mazzinelli, G.; Valoti, P.; Mascheroni, S.; Bossi, A.; Severi, D.; Gorno, D.; Ferrero, C.; Pons, R.; Pilati, A.; et al. Mais 2008—Gli ibridi in commercio. Risultati degli ibridi di mais di classe Fao 500, 600 e 700. L’Informatore Agrario 2008, 64, 6–25. [Google Scholar]
  87. Società Produttori Sementi. 2011. Available online: http://www.prosementi.com/products/durum-wheat/iride1 (accessed on 10 December 2014).
  88. SIS. Società Italiana Sementi. 2011. Available online: http://www.sisonweb.com/it/dettaglio-prodotto.php?idProd=105 (accessed on 10 December 2014).
  89. Pioneer. Pioneer Hi-Bread Italia. 2011. Available online: http://www.agronomico.com/Prodotti/Mais/Ibrididimaisconvenzionali/Tardivi/Eleonora.aspx (accessed on 10 December 2014).
  90. Batjes, N.H. ISRIC-WISE Derived Soil Properties on a 5 by 5 Arc-Minutes Global Grid (ver. 1.2). Report 2012/01, ISRIC-World Soil Information, Wageningen. Available online: http://www.isric.org (accessed on 20 February 2012).
  91. Tarantola, S.; Saltelli, A. SAMO 2001: Methodological advances and innovative applications of sensitivity analysis. Reliab. Eng. Syst. Saf. 2003, 79, 121–122. [Google Scholar] [CrossRef]
  92. Lamsal, A.; Anandhi, A.; Welch, S. Modeling the uncertainty in responsiveness of climatic, genetic, soil and agronomic parameters in CERES-Sorghum model across locations in Kansas, USA. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 3–7 December 2012. abstract id. GC43D-1055. [Google Scholar]
  93. Deng, J.; Zhu, B.; Zhou, Z.; Zheng, X.; Li, C.; Wang, T.; Tang, J. Modeling nitrogen loadings from agricultural soils in southwest China with modified DNDC. J. Geophys. Res. Biogeo 2011, 116. [Google Scholar] [CrossRef][Green Version]
  94. Jones, J.W.; He, J.; Boote, K.J.; Wilkens, P.; Porter, C.H.; Hu, Z. Estimating DSSAT cropping system cultivar-specific parameters using Bayesian techniques. Methods Introd. Syst. Models Agric. Res. Adv. Agric. Syst. Model. 2 2011, 365–394. [Google Scholar] [CrossRef]
  95. Godwin, D.C.; Singh, U. Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems. In Understanding Options for Agricultural Production; Kluwer, Tsuji, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 157–177. [Google Scholar]
  96. Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
  97. Ritchie, J.T.; Singh, U.; Godwin, D.C.; Bowen, W.T. Cereal growth, development and yield. In Understanding Options for Agricultural Production; Systems Approaches for Sustainable Agricultural Development; Tsuji, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Springer: Dordrecht, The Netherlands, 1998; Volume 7. [Google Scholar]
  98. Rezzoug, W.; Gabrielle, B.; Suleiman, A.; Benabdeli, K. Application and evaluation of the DSSAT-wheat in the Tiaret region of Algeria. Afr. J. Agric. Res. 2008, 3, 284–296. [Google Scholar]
  99. Dettori, M.; Cesaraccio, C.; Motroni, A.; Spano, D.; Duce, P. Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia, Italy. Field Crops Res. 2011, 120, 179–188. [Google Scholar] [CrossRef]
  100. Rinaldi, M. Water availability at sowing and nitrogen management of durum wheat: A seasonal analysis with the CERES-Wheat model. Field Crops Res. 2004, 89, 27–37. [Google Scholar] [CrossRef]
  101. Iglesias, A. Use of DSSAT models for climate change impact assessment: Calibration and evaluation of CERES-Wheat and CERES-Maize in Spain. In Proceedings of the CGE Hands-on Training Workshop on V&A Assessment of the Asia and the Pacific Region, Jakarta, Indonesia, 20–24 March 2006. [Google Scholar]
  102. Abeledo, L.G.; Savin, R.; Slafer, G.A. Wheat productivity in the Mediterranean Ebro Valley: Analyzing the gap between attainable and potential yield with a simulation model. Eur. J. Agron. 2008, 28, 541–550. [Google Scholar] [CrossRef]
  103. Braga, R.P.; Cardoso, M.J.; Coelho, J.P. Crop model based decision support for maize (Zea mays L.) silage production in Portugal. Eur. J. Agron. 2008, 28, 224–233. [Google Scholar] [CrossRef]
  104. Vučetić, V. Modelling of maize production in Croatia: Present and future climate. J. Agric. Sci. 2011, 149, 145–157. [Google Scholar] [CrossRef]
  105. De Sanctis, G.; Roggero, P.P.; Seddaiu, G.; Orsini, R.; Porter, C.H.; Jones, J.W. Long-term no tillage increased soil organic carbon content of rain-fed cereal systems in a Mediterranean area. Eur. J. Agron. 2012, 40, 18–27. [Google Scholar] [CrossRef]
  106. Salmerón, M.; Urrego, Y.F.; Isla, R.; Cavero, J. Effect of non-uniform sprinkler irrigation and plant density on simulated maize yield. Agric. Water Manag. 2012, 113, 1–9. [Google Scholar] [CrossRef][Green Version]
  107. Thaler, S.; Eitzinger, J.; Trnka, M.; Dubrovský, M. Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. J. Agric. Sci. 2012, 150, 537–555. [Google Scholar] [CrossRef]
  108. Li, Z.; He, J.; Xu, X.; Jin, X.; Huang, W.; Clark, B.; Yang, G.; Li, Z. Estimating genetic parameters of DSSAT-CERES model with the GLUE method for winter wheat (Triticum aestivum L.) production. Comput. Electron. Agric. 2018, 154, 213–221. [Google Scholar] [CrossRef]
  109. Žalud, Z.; Dubrovský, M. Modelling Climate Change Impacts on Maize Growth and Development in the Czech Republic. Theor. Appl. Climatol. 2002, 72, 85–102. [Google Scholar] [CrossRef]
  110. Mereu, V. Climate Change Impact on Durum Wheat in Sardinia. Ph.D. Thesis, University of Sassari, Sassari, Italy, 2010; 247p. [Google Scholar]
Figure 1. Location of the experimental sites for model calibration and evaluation in Italy.
Figure 1. Location of the experimental sites for model calibration and evaluation in Italy.
Agronomy 09 00665 g001
Figure 2. Calibration results for anthesis date (a) and grain yield (b) of durum wheat (Iride cv), anthesis date (c) and grain yield (d) of common wheat (Bologna cv), and grain yield of maize (Eleonora hybrid) (e) with TE and GLUE methods.
Figure 2. Calibration results for anthesis date (a) and grain yield (b) of durum wheat (Iride cv), anthesis date (c) and grain yield (d) of common wheat (Bologna cv), and grain yield of maize (Eleonora hybrid) (e) with TE and GLUE methods.
Agronomy 09 00665 g002
Figure 3. Evaluation results for anthesis date (a) and grain yield (b) of durum wheat (Iride cv), anthesis date (c) and grain yield (d) of common wheat (Bologna cv), and grain yield of maize (Eleonora hybrid) (e) with TE and GLUE methods.
Figure 3. Evaluation results for anthesis date (a) and grain yield (b) of durum wheat (Iride cv), anthesis date (c) and grain yield (d) of common wheat (Bologna cv), and grain yield of maize (Eleonora hybrid) (e) with TE and GLUE methods.
Agronomy 09 00665 g003
Table 1. Cultivar-specific parameters (CSPs) for CSM-CERES-Wheat and CSM-CERES-Maize crop models.
Table 1. Cultivar-specific parameters (CSPs) for CSM-CERES-Wheat and CSM-CERES-Maize crop models.
Wheat CSPsDefinition
P1VVernalization sensitivity coefficient (%/d of unfulfilled vernalization)
P1DPhotoperiod sensitivity coefficient (% reduction/h near threshold)
P5Grain filling (excluding lag) phase duration (degree days)
G1Kernel number per unit canopy weight at anthesis (#/g)
G2Standard kernel size under optimum conditions (mg/day)
G3Standard, non-stressed dry weight (total, including grain) of a single tiller at maturity (g)
PHINTInterval between the appearance of leaf tips (degree days)
Maize CSPsDefinition
P1Thermal time from seedling emergence to the end of the juvenile phase (expressed in degree days above a base temperature of 8 °C) during which the plant is not responsive to changes in photoperiod
P2Extent to which development (expressed as days) is delayed for each hour increase in photoperiod, beyond the longest photoperiod at which development proceeds at a maximum rate (which is considered to be 12.5 hours)
P5Thermal time from silking to physiological maturity (expressed in degree days above a base temperature of 8 °C)
G2Maximum possible number of kernels per plant
G3Kernel filling rate during the linear grain filling stage and under optimum conditions (mg/day)
PHINTPhyllochron interval (degree days)
Table 2. Main characteristics of the crop varieties from [87,88,89].
Table 2. Main characteristics of the crop varieties from [87,88,89].
Cultivar CharacteristicsIride (Durum Wheat)Bologna (Common Wheat)Eleonora (Maize)
Release199619991995
Cultivar typeSpring durum wheatWinter common wheatFAO class 700
Heading timePrecociousMedium-LateMedium-Late
Potential productionVery highVery highVery high
Adaptability to different environmentsHighHighVery high
Resistance to coldGoodMedium-HighMedium-High
Resistance to lodgingGoodMedium-HighHigh
Resistance to the main diseasesMediumMediumMedium-High
Flour quality Medium-HighVery high-
Main usesGrainGrainGrain - Silage
Table 3. Characterization of the experimental sites.
Table 3. Characterization of the experimental sites.
Experimental SiteLatitudeLongitudeWeather StationTmax* (°C)Tmin* (°C)PP* (mm)Soil Type
Agugliano43°32′N13°24′EPotenza Picena20.310.8760.9Silty loam
Alba Adriatica42°49′N13°55′EMonsampolo20.49.5726.1Silty loam
Alessandria44°53′N08°36′EAlessandria Lobbi18.87.4908.8Medium loam
Ambrogio44°55′N11°56′ERovigo19.28.4678.2Medium loam
Basiliano46°01′N13°08′ECividale del Friuli18.58.81477.3Medium loam
Caleppio di Settala45°26′N09°22′EMontanaso Lombardo18.18.9876.4Medium loam
Caltagirone37°14′N14°30′ESanto Pietro22.311.9576.0Medium loam
Cammarata37°37′N13°39′EPietranera23.58.6676.4Clay loam
Castel di Judica37°29′N14°40′ELibertinia24.310.0534.3Silty loam
Castellazzo Bormida44°44′N08°27′EBasaluzzo18.36.9593.3Medium loam
Ceregnano45°03′N11°51′ERovigo19.28.4678.2Clay loam
Cigliano45°19′N08°03′ECandia17.66.7944.7Clay loam
Codroipo45°58′N12°56′EFiume Veneto19.28.31177.7Silty loam
Cuneo44°22′N07°33′EFossano17.08.0525.2Clay loam
Gela37°06′N14°16′ESanto Pietro22.910.8590.3Silty loam
Gravina40°57′N16°05′EGenzano di Lucania18.410.7656.2Medium loam
Latisana45°47′N13°01′EFiume Veneto19.28.31177.7Clay loam
Malalbergo44°43′N11°32′EGualdo20.18.9667.4Clay loam
Matera40°39′N16°36′EMatera21.08.7666.2Silty loam
Mogliano Veneto45°35′N12°14′ESusegana18.48.01,356.3Medium loam
Ostellato44°44′N11°56′EGualdo20.18.9667.4Clay loam
Palazzolo dello Stella45°52′N13°11′EFiume Veneto19.28.31177.7Silty clay loam
Roma41°57′N12°30′ERoma Collegio Romano21.312.5697.0Loam
San Piero a Grado43°41′N10°21′ESan Piero a Grado20.68.5872.6Medium loam
Santa Lucia39°58′N08°37′ESanta Lucia22.910.8590.3Medium loam
Sant’Angelo Lodigiano45°14′N09°24′EMontanaso Lombardo18.18.9876.4Clay loam
Santo Stefano Quisquina37°37′N13°29′EPietranera23.58.6676.4Clay loam
Ussana39°24′N09°05′EUssana24.511.6454.2Clay loam
Vigone44°50′N07°29′ECumiana19.07.8924.7Medium loam
Villadose45°05′N11°53′ERovigo19.28.4678.2Medium loam
Viterbo42°25′N12°05′ECaprarola18.49.6922.3Medium loam
Zoppola46°1′N12°35′EFiume Veneto19.28.31177.7Silty loam
* Tmax (Maximum temperature), Tmin (Minimum Temperature), and PP (Precipitation) are the mean values recorded in the period of the analysis.
Table 4. Experimental sites and relative number of years (in brackets) for model calibration (C) and evaluation (E).
Table 4. Experimental sites and relative number of years (in brackets) for model calibration (C) and evaluation (E).
CropCalibration (C)Evaluation (E)
Durum wheatAgugliano (5); Caltagirone (6); Cigliano (2); Matera (5); Roma (5); Santa Lucia (7); Santo Stefano Quisquina (7)Castel di Judica (6); Ceregnano (4); Gela (4); Gravina (2); Ostellato (3); Ussana (6); Viterbo (5)
Common wheatAlba Adriatica (1); Caltagirone (3); Cammarata (5); Ceregnano (2); Malalbergo (2); Sant’Angelo Lodigiano (5)Basiliano (3); Cigliano (3); Matera (5); Mogliano Veneto (3); San Piero a Grado (3); Santo Stefano Quisquina (3)
MaizeAlessandria (1); Caleppio di Settala (1); Codroipo (1); Latisana (3); Vigone (6); Villadose (1)Ambrogio (2); Castellazzo Bormida (1); Cigliano (1); Cuneo (1); Palazzolo dello Stella (2); Sant’Angelo Lodigiano (2); Zoppola (1)
Table 5. Sensitivity index of the CSPs of CSM-CERES-Wheat crop model for anthesis date (ANT) and grain yield (GY) of Iride and Bologna cultivars and range are considered.
Table 5. Sensitivity index of the CSPs of CSM-CERES-Wheat crop model for anthesis date (ANT) and grain yield (GY) of Iride and Bologna cultivars and range are considered.
CSPsDurum wheat (Iride Cultivar)Common Wheat (Bologna Cultivar)
ANTGYRANGEANTGYRANGE
P1V0.050.080–1000.030.030–100
P1D0.210.120–1000.170.110–100
P50.000.350–9990.000.290–999
G10.000.600.1–1000.000.610.1–100
G20.000.610–1000.000.620–100
G30.000.000.2–3.00.000.010.2–3.0
PHINT0.000.2215–1000.000.1715–100
Table 6. Sensitivity index of the CSPs of CSM-CERES-Maize crop model for maturity date (MAT) and grain yield (GY) of Eleonora hybrid and range are considered.
Table 6. Sensitivity index of the CSPs of CSM-CERES-Maize crop model for maturity date (MAT) and grain yield (GY) of Eleonora hybrid and range are considered.
CSPsMaize (Eleonora Hybrid)
MATGYRANGE
P10.260.37100–300
P20.030.030–1
P50.421.39500–900
G20.000.80600–999
G30.001.000–10
PHINT0.150.160.1–99
Table 7. CSPs of durum wheat, common wheat, and maize obtained with TE and GLUE methods.
Table 7. CSPs of durum wheat, common wheat, and maize obtained with TE and GLUE methods.
CropCalibration MethodCSPs
P1VP1DP5G1G2G3PHINT
Durum wheat (Iride cv)GLUE25.261.9776.628.641.12.097.1
TE5.065.0500.020.040.01.895.0
Common wheat (Bologna cv)GLUE64.994.8589.315.120.52.063.9
TE5.098.0700.020.050.01.395.0
P1P2P5G2G3PHINT
Maize (Eleonora cv)GLUE398.41.0704.6683.514.522.4
TE223.00.6803.0907.97.538.9
TE, trial and error; GLUE, Generalized Likelihood Uncertainty Estimation.
Table 8. Statistical results of observed (OBS) and simulated (SIM) values of anthesis date (in days after planting = dap) for durum wheat (Iride cv) and common wheat (Bologna cv) for the calibration of CSM-CERES-Wheat model.
Table 8. Statistical results of observed (OBS) and simulated (SIM) values of anthesis date (in days after planting = dap) for durum wheat (Iride cv) and common wheat (Bologna cv) for the calibration of CSM-CERES-Wheat model.
Durum Wheat (Iride cv)Common Wheat (Bologna cv)
OBSTE SIMGLUE SIMOBSTE SIMGLUE SIM
Mean140140142166164166
Standard deviation272424242725
Min828789129116123
Max192191190203197196
N23 18
r 0.94 ***0.95 *** 0.98 ***0.98 ***
R2 0.890.91 0.960.96
RMSE 98 65
CRM 0.00−0.01 0.010.00
d-Index 0.970.97 0.980.99
*** p ≤ 0.001; ns = not significant. OBS = observed values; TE = simulated values with trial and error; GLUE SIM = simulated values with GLUE.
Table 9. Statistical results of observed (OBS) and simulated (SIM) values of grain yield (t ha−1) for durum wheat (Iride cv) and common wheat (Bologna cv) for the calibration of CSM-CERES-Wheat model.
Table 9. Statistical results of observed (OBS) and simulated (SIM) values of grain yield (t ha−1) for durum wheat (Iride cv) and common wheat (Bologna cv) for the calibration of CSM-CERES-Wheat model.
Durum Wheat (Iride cv)Common Wheat (Bologna cv)
OBSTE SIMGLUE SIMOBSTE SIMGLUE SIM
Mean5.254.875.744.634.241.45
Standard deviation2.061.752.592.432.120.68
Min1.691.731.920.501.530.55
Max10.128.1111.048.237.682.82
N37 18
r 0.70 ***0.59 *** 0.79 ***0.74 ***
R2 0.480.34 0.620.54
RMSE 1.542.19 1.523.72
CRM 0.07−0.09 0.080.69
d-Index 0.820.74 0.870.52
*** p ≤ 0.001; ns = not significant. OBS = observed values; TE SIM = simulated values with trial and error; GLUE SIM = simulated values with GLUE.
Table 10. Statistical results of observed (OBS) and simulated (SIM) values of grain yield (t ha−1) of maize (Eleonora hybrid) for the calibration of CSM-CERES-Maize model.
Table 10. Statistical results of observed (OBS) and simulated (SIM) values of grain yield (t ha−1) of maize (Eleonora hybrid) for the calibration of CSM-CERES-Maize model.
Maize (Eleonora Hybrid)
OBSTE SIMGLUE SIM
Mean11.4910.9211.33
Standard deviation2.131.442.05
Min6.868.046.37
Max14.0412.6213.68
N13
r 0.83 ***0.70 **
R2 0.680.49
RMSE 1.321.57
CRM 0.050.01
d-Index 0.850.84
** p ≤ 0.01; *** p ≤ 0.001; ns = not significant. OBS = observed values; TE SIM = simulated values with trial and error; GLUE SIM = simulated values with GLUE.
Table 11. Statistical results of observed (OBS) and simulated (SIM) values of anthesis date (in days after planting = dap) for durum wheat (Iride cv) and common wheat (Bologna cv) for the evaluation of CSM-CERES-Wheat model.
Table 11. Statistical results of observed (OBS) and simulated (SIM) values of anthesis date (in days after planting = dap) for durum wheat (Iride cv) and common wheat (Bologna cv) for the evaluation of CSM-CERES-Wheat model.
Durum Wheat (Iride cv)Common Wheat (Bologna cv)
OBSTE SIMGLUE SIMOBSTE SIMGLUE SIM
Mean138141143177180180
Standard deviation232423232725
Min1121181209495102
Max192184186201208207
N19 20
r 0.95 ***0.96 *** 0.95 ***0.94 ***
R2 0.910.93 0.900.89
RMSE 88 99
CRM −0.02−0.03 −0.02−0.02
d-Index 0.970.97 0.960.96
*** p ≤ 0.001; ns = not significant. OBS = observed values; TE SIM = simulated values with trial and error; GLUE SIM = simulated values with GLUE.
Table 12. Statistical results of observed (OBS) and simulated (SIM) values of grain yield (t ha−1) for durum wheat (Iride cv) and common wheat (Bologna cv) for the evaluation of CSM-CERES-Wheat model.
Table 12. Statistical results of observed (OBS) and simulated (SIM) values of grain yield (t ha−1) for durum wheat (Iride cv) and common wheat (Bologna cv) for the evaluation of CSM-CERES-Wheat model.
Durum Wheat (Iride cv)Common Wheat (Bologna cv)
OBSTE SIMGLUE SIMOBSTE SIMGLUE SIM
Mean4.365.115.935.194.861.62
Standard deviation1.692.353.232.252.000.64
Min1.142.442.381.651.800.45
Max7.9210.7316.197.987.892.52
N30 20
r 0.74 ***0.74 *** 0.72 ***0.64 **
R2 0.550.55 0.520.41
RMSE 1.732.74 1.604.02
CRM −0.17−0.36 0.060.69
d-Index 0.800.68 0.840.50
** p ≤ 0.01; *** p ≤ 0.001; ns = not significant. OBS = observed values; TE SIM = simulated values with trial and error; GLUE SIM = simulated values with GLUE.
Table 13. Statistical results of observed (OBS) and simulated (SIM) values of grain yield (t ha−1) of maize (Eleonora hybrid) for the evaluation of CSM-CERES-Maize model.
Table 13. Statistical results of observed (OBS) and simulated (SIM) values of grain yield (t ha−1) of maize (Eleonora hybrid) for the evaluation of CSM-CERES-Maize model.
Maize (Eleonora Hybrid)
OBSTE SIMGLUE SIM
Mean10.7010.369.47
Standard deviation1.361.392.36
Min7.298.076.13
Max12.6612.3613.80
N10
r 0.65 **0.50 *
R2 0.430.25
RMSE 1.142.31
CRM 0.030.11
d-Index 0.800.58
* p ≤ 0.05; ** p ≤ 0.01; ns = not significant. OBS = observed values; TE SIM = simulated values with trial and error; GLUE SIM = simulated values with GLUE.

Share and Cite

MDPI and ACS Style

Mereu, V.; Gallo, A.; Spano, D. Optimizing Genetic Parameters of CSM-CERES Wheat and CSM-CERES Maize for Durum Wheat, Common Wheat, and Maize in Italy. Agronomy 2019, 9, 665. https://doi.org/10.3390/agronomy9100665

AMA Style

Mereu V, Gallo A, Spano D. Optimizing Genetic Parameters of CSM-CERES Wheat and CSM-CERES Maize for Durum Wheat, Common Wheat, and Maize in Italy. Agronomy. 2019; 9(10):665. https://doi.org/10.3390/agronomy9100665

Chicago/Turabian Style

Mereu, Valentina, Andrea Gallo, and Donatella Spano. 2019. "Optimizing Genetic Parameters of CSM-CERES Wheat and CSM-CERES Maize for Durum Wheat, Common Wheat, and Maize in Italy" Agronomy 9, no. 10: 665. https://doi.org/10.3390/agronomy9100665

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop