Potential of Sisal (Agave sisalana) Residues for Improving Sisal Plant Growth and Soil Residue Stocks in Bahia’s Circular Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characterization
2.2. Experimental Desgin
2.3. Residue and Plant Development
2.4. Data Analysis
3. Results
3.1. Residue Accumulation on Soil
3.2. Plant Development
3.3. Correlations
3.4. Volume of Sisal Residues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velasco-Muñoz, V.F.; Aznar-Sánchez, J.A.; López-Felices, B.; Román-Sánchez, I.M. Circular economy in agriculture. An analysis of the state of research based on the life cycle. Sustain. Prod. Consum. 2022, 34, 257–270. [Google Scholar] [CrossRef]
- Stillitano, T.; Spada, E.; Iofrida, N.; Falcone, G.; De Luca, A.I. Sustainable Agri-foodprocesses and circular economy pathways in a life cycle perspective: State of the art of applicative research. Sustainability 2021, 13, 2472. [Google Scholar] [CrossRef]
- Sznitowski, A.M.; Queiroz, A.A.F.S.L.; Padgett, R.C.M.L. Producing with sustainability: A study on circular practices in a rural property in Brazil. Context.—Rev. Contemp. Econ. Gestão 2023, 21, e85348. [Google Scholar] [CrossRef]
- Arruda, E.M.; Collier, L.S.; Oliveira, K.R.; Flores, R.A.; Barros, L.R.; Ferraz-Almeida, R.; Nascimento, B.B.; Santos, M.P.; Duarte, T.C.; Andrade, C.A.O. Cover plants can contribute on macronutrient accumulation in agroforestry systems during off-season. Agrofor. Syst. 2023, 97, 1087–1096. [Google Scholar] [CrossRef]
- Bohórquez-Sánchez, C.E.; De Castro, S.A.Q.; Carvalho, J.L.N.; Tenelli, S.; Ferraz-Almeida, R.; Sermarini, R.A.; Lisboa, I.P.; Otto, R. Legume growth and straw retention in sugarcane fields: Effects on crop yield, C and N storage in the central-south Brazil. Agric. Ecosyst. Environ. 2023, 347, 108374. [Google Scholar] [CrossRef]
- Ferraz-Almeida, R. Understanding the Priming Effect and the Routes and Stocks of C in Incubated Soil with Residue Inputs. Horticulturae 2022, 8, 154. [Google Scholar] [CrossRef]
- Ferraz-Almeida, R. How does organic carbon operate in the pore distribution of fine-textured soils. Rev. Bras. Eng. Agric. Ambiental 2022, 26, 743–746. [Google Scholar] [CrossRef]
- Lopes, C.M.; Silva, A.M.M.; Estrada-Bonilla, G.A.; Ferraz-Almeida, R.; Vieira, J.L.V.; Otto, R.; Vitti, G.C.; Cardoso, E.J.B.N. Improving the fertilizer value of sugarcane wastes through phosphate rock amendment and phosphate-solubilizing bacteria inoculation. J. Clean. Prod. 2021, 298, 126821. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. “Sisal” 2025. Available online: https://sidra.ibge.gov.br/tabela/5457 (accessed on 10 April 2024).
- Ferraz-Almeida, R.; Silva, O.R.R.F. Sisal Fiber (Agave sisalana) Production in the Brazilian Semiarid from 1988 to 2024. J. Nat. Fibers 2025, 22, 2502651. [Google Scholar] [CrossRef]
- SUDENE. “Delimitação do Semiárido—2021, Relatório Final”. Available online: https://www.gov.br/sudene/pt-br/centrais-de-conteudo/8-relatoriometodologia_semiarido2021_v9_versaodefinitiva__1_.pdf (accessed on 10 April 2024).
- Terrapon-Pfaff, J.C.; Fischedick, M.; Monheim, H. Energy potentials and sustainability—The case of sisal residues in Tanzania. Energy Sustain. Dev. 2012, 16, 312–319. [Google Scholar] [CrossRef]
- EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária. “Sisal” 2012. Available online: https://www.embrapa.br/agencia-de-informacao-tecnologica/cultivos/sisal (accessed on 10 April 2024).
- Gebremariam, D.Y.; Machin, D.H. Evaluation of sun dried sisal pulp (Agave sisalana Perrine) as feed for sheep in Eritrea. Livest. Res. Rural. Dev. 2008, 20, 183. [Google Scholar]
- De Almeida, R.F.; Silveira, C.H.; Mota, Raquel, P.; Moitinho, M.; Arruda, E.M.; Mendonça, E.S.; La Scala, N.; Wendling, B. For how long does the quality and quantity of residues in the soil affect the carbon compartments and CO2-C emissions? J. Soils Sediments 2016, 16, 2354–2364. [Google Scholar] [CrossRef]
- Arruda, E.M.; De-Almeida, R.F.; Domingues, L.A.S.; Silva Junior, A.C.; Moraes, E.R.; Barro, L.R.; Sousa, J.L.O.; Lana, R.M.Q. Soil porosity and density in sugarcane cultivation under different tillage systems. Afr. J. Agric. Res. 2016, 11, 2689–2696. [Google Scholar] [CrossRef]
- Wendling, B.; Jucksch, I.; Mendonca, E.S.; Almeida, R.F.; Martins, C.E.; Domingues, L.A.S. Simulation of use and management effects on the soil organic matter pools of the atlantic forest biome, Brazil. Biosci. J. 2014, 30, 1278–1290. [Google Scholar]
- Ferraz-Almeida, R.; Da Silva, N.; Wendling, B. How does n mineral fertilizer influence the crop residue N Credit? Nitrogen 2020, 1, 99–110. [Google Scholar] [CrossRef]
- Mikhael, J.E.R.; Almeida, R.F.; Franco, F.O.; Camargo, R.O.; Wendling, B. Recalcitrant carbon and nitrogen in agriculture are with residue accumulation in soil and fertilization for Tropical conditions. Biosci. J. 2019, 35, 732–740. [Google Scholar] [CrossRef]
- Arruda, E.M.; Ribeiro, R.G.; Ushiwata, S.Y.; Santos, M.P.; Ferraz-Almeida, R.; Souza, M.E.; Riva Neto, D.C.O.; Zarpellon, C.S.S. Resistência do solo á penetração em sistemas de produção de soja. Cad. Pedagógico 2024, 21, e6733. [Google Scholar] [CrossRef]
- Martins, F.P.; De-Almeida, R.F.; Mikhael, J.E.R.; Machado, H.A.; Queiroz, I.D.S.; Teixeira, W.G.; Borges, E.N. Porosidade e Carbono orgânico em Latossolo com diferentes usos e manejos no Cerrado Mineiro. Rev. Agrogeoambiental 2015, 7, 81–90. [Google Scholar] [CrossRef]
- Wachiye, S.; Merbold, L.; Vesala, T.; Rinne, J.; Leitner, S.; Rasanen, M.; Vuorinne, I.; Heiskanen, J.; Pellikka, P. Soil greenhouse gas emissions from a sisal chronosequence in Kenya. Agric. For. Meteorol. 2021, 307, 108465. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Cidades. Available online: https://www.ibge.gov.br (accessed on 29 March 2025).
- GTZ—Agro-Industrial Biogas in Kenya: Potentials, Estimates for Tariffs, Policy and Business Recommendations; German Technical Cooperation: Berlin, Germany, 2010.
- TSB—Tanzania Sisal Board, Tanga. 2009. Available online: http://www.tsbtz.org/Statistics.html (accessed on 4 December 2010).
- Jin, G.; Huang, X.; Wu, M.; Huang, C.; Qin, X.; Jiang, Y.; Peng, X.; Zhong, J.; Chen, T.; Chen, L. Effects of long-term sisal residue returning on soil physiochemistry, microbial community, and sisal yield. Bragantia 2024, 83, e20240057. [Google Scholar] [CrossRef]
- Naik, R.K.; Dash, R.C.; Behera, D.; Goel, A.K. Studies on physical properties of sisal (Agave sisalana) plant leaves. Int. J. Agric. Sci. 2016, 8, 2004–2007. [Google Scholar]
- Carneiro, J.S.; Silva, M.C.J.; Santos, E.N.; Lima, F.L.O.; Costa, M.S.F. Atividades biológicas de Agave sisalana com ênfase para a ação antimicrobiana: Uma revisão da literature. Res. Soc. Dev. 2021, 10, e2510312734. [Google Scholar] [CrossRef]
- Carneiro, F.S.; Queiroz, S.R.O.D.; Passos, A.R.; Nascimento, M.N.; Santos, K.S. Embriogênese somática em Agave sisalana Perrine: Indução, caracterização anatômica e regeneração. Pesqui. Agropecuária Trop. 2014, 44, 294–303. [Google Scholar] [CrossRef]
- Wen, M.J.; Wang, C.B.; Huo, L.; Jiang, W.L.; Yang, S.C. Effects of subsoiling and straw returning on soil physical properties and maize production in Yellow River irrigation area of Gansu, China. Chin. J. Appl. Ecol. 2019, 30, 224–232. [Google Scholar] [CrossRef]
- Liu, J.; Fan, Y.F.; Sun, J.Y.; Gao, J.L.; Wang, Z.G.; Yu, X.F. Effects of straw return with potassium fertilizer on the stem lodging resistance, grain quality and yield of spring maize (Zeamays L.). Sci. Report. 2023, 13, 20307. [Google Scholar] [CrossRef]
- Cunha Neto, I.L.; Martins, F.M. Anatomia dos órgãos vegetativos de agave sisalana perrine ex en-gelm (Agavaceae). Rev. Caatinga 2012, 25, 72–78. [Google Scholar]
- Dunder, R.J.; Quaglio, A.E.V.; Maciel, R.P.; Luiz-Ferreira, A.; Almeida, A.C.A.; Takayama, C.; Faria, F.M.; Souza, B.A.R.M. Potencial antiinflamatório e analgésico do extrato hidrolisado de Agave sisalana Perrine ex Engelm. Asparagaceae. Rev. Bras. Farmacognosia 2010, 20, 376–381. [Google Scholar] [CrossRef]
- Pei, H.; Wu, Y.; Wu, W.; Lyu, L.; Li, W. A review of the types, functions and regulatory mechanisms of plant spines. Plant Sci. 2024, 341, 112010. [Google Scholar] [CrossRef]
- Santos, R.D.; Pereira, L.G.R.; Neves, A.L.A.; Brandão, L.G.N.; Araújo, G.G.L.; Aragão, A.S.L.; Brandão, W.N.; Souza, R.A.; Oliveira, G.F. Intake and productive performance of sheep fed sisal coproducts based diets. Arq. Bras. Med. Vet. Zootec. 2011, 63, 1502–1510. [Google Scholar] [CrossRef]
- Kavishe, I.B.; Chenyambuga, S.W.; Dierenfeld, E.S. Effects of replacing maize bran with sun dried sisal wastes in supplementary diets on growth performance of growing beef cattle. Livest. Res. Rural. Dev. 2017, 29, 1–12. [Google Scholar]
- Sacramento, J.A.A.S.; Santos, J.A.G.; Loureiro, D.C.; Costa, O.V.; Cova, O.M.W. Spatial variability and changes in carbon stocks of a Regosols (Psamments) cultivated with sisal. Rev. Bras. Eng. Agríc. Ambient. 2018, 22, 764–769. [Google Scholar] [CrossRef]
- Liang, Y.; Tan, S.; He, C.; Li, R.; Lu, Y.; Chen, H.; Huang, X.; Wu, W.; Yi, K. Effects of Intercropping of sisal and three different leguminous plants on soil bacterial diversity. Agronomy 2024, 14, 2381. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Sisal. 2023. Available online: https://www.fao.org/economic/futurefibres/fibres/sisal/en/ (accessed on 29 March 2025).
- Hartemink, A.; Osborne, J.F.; Kips, P.A. Soil fertility decline and fallow effects in ferralsols and acrisols of sisal plantations in Tanzania. Exp. Agric. 1996, 32, 173–184. [Google Scholar] [CrossRef]
- Hartemink, A. Input and output of major nutrients under monocropping sisal in Tanzania. Land Degrad. Dev. 1997, 8, 305–310. [Google Scholar] [CrossRef]
- Davis, S.C.; Abatzoglou, J.T.; Lebauer, D.S. Expanded potential growing region and yield increase for Agave americana with future climate. Agronomy 2021, 11, 2109. [Google Scholar] [CrossRef]
- Gutiérrez, A.; Rodríguez, I.M.; Río, J.C. Chemical composition of lipophilic extractives from sisal (Agave sisalana) fibers. Ind. Crops Prod. 2008, 28, 81–87. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.; Qiu, X.; Xu, C. Hydrothermal treatment of lignocellulosic biomass towards low-carbon development: Production of high-value-added bioproducts. Energy Chem. 2024, 6, 100133. [Google Scholar] [CrossRef]
Plant Development | Length | Thickness | ||
---|---|---|---|---|
Leaf | Terminal spine | Base leaf | Middle leaf | |
Leaf mass | 0.62 | −0.07 | 0.71 | −0.22 |
Leaf length | - | −0.19 | 0.54 | −0.10 |
Terminal spine length | - | - | 0.12 | 0.06 |
Base leaf thickness | - | - | - | −0.25 |
Sisal Residues | Accumulated Rate | Annual Rate |
---|---|---|
Sisal pulp | 97,294,824 ton | 4,053,951 ton year−1 |
Green liquid, | 405,395,100 m3 | 16,891,462 m3 year−1 |
Ball | 32,348,981 ton | 1,347,874 ton year−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraz-Almeida, R.; Oliveira, A.R.d.; Pinheiro, C.d.J.; Oliveira, J.L.; Almeida, V.F.d.; Arruda, E.M. Potential of Sisal (Agave sisalana) Residues for Improving Sisal Plant Growth and Soil Residue Stocks in Bahia’s Circular Agriculture. Agronomy 2025, 15, 1426. https://doi.org/10.3390/agronomy15061426
Ferraz-Almeida R, Oliveira ARd, Pinheiro CdJ, Oliveira JL, Almeida VFd, Arruda EM. Potential of Sisal (Agave sisalana) Residues for Improving Sisal Plant Growth and Soil Residue Stocks in Bahia’s Circular Agriculture. Agronomy. 2025; 15(6):1426. https://doi.org/10.3390/agronomy15061426
Chicago/Turabian StyleFerraz-Almeida, Risely, Adelson Rodrigues de Oliveira, Clecivânia de Jesus Pinheiro, Joane Lima Oliveira, Valmir Freitas de Almeida, and Everton Martins Arruda. 2025. "Potential of Sisal (Agave sisalana) Residues for Improving Sisal Plant Growth and Soil Residue Stocks in Bahia’s Circular Agriculture" Agronomy 15, no. 6: 1426. https://doi.org/10.3390/agronomy15061426
APA StyleFerraz-Almeida, R., Oliveira, A. R. d., Pinheiro, C. d. J., Oliveira, J. L., Almeida, V. F. d., & Arruda, E. M. (2025). Potential of Sisal (Agave sisalana) Residues for Improving Sisal Plant Growth and Soil Residue Stocks in Bahia’s Circular Agriculture. Agronomy, 15(6), 1426. https://doi.org/10.3390/agronomy15061426