Novel Insights into Botanical Seed Production of Xanthosoma spp. in Cuba
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Growth Conditions
2.3. Experimental Design
2.4. GA3 and VIUSID® Agro Application
2.5. GA3 and VIUSID® Agro Compositions
2.6. Hand-Pollination Methods
2.7. Observations of Flowers, Pollen, and Seed Mass Parameters
2.8. Seed Germination Bioassay
2.9. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GA3 | Gibberellic acid |
GIP | Genetic Improvement Program |
INIVIT | Research Institute of Tropical Roots and Tuber Crops |
CRAS | Agamic Seed Reproduction Center |
GV1 | 500 mg L−1 of GA3 combined with foliar spraying of VIUSID® Agro at 0.2 mg L−1 |
GV2 | 750 mg L−1 of GA3 combined with foliar spraying of VIUSID® Agro at 0.2 mg L−1 |
GV3 | 1000 mg L−1 of GA3 combined with foliar spraying of VIUSID® Agro at 0.2 mg L−1 |
References
- Owusu-Darko, P.G.; Paterson, A.; Omenyo, E.L. Cocoyam (Corms and Cormels)—An Underexploited Food and Feed Resource. J. Agric. Chem. Environ. 2014, 3, 22–29. [Google Scholar] [CrossRef]
- O’Hair, S.K.; Asokan, M.P. Edible Aroids: Botany and Horticulture. In Horticultural Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1986; pp. 43–99. ISBN 978-1-118-06081-0. [Google Scholar]
- Soborío, F.; Gómez, L.; Torres, S.; Valverde, R. Introducción de Floración En Tiquisque (Xanthosoma ssp) En Cinco Regiones de Costa Rica. Agron. Costarric. 2000, 24, 37–45. [Google Scholar]
- Joseph, A.M.; Roland, A.G.K.G.; Georges, Y.K.A.; Bakari, K.A.; Simon-Pierre, N.A. Comparative Study of Dormant Bud Development in Taro [Xanthosoma sagittifolium, Xanthosoma sp. and Colocasia esculenta (L.) Schott] in Relation to Their Size and Localization on the Principal Tuber. J. Exp. Agric. Int. 2023, 45, 212–223. [Google Scholar] [CrossRef]
- Boakye, A.A.; Wireko-Manu, F.D.; Oduro, I.; Ellis, W.O.; Gudjónsdóttir, M.; Chronakis, I.S. Utilizing Cocoyam (Xanthosoma sagittifolium) for Food and Nutrition Security: A Review. Food Sci. Nutr. 2018, 6, 703–713. [Google Scholar] [CrossRef]
- Vaneker, K.; Slaats, E. Mapping Edible Aroids. Iridescent 2012, 2, 34–45. [Google Scholar] [CrossRef]
- Winara, A.; Fauziyah, E.; Suhartono; Widiyanto, A.; Sanudin; Sudomo, A.; Siarudin, M.; Hani, A.; Indrajaya, Y.; Achmad, B.; et al. Assessing the Productivity and Socioeconomic Feasibility of Cocoyam and Teak Agroforestry for Food Security. Sustainability 2022, 14, 11981. [Google Scholar] [CrossRef]
- Matikiti, A.; Allemann, J.; Kujeke, G.; Gasura, G.; Masekesa, T.; Chabata, I. Nutritional Composition of Cocoyam (Colocasia Esculenta), Grown in Manicaland Province in Zimbabwe. Asian J. Agric. Rural Dev. 2017, 7, 48–55. [Google Scholar] [CrossRef]
- Eleazu, C.O. Characterization of the Natural Products in Cocoyam (Colocasia Esculenta) Using GC–MS. Pharm. Biol. 2016, 54, 2880–2885. [Google Scholar] [CrossRef]
- Milián-Jiménez, M.D. Recursos genéticos de la malanga del género Xanthosoma Schott en Cuba. Cultiv. Trop. 2018, 39, 112–126. [Google Scholar]
- Jiménez, M.D.M.; Concepción, O.M.; Aguila, Y.F. Integrated Characterization of Cuban Germplasm of Cocoyam (Xanthosoma sagittifolium (L.) Schott). J. Plant Genet. Crop Res. 2018, 1, 1–18. [Google Scholar] [CrossRef]
- Goenaga, R.; Hepperly, P. Flowering Induction, Pollen and Seed Viability and Artificial Hybridization of Taniers (Xanthosoma Spp.). J. Agric. Univ. Puerto Rico 1990, 74, 253–260. [Google Scholar] [CrossRef]
- García-Robledo, C.; Kattan, G.; Murcia, C.; Quintero-Marín, P. Beetle Pollination and Fruit Predation of Xanthosoma daguense (Araceae) in an Andean Cloud Forest in Colombia. J. Trop. Ecol. 2004, 20, 459–469. [Google Scholar] [CrossRef]
- Obidiegwu, J.E.; Kendabie, P.; Obidiegwu, O.; Amadi, C. Towards an Enhanced Breeding in Cocoyam: A Review of Past and Future Research Perspectives. Res. Rev. J. Bot. Sci. 2016, 5, 22–33. [Google Scholar]
- McDavid, C.R.; Alamu, S. Promotion of Flowering in Tannia (Xanthosoma sagittifolium) by Gibberellic Acid. Trop. Agric. 1976, 53, 373–374. [Google Scholar]
- McDavid, C.R.; Alamu, S. Effect of Daylength and Gibberellic Acid on the Growth and Promotion of Flowering in Tannia (Xanthosoma sagittifolium). Trop. Agric. 1979, 56, 17–23. [Google Scholar]
- Wu, K.; Xu, H.; Gao, X.; Fu, X. New Insights into Gibberellin Signaling in Regulating Plant Growth–Metabolic Coordination. Curr. Opin. Plant Biol. 2021, 63, 102074. [Google Scholar] [CrossRef] [PubMed]
- Galvão, V.C.; Horrer, D.; Küttner, F.; Schmid, M. Spatial Control of Flowering by DELLA Proteins in Arabidopsis Thaliana. Development 2012, 139, 4072–4082. [Google Scholar] [CrossRef]
- Mutasa-Göttgens, E.; Hedden, P. Gibberellin as a Factor in Floral Regulatory Networks. J. Exp. Bot. 2009, 60, 1979–1989. [Google Scholar] [CrossRef]
- Sun, T. Gibberellin-GID1-DELLA: A Pivotal Regulatory Module for Plant Growth and Development. Plant Physiol. 2010, 154, 567–570. [Google Scholar] [CrossRef]
- Katsura, N.; Takayanagi, K.; Sato, T. Gibberellic Acid Induced Flowering in Cultivars of Japanese. Taro. J. Jpn. Soc. Hortic. Sci. 1986, 55, 69–74. [Google Scholar] [CrossRef]
- Wilson, J.E. Effects of Formulation and Method of Applying Gibberellic Acid on Flower Promotion in Cocoyam. Exp. Agric. 1981, 17, 317–322. [Google Scholar] [CrossRef]
- Alamu, S.; McDavid, C.R. Effect of Time and Method of Application of Gibberellic Acid on the Growth and Promotion of Flowering in Tannia (Xanthosoma sagittifolium). Trop. Agric. 1978, 55, 235–241. [Google Scholar]
- Onokpise, O.; Tambong, J.; Nyochembeng, L.; Wutoh, J. Acclimatization and Flower Induction of Tissue Culture Derived Cocoyam (Xanthosoma sagittifolium Schott) Plants. Agronomie 1992, 12, 193–199. [Google Scholar] [CrossRef]
- Alamu, S.; McDavid, C.R. Promotion of Flowering in Edible Aroids by Gibberellic Acid. Trop. Agric. 1978, 55, 81–86. [Google Scholar]
- Lebot, V.; Ivančič, A.; Lawac, F. Cocoyam (Xanthosoma sagittifolium (L.) Schott) Genetic Resources and Breeding: A Review of 50 Years of Research Efforts. Genet. Resour. Crop Evol. 2025, 72, 2593–2612. [Google Scholar] [CrossRef]
- Zarzecka, K.; Gugała, M.; Ginter, A.; Mystkowska, I.; Sikorska, A. The Positive Effects of Mechanical and Chemical Treatments with the Application of Biostimulants in the Cultivation of Solanum tuberosum L. Agriculture 2023, 13, 45. [Google Scholar] [CrossRef]
- Canellas, L.P.; Canellas, N.O.A.; da Silva, R.M.; Spaccini, R.; Mota, G.P.; Olivares, F.L. Biostimulants Using Humic Substances and Plant-Growth-Promoting Bacteria: Effects on Cassava (Manihot esculentus) and Okra (Abelmoschus esculentus) Yield. Agronomy 2023, 13, 80. [Google Scholar] [CrossRef]
- ALHadidi, N.; Pap, Z.; Ladányi, M.; Szentpéteri, V.; Kappel, N. Mycorrhizal Inoculation Effect on Sweet Potato (Ipomoea batatas (L.) Lam) Seedlings. Agronomy 2021, 11, 2019. [Google Scholar] [CrossRef]
- Calero Hurtado, A.; Meléndrez Rodríguez, J.F.; Peña Calzada, K.; Pérez Díaz, Y.; Jiménez Medina, A. Foliar Application of a Mixture of Amino Acid-Based Growth Promoters Enhances Tomato Seedling Production. Horticulturae 2025, 11, 582. [Google Scholar] [CrossRef]
- Calero Hurtado, A.; Aparecida Chiconato, D.; Sousa Junior, G.d.S.; Prado, R.d.M.; Peña Calzada, K.; Olivera Viciedo, D. Silicon Induces Salt Stress Amelioration in Sunflower Plants by Improving Photosynthetic Pigments and Mineral Status. Stresses 2024, 4, 860–869. [Google Scholar] [CrossRef]
- Peña-Calzada, K.; Calero-Hurtado, A.; Meléndrez-Rodríguez, J.F.; Rodríguez-Fernández, J.C.; Gutiérrez-Cádenas, O.G.; García-González, M.T.; Madrigal-Carmona, L.; Jiménez-Medina, A. Impacts of the Biostimulant VIUSID® Agro on Growth, Productivity, and Tolerance to Salt Stress in Crops: A Systematic Review. Horticulturae 2025, 11, 407. [Google Scholar] [CrossRef]
- Peña Calzada, K.; Olivera Viciedo, D.; Habermann, E.; Calero Hurtado, A.; Lupino Gratão, P.; De Mello Prado, R.; Lata-Tenesaca, L.F.; Martinez, C.A.; Ajila Celi, G.E.; Rodríguez, J.C. Exogenous Application of Amino Acids Mitigates the Deleterious Effects of Salt Stress on Soybean Plants. Agronomy 2022, 12, 2014. [Google Scholar] [CrossRef]
- Calero Hurtado, A.; Peña Calzada, K.; Fasoli, J.V.B.; Jiménez, J.; Sánchez López, L. Synergic Effects of the Microbial Consortium and Amino Acid-Based Growth Promoter in Sunflower Productivity Under Water-Deficit Conditions. Water 2025, 17, 1365. [Google Scholar] [CrossRef]
- Marks, G.E. An Aceto-Carmine Glycerol Jelly for Use in Pollen-Fertility Counts. Stain Technol. 1954, 29, 277. [Google Scholar] [CrossRef] [PubMed]
- Cathebras, C.; Traore, R.; Malapa, R.; Risterucci, A.-M.; Chaïr, H. Characterization of Microsatellites in Xanthosoma sagittifolium (Araceae) and Cross-Amplification in Related Species. Appl. Plant Sci. 2014, 2, 1400027. [Google Scholar] [CrossRef]
- Pádua, J.G. Conservation of Crop Genetic Resources in Brazil in the Context of the Target 9 of the Global Strategy for Plant Conservation. Rodriguésia 2018, 69, 1557–1565. [Google Scholar] [CrossRef]
- Lebot, V. Tropical Root and Tuber Crops. Cassava, Sweet Potato, Yams and Aroids. Exp. Agric. 2009, 45, 382. [Google Scholar] [CrossRef]
- Beale, A.J.; Green, J.V.E.; Parrado, J.L. Inducement of Flowering in Taniers (Xanthosoma spp). J. Agric. Univ. Puerto Rico 1982, 66, 115–122. [Google Scholar] [CrossRef]
- Wilson, J.E. Cocoyam Breeding by Flower Induction, Pollination, and Germination, 4th ed.; Manual Ser; International Institute of Tropical Agriculture (IITA): Ibadan, Nigeria, 1979. [Google Scholar]
- Milet-Pinheiro, P.; Gomes Gonçalves, E.; do Amaral Ferraz Navarro, D.M.; Nuñez-Avellaneda, L.A.; Maia, A.C.D. Floral Scent Chemistry and Pollination in the Neotropical Aroid Genus Xanthosoma (Araceae). Flora 2017, 231, 1–10. [Google Scholar] [CrossRef]
- Khurana, J.P.; Tamot, B.K.; Maheshwari, S.C. Floral Induction in a Photoperiodically Insensitive Duckweed, Lemna Paucicostata LP6 1: Role of Glutamate, Aspartate, and Other Amino Acids and Amides. Plant Physiol. 1988, 86, 904–907. [Google Scholar] [CrossRef]
- Wu, W.; Du, K.; Kang, X.; Wei, H. The Diverse Roles of Cytokinins in Regulating Leaf Development. Hortic. Res. 2021, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Yu, H.; Li, Q.; Gao, Y.; Sallam, B.N.; Wang, H.; Liu, P.; Jiang, W. Exogenous Application of Amino Acids Improves the Growth and Yield of Lettuce by Enhancing Photosynthetic Assimilation and Nutrient Availability. Agronomy 2019, 9, 266. [Google Scholar] [CrossRef]
- Koshiyama, T.; Higashiyama, Y.; Mochizuki, I.; Yamada, T.; Kanekatsu, M. Ergothioneine Improves Seed Yield and Flower Number through FLOWERING LOCUS T Gene Expression in Arabidopsis Thaliana. Plants 2024, 13, 2487. [Google Scholar] [CrossRef]
- Navarro-León, E.; Borda, E.; Marín, C.; Sierras, N.; Blasco, B.; Ruiz, J.M. Application of an Enzymatic Hydrolysed L-α-Amino Acid Based Biostimulant to Improve Sunflower Tolerance to Imazamox. Plants 2022, 11, 2761. [Google Scholar] [CrossRef] [PubMed]
- Díaz, Y.P.; Hurtado, A.C.; Calzada, K.P.; Díaz, J.L.G.; González, V.R. Plant densities and foliar application of amino acids increasing sesame yield. Temas Agrar. 2024, 29, 100–112. [Google Scholar] [CrossRef]
- Gottsberger, G.; Silberbauer-Gottsberger, I.; Dötterl, S. Distant Populations of a Xanthosoma (Araceae) Species Have Different Floral Scents but the Same Cyclocephaline Beetle Pollinators. Acta Bot. Bras. 2020, 34, 580–588. [Google Scholar] [CrossRef]
- Amancio, G.; Hernández-Ortiz, V.; Aguirre-Jaimes, A.; Guevara, R.; Quesada, M. Feeding Specialization of Flies (Diptera: Richardiidae) in Aroid Infructescences (Araceae) of the Neotropics. J. Insect Sci. 2019, 19, 28. [Google Scholar] [CrossRef]
- Valerio, C. Notes on Phenology and Pollination of Xanthosoma wendlandii (Araceae) in Costa Rica. Rev. Biol. Trop. 1988, 36, 55–61. [Google Scholar]
- Jeannerod, L.; Carlier, A.; Schatz, B.; Daise, C.; Richel, A.; Agnan, Y.; Baude, M.; Jacquemart, A.-L. Some Bee-Pollinated Plants Provide Nutritionally Incomplete Pollen Amino Acid Resources to Their Pollinators. PLoS ONE 2022, 17, e0269992. [Google Scholar] [CrossRef]
- Kawade, K.; Tabeta, H.; Ferjani, A.; Hirai, M.Y. The Roles of Functional Amino Acids in Plant Growth and Development. Plant Cell Physiol. 2023, 64, 1482–1493. [Google Scholar] [CrossRef]
- Patel, T.; Singh, B.; Solanki, H. Effect of Abiotic Factors and Nutrition Elements on Pollen Germination and Pollen Viability. World J. Adv. Res. Rev. 2025, 25, 836–851. [Google Scholar] [CrossRef]
- Sama, A.E.; Hughes, H.G.; Abbas, M.S.; Shahba, M.A. An Efficient In Vitro Propagation Protocol of Cocoyam [Xanthosoma sagittifolium (L) Schott]. Sci. World J. 2012, 2012, 346595. [Google Scholar] [CrossRef]
- Asante, M.O.O.; Ahiakpa, J.K.; Amoatey, C.; Adjei-Nsiah, S. Effect of Shade and Level of Fertilizer Application on Nutrient Uptake and Dry Matter Partitioning in Cocoyam (Xanthosoma sagittifolium L.). J. Plant Nutr. 2017, 40, 2312–2325. [Google Scholar] [CrossRef]
- Suminarti, N.E.; Chriswanto, D.A.; Fajrin, A.N. Improvement of Taro Mbothe Yield (Xanthosoma sagittifolium L.) Schott on Dry Land Indonesia by Potassium Application and Tuber Size Selection. Asian J. Plant Sci. 2022, 21, 460–468. [Google Scholar] [CrossRef]
- Carole, D.A.; Benjamin, A.A.; Désiré, M.H.; Kévin, T.A.M.; Brice, A.S.; Maguy, N.B.A.; Motassy, M.D.; Jones, N.; Nicolas, N. Application of the PIF Method in Seed Multiplication in Xanthosoma sagittifolium L. Schott: Effect of the Mass of the Corm Fragment and Realization of the Field Transfer Test. Am. J. Agric. For. 2023, 11, 203–211. [Google Scholar] [CrossRef]
- Kocira, S.; Szparaga, A.; Kocira, A.; Czerwińska, E.; Wójtowicz, A.; Bronowicka-Mielniczuk, U.; Koszel, M.; Findura, P. Modeling Biometric Traits, Yield and Nutritional and Antioxidant Properties of Seeds of Three Soybean Cultivars Through the Application of Biostimulant Containing Seaweed and Amino Acids. Front. Plant Sci. 2018, 9, 388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, J.; Jeong, S.J.; Masabni, J.; Niu, G. Biostimulants Applied in Seedling Stage Can Improve Onion Early Bulb Growth: Cultivar- and Fertilizer-Type-Specific Positive Effects. Horticulturae 2025, 11, 402. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Liu, W.; Ji, J.; Zhang, K.; Li, H.; Feng, Y.; Xue, J.; Ji, C.; Zhang, L.; et al. Mechanisms of Branched Chain Amino Acids Promoting Growth and Lipid Accumulation in Camelina Sativa Seedlings under Drought and Salt Stress. Sustain. Energy Technol. Assess. 2025, 75, 104201. [Google Scholar] [CrossRef]
Accessions | Control | Average of Flowers per Inflorescence | ||
---|---|---|---|---|
GV1 | GV2 | GV3 | ||
‘Morada 1726’ | 0 c | 2.0 b | 3.0 b | 5.0 a |
‘INIVIT-84’ | 0 b | 0 b | 0 b | 1.0 a |
‘Cuarentena’ | 0 b | 0 b | 0 b | 1.0 a |
‘México 3’ | 0 b | 0 b | 0 b | 2.0 a |
‘Jibara’ | 0 b | 0 b | 0 b | 3.0 a |
‘Morada Cabaiguán’ | 0 b | 0 b | 0 b | 1.0 a |
Accessions | Control | Seed Size (mm) | ||
---|---|---|---|---|
GV1 | GV2 | GV3 | ||
‘Morada 1726’ | 0 c | 1.0 b | 1.1 b | 1.5 a |
‘INIVIT-84’ | 0 b | 0 b | 0 b | 1.4 a |
‘Cuarentena’ | 0 b | 0 b | 0 b | 1.5 a |
‘México 3’ | 0 b | 0 b | 0 b | 1.3 a |
‘Jibara’ | 0 b | 0 b | 0 b | 1.2 a |
‘Morada Cabaiguán’ | 0 b | 0 b | 0 b | 1.3 a |
Accessions | Control | Seed Mass per Plant (g) | ||
---|---|---|---|---|
GV1 | GV2 | GV3 | ||
‘Morada 1726’ | 0 d | 0.6 c | 1.1 b | 3.1 a |
‘INIVIT-84’ | 0 b | 0 b | 0 b | 0.9 a |
‘Cuarentena’ | 0 b | 0 b | 0 b | 0.6 a |
‘México 3’ | 0 b | 0 b | 0 b | 1.5 a |
‘Jibara’ | 0 b | 0 b | 0 b | 2.3 a |
‘Morada Cabaiguán’ | 0 b | 0 b | 0 b | 0.5 a |
Crossbreeding | Average Seed Germination Percent in the Three Substrates Used: | ||
---|---|---|---|
Cotton | Black Soil | Red Soil | |
‘Jibara’ × ‘Morada 1726’ | 93% | 93% | 90% |
‘Morada Cabaiguán’ × ‘Morada 1726’ | 93% | 90% | 93% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Medina, A.; Morales, A.; Galvez-Guerra, D.; Calero-Hurtado, A.; Peña-Calzada, K.; Kukurtcu, B. Novel Insights into Botanical Seed Production of Xanthosoma spp. in Cuba. Agronomy 2025, 15, 1366. https://doi.org/10.3390/agronomy15061366
Jiménez-Medina A, Morales A, Galvez-Guerra D, Calero-Hurtado A, Peña-Calzada K, Kukurtcu B. Novel Insights into Botanical Seed Production of Xanthosoma spp. in Cuba. Agronomy. 2025; 15(6):1366. https://doi.org/10.3390/agronomy15061366
Chicago/Turabian StyleJiménez-Medina, Alay, Alfredo Morales, Diosdada Galvez-Guerra, Alexander Calero-Hurtado, Kolima Peña-Calzada, and Bulent Kukurtcu. 2025. "Novel Insights into Botanical Seed Production of Xanthosoma spp. in Cuba" Agronomy 15, no. 6: 1366. https://doi.org/10.3390/agronomy15061366
APA StyleJiménez-Medina, A., Morales, A., Galvez-Guerra, D., Calero-Hurtado, A., Peña-Calzada, K., & Kukurtcu, B. (2025). Novel Insights into Botanical Seed Production of Xanthosoma spp. in Cuba. Agronomy, 15(6), 1366. https://doi.org/10.3390/agronomy15061366