Oat Ears Detection and Counting Model in Natural Environment Based on Improved Faster R-CNN
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oat Ear Image Acquisition and Data Annotation
2.2. Faster R-CNN Algorithm and Its Composition Framework
2.3. Optimization of the Faster R-CNN Algorithm
2.3.1. Parallel Convolutional Neural Network
2.3.2. Optimization of Anchor Box in Size and Quantity
2.3.3. ROI Align Regional Feature Aggregation
2.3.4. Progressive-NMS
2.4. Test Environments
2.5. Model Evaluation Methodology
3. Results and Discussion
3.1. Comparison of Detection Performance of Various Feature Extraction Networks Under Different Anchor Boxes
3.2. Comparison of the Detection Effects of Faster RCNN on Oat Ears in Natural Environment Before and After Improvement
3.3. Oat Ears Counting Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Q. Analysis of the Current Situation of Global and Chinese Oat Industry in 2022. 2024. Available online: https://www.huaon.com/channel/trend/892251.html (accessed on 22 October 2024).
- Ling, H.B.; Zhou, X.C.; Zhang, J.Y.; He, F.G. The detection method of wheat ear in natural environment based on improved Faster R-CNN. J. Chifeng Univ. (Nat. Sci. Ed.) 2021, 37, 17–21. (In Chinese) [Google Scholar]
- Xu, B.; Tong, M. Wheat ear detection and recognition based on improved Faster R-CNN. J. Xiangtan Univ. 2022, 44, 48–59. (In Chinese) [Google Scholar]
- Li, L.; Hassan, M.A.; Yang, S.; Jing, F.; Yang, M.; Rasheed, A.; Wang, Y.; Xia, X.; He, Z.; Xiao, Y. Development of image-based wheat spike counter through a Faster R-CNN algorithm and application for genetic studies. Crop J. 2022, 10, 1303–1311. [Google Scholar] [CrossRef]
- Wu, W.; Yang, T.L.; Li, R.; Chen, C.; Liu, T.; Zhou, K.; Guo, W.S. Detection and enumeration of wheat grains based on a deep learning method under various scenarios and scales. J. Integr. Agric. 2020, 19, 1998–2008. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, Y.; Wang, Q.; Zhang, H.; Qiu, C.; Kang, K.; Luo, B. Improved YOLOv5 for measuring spike number per unit area of wheat in field. Acta Agric. Eng. 2022, 38, 235–242. [Google Scholar]
- Lu, Q.K.; Zhang, J.L. Method of wheat ear detection based on anchorless YOLO detection network. J. Shandong Agric. Univ. (Nat. Sci. Ed.) 2022, 53, 796–802. [Google Scholar]
- Lu, Z.; Zhang, J.; Han, B.; Li, Y. Wheat spike detection method based on improved YOLO v7-tiny. Jiangsu Agric. Sci. 2024, 1002–1302. (In Chinese) [Google Scholar]
- Jing, F.; Wang, C.; Li, J.; Yang, C.; Liu, H.; Chen, Y. A Dual Detection Head YOLO Model with Its Application in Wheat Ear Recognition. Int. J. Cogn. Inform. Nat. Intell. 2024, 18, 1–17. [Google Scholar] [CrossRef]
- Chen, W.; Lusi, A.; Gao, Q.; Bian, S.; Li, B.; Guo, J.; Zhang, D.; Hu, W.; Yang, C.; Huang, F. CB-YOLO: Dense Object Detection of YOLO for Crowded Wheat Head Identification and Localization. J. Circ. Syst. Comput. 2024; prepublish. [Google Scholar] [CrossRef]
- Wang, P.X.; Du, J.L.; Zhang, Y.; Liu, J.M.; Li, H.M.; Wang, C.M. Estimation of winter wheat yield based on remote sensing multi-parameters and CNN-Transformer. J. Agric. Mach. 2024, 55, 173–182. (In Chinese) [Google Scholar]
- Yu, J.W.; Chen, W.W.; Guo, Y.S.; Mu, Y.S.; Fan, C. Detection and counting model of rotating frame wheat ear based on improved Oriented R-CNN. Acta Agric. Eng. Sci. 2024, 40, 248–257. [Google Scholar]
- Bao, W.; Su, B.; Hu, G.; Huang, C.; Liang, D. Wheat ear counting method of UAV wheat image based on FE-P2Pnet. J. Agric. Mach. 2024, 55, 155–164+289. (In Chinese) [Google Scholar]
- Zhou, Z.L.; Liu, J.M.; Cao, D.; Liu, B.L.; Wang, D.X.; Zhang, H.G. Comparison of grass yield, agronomic traits, and forage quality among different oat varieties. Crop J. 2024, 1, 132–140. (In Chinese) [Google Scholar]
- Jing, F.; Liu, Y.M.; Ren, S.L.; Bian, F.; Chen, F.; Zhang, C.J. Effects of variety and planting density on yield, quality and disease of oat forage. Grassland J. 2023, 31, 3174–3184. (In Chinese) [Google Scholar]
- Sharma, A.; Kumar, V.; Longchamps, L. Comparative performance of YOLOv8, YOLOv9, YOLOv10, YOLOv11 and Faster R-CNN models for detection of multiple weed species. Smart Agric. Technol. 2024, 9, 100648. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Yang, Y.; Guo, R.; Yang, J.; Yue, J.; Wang, Y. A high-precision detection method of hydroponic lettuce seedlings status based on improved Faster R-CNN. Comput. Electron. Agric. 2021, 182, 106054. [Google Scholar] [CrossRef]
- Li, J.H.; Lin, L.J.; Tian, K. Improved Faster R-CNN for field detection of bitter melon leaf diseases. J. Agric. Eng. 2020, 36, 179–185. (In Chinese) [Google Scholar]
- Jiang, S.; Cao, Y.F.; Liu, Z.Y.; Zhao, S.; Zhang, Z.Y.; Wang, W.X. Identification of tea leaf diseases based on improved Faster R-CNN. J. Huazhong Agric. Univ. 2024, 43, 41–50. (In Chinese) [Google Scholar]
- Yang, Q.; Ma, S.; Guo, D.; Wang, P.; Lin, M.; Hu, Y. A Small Object Detection Method for Oil Leakage Defects in Substations Based on Improved Faster-R-CNN. Sensors 2023, 23, 7390. [Google Scholar] [CrossRef]
- Miao, R.; Yi, L.; Ke, Z.; Na, Z.Y.; Ran, C.R.; Gen, M. Research on an Improved Faster R-CNN Multi object Detection Model for Remote Sensing Images. Comput. Eng. 2022, 2, 1–14. (In Chinese) [Google Scholar] [CrossRef]
- Hu, Z.; Wang, C. Improved Faster R-CNN for Small Object Detection in Remote Sensing Images. Comput. Eng. Sci. 2024, 46, 1063–1071. (In Chinese) [Google Scholar]
- Zhang, Y.; Zhang, L.; Yu, H.; Guo, Z.; Zhang, R.; Zhou, X. Research on the Strawberry Recognition Algorithm Based on Deep Learning. Appl. Sci. 2023, 13, 11298. [Google Scholar] [CrossRef]
- Zhou, C.; Ye, L.; Peng, H.; Liu, Z.; Wang, J.; Ramírez-De-Arellano, A. A Parallel Convolutional Network Based on Spiking Neural Systems. Int. J. Neural Syst. 2024, 34, 2450022. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.M.; Li, P.; Jiao, L.C.; Yang, S.Y.; Hou, B. A Review of Parallel Research on Deep Neural Networks. J. Comput. Sci. 2018, 41, 1861–1881. (In Chinese) [Google Scholar]
- Deng, X.; Deng, D.; Su, W. Research on ship communication anomaly data detection based on parallel deep convolutional neural network. Ship Sci. Technol. 2023, 45, 119–122. (In Chinese) [Google Scholar]
- He, F.; Kou, Z.; Chi, Z. Research on Bearing Fault Diagnosis Based on Two-dimensional Parallel Residual Network. S. Agric. Mach. 2024, 55, 151–153. (In Chinese) [Google Scholar]
- Zhao, X.; Li, X.; Xu, J.; Liu, B.; Bi, X. A Medical Image Registration Model Based on Convolutional Neural Network and Transformer Parallel. Comput. Appl. 2022, 44, 3915–3921. (In Chinese) [Google Scholar]
- Zhu, H.; Li, X.; Meng, Y.; Yang, H.; Xu, Z.; Li, Z. Tea sprout detection based on Faster R-CNN network. J. Agric. Mach. 2022, 53, 217–224. (In Chinese) [Google Scholar]
- Hou, J.; Yang, C.; He, Y.; Hou, B. Detecting diseases in apple tree leaves using FPN–ISResNet–Faster R-CNN. Eur. J. Remote Sens. 2023, 56, 2279–7254. [Google Scholar] [CrossRef]
- Zhang, P.C.; Hu, Y.J.; Zhang, Y.; Zhang, C.H.; Chen, Z.; Chen, X. Research on Identification of Peach Tree Yellow Leaf Disease in Complex Background Based on Improved Faster R-CNN. Chin. J. Agric. Mach. Chem. 2024, 45, 219–225+251. (In Chinese) [Google Scholar]
- Beigeng, Z.; Rui, S. Enhancing two-stage object detection models via data-driven anchor box optimization in UAV-based maritime SAR. Sci. Rep. 2024, 14, 4765. [Google Scholar]
- Zheng, J.; Zhao, S.; Xu, Z.; Zhang, L.; Liu, J. Anchor boxes adaptive optimization algorithm for maritime object detection in video surveillance. Front. Mar. Sci. 2023, 10, 1290931. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Wu, X.; Wang, W.; Zhang, L.; Lv, H. Potato germination and surface damage detection method based on improved Faster R-CNN. J. Agric. Mach. 2024, 55, 371–378. (In Chinese) [Google Scholar]
- Wen, J.; Wang, Y.; Li, J.; Zhang, Y. Faster R-CNN object detection algorithm with multi head self-attention mechanism. Mod. Electron. Technol. 2024, 47, 8–16. (In Chinese) [Google Scholar]
- Li, J.; Yang, Y. HM-YOLOv5: A fast and accurate network for defect detection of hotpressed light guide plates. Eng. Appl. Artif. Intell. 2023, 117, 105529. [Google Scholar] [CrossRef]
- Li, H.; Jia, H.; Luo, B.; Bao, T. Research on chip surface defect detection method based on improved Faster R-CNN. Laser J. 2022, 45, 48. (In Chinese) [Google Scholar]
- Shuqin, H.; Fule, H.; Liuming, L.; Feng, Q.; Yanzhou, L. Research on weed detection algorithm in sugarcane field based on Faster R-CNN. Chin. J. Agric. Mach. Chem. 2024, 45, 208–215. (In Chinese) [Google Scholar]
- Mao, R.; Zhang, Y.; Wang, Z.; Gao, S.; Zhu, T.; Wang, M.; Hu, X. Identification of wheat stripe rust and yellow dwarf disease using improved Faster R-CNN. J. Agric. Eng. 2022, 38, 176–185. (In Chinese) [Google Scholar]
- Du, Y.Y.; Yang, J.H.; Li, H.; Mao, Y.; Jiang, Y. A Few Samples Object Detection Algorithm Based on Improved Faster R-CNN. Electro Opt. Control 2023, 30, 44–51. (In Chinese) [Google Scholar]
Parameter Name | Optimizer | MaxEpochs | InitialLearnRate | Activation Function | Mini BatchSize |
---|---|---|---|---|---|
Parameter value | Sgdm | 10 | 1 × 10−5 | Relu | 1 |
Backbone Network | Anchor Box | Precision/% | Recall/% | mAP/% | Detection Speed/(frame/s) |
---|---|---|---|---|---|
Alexnet | 16.85 | 29.47 | 27.13 | 20.58 | |
Vgg16 | 60.63 | 79.57 | 71.40 | 10.83 | |
GoogLeNet | 37.21 | 45.96 | 41.81 | 9.33 | |
ResNet50 | 56.09 | 82.29 | 77.79 | 15.31 | |
Parallel convolution | 66.60 | 82.45 | 80.07 | 12.69 | |
Parallel convolution | 65.20 | 84.04 | 82.96 | 12.60 | |
Parallel convolution (Progressive-NMS) | 73.30 | 86.54 | 84.41 | 12.14 |
Experimental Area Number | Manual Count | FasterR-CNN+Vgg16 | FasterR-CNN+ResNet50 | Improved Model | Ling Haibo [2] | Huang Shuo [5] | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Count | Accuracy % | Count | Accuracy % | Count | Accuracy % | Count | Accuracy % | Count | Accuracy % | ||
1 | 10 | 7 | 70.00 | 7 | 70.00 | 9 | 90.00 | 7 | 70.00 | 9 | 90.00 |
2 | 13 | 9 | 69.23 | 8 | 61.54 | 11 | 86.61 | 11 | 86.61 | 11 | 86.61 |
3 | 25 | 19 | 76.00 | 17 | 68.00 | 23 | 92.00 | 20 | 80.00 | 22 | 88.00 |
4 | 8 | 4 | 50.00 | 5 | 62.50 | 6 | 75.00 | 6 | 75.00 | 8 | 100 |
5 | 9 | 7 | 77.78 | 7 | 77.78 | 7 | 77.78 | 7 | 77.78 | 8 | 88.89 |
6 | 7 | 4 | 57.14 | 6 | 85.71 | 7 | 100 | 7 | 100 | 7 | 100 |
7 | 13 | 10 | 76.92 | 11 | 84.62 | 12 | 92.31 | 10 | 76.92 | 10 | 76.92 |
8 | 17 | 15 | 88.24 | 14 | 82.35 | 15 | 88.24 | 15 | 88.24 | 16 | 94.12 |
9 | 12 | 10 | 83.33 | 8 | 66.67 | 12 | 100 | 10 | 83.33 | 12 | 100 |
10 | 11 | 10 | 90.91 | 9 | 90.00 | 10 | 90.91 | 10 | 90.91 | 10 | 90.91 |
Total | 125 | 95 | 76.00 | 93 | 74.40 | 112 | 89.60 | 103 | 82.40 | 113 | 90.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, C.; Wang, J.; Zheng, D.; Li, Y.; Zhang, X. Oat Ears Detection and Counting Model in Natural Environment Based on Improved Faster R-CNN. Agronomy 2025, 15, 536. https://doi.org/10.3390/agronomy15030536
Tian C, Wang J, Zheng D, Li Y, Zhang X. Oat Ears Detection and Counting Model in Natural Environment Based on Improved Faster R-CNN. Agronomy. 2025; 15(3):536. https://doi.org/10.3390/agronomy15030536
Chicago/Turabian StyleTian, Cong, Jiawei Wang, Decong Zheng, Yangen Li, and Xinchi Zhang. 2025. "Oat Ears Detection and Counting Model in Natural Environment Based on Improved Faster R-CNN" Agronomy 15, no. 3: 536. https://doi.org/10.3390/agronomy15030536
APA StyleTian, C., Wang, J., Zheng, D., Li, Y., & Zhang, X. (2025). Oat Ears Detection and Counting Model in Natural Environment Based on Improved Faster R-CNN. Agronomy, 15(3), 536. https://doi.org/10.3390/agronomy15030536