Impact of Harvesting Time on Grain Yield, Physicochemical Attributes, and 2-Acetyl-1-pyrroline Biosynthesis in Aromatic Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Treatments and Design
2.3. Rice Varieties
2.4. Agronomic Crop Husbandry
2.5. Data Collection
2.5.1. Grain Yield (t ha−1)
2.5.2. Brown Rice Yield (BRY)
2.5.3. Head Rice Recovery (HRR)
2.5.4. Chalk Index Determination (CID)
2.5.5. Water Uptake Ratio (WUR)
2.5.6. Imbibition Ratio (IR)
2.5.7. Optimal Cooking Time (OCT)
2.5.8. Kernel Elongation Ratio (KER)
2.5.9. Gel Consistency (GC)
2.5.10. Apparent Amylose Content (AAC)
2.5.11. Amylopectin Content (APC)
2.5.12. Alkali Spreading Value (ASV) and Gelatinization Temperature (GT)
2.5.13. Percent Protein Content
2.5.14. Sensory Aroma Test
2.5.15. Grain 2-AP Content (μg g−1)
2.5.16. Percent Grain Yield and Grain 2-AP Content Increases
2.5.17. Monetary Advantage
2.6. Statistical Analysis
3. Results
3.1. Grain Yield
3.2. Brown Rice Yield
3.3. Head Rice Recovery
3.4. Chalk Index Determination
3.5. Water Uptake Ratio
3.6. Imbibition Ratio
3.7. Optimal Cooking Time
3.8. Kernel Elongation Ratio
3.9. Gel Consistency
3.10. Apparent Amylose Content
3.11. Amylopectin Content
3.12. Alkali Spreading Value
3.13. Gelatinization Temperature
3.14. Protein Content
3.15. Sensory Aroma Test
3.16. Grain 2-AP Content
3.17. Increases in Grain Yield and Grain 2-AP Content
3.18. Monetary Advantage
3.19. Pearson Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AWD | Alternate wetting and drying |
BRRI | Bangladesh Rice Research Institute |
DAF | Days after flowering |
GT | Gelatinization temperature |
JSPS | Japan Society for the Promotion of Science |
LSD | Least significant difference |
References
- Mahajan, G.; Sekhon, N.K.; Singh, N.; Kaur, R.; Sidhu, A.S. Yield and nitrogen-use efficiency of aromatic rice cultivars in response to nitrogen fertilizer. J. New Seeds 2010, 11, 356–368. [Google Scholar] [CrossRef]
- Sasmal, S.; Pal, S.K. Effect of integrated nutrition in aromatic rice on carbon and nutrient status in an inceptisol. Commun. Soil Sci. Plant Anal. 2018, 49, 30–37. [Google Scholar] [CrossRef]
- Hossain, M.F.; Islam, M.S.; Rahman, M.M.; Faruk, M.O.; Ershad, M.G. Yield and quality performance of some aromatic rice varieties of Bangladesh. J. Agrofor. Environ. 2008, 2, 155–158. [Google Scholar]
- Hossain, M.F.; Bhuiya, M.S.U.; Ahmed, M.; Mian, M.H. Effect of harvesting time on the milling and physicochemical properties of aromatic rice. Thai J. Agric. Sci. 2009, 42, 91–96. [Google Scholar]
- Chakraborty, R. Attention on aromatic rice production may create a new era on export income in Bangladesh: An opinion. Mod. Concepts Dev. Agron. 2020, 6, 624–625. [Google Scholar] [CrossRef]
- Shao, G.; Tang, S.; Chen, M.; Wei, X.; He, J.; Luo, J.; Jiao, G.; Hu, Y.; Xie, L.; Hu, P. Haplotype variation at Badh2, the gene determining fragrance in rice. Genomics 2013, 101, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Bao, G.; Ashraf, U.; Wang, C.; He, L.; Wei, X.; Zheng, A.; Mo, Z.; Tang, X. Molecular basis for increased 2-acetyl-1-pyrroline contents under alternate wetting and drying (AWD) conditions in fragrant rice. Plant Physiol. Biochem. 2018, 133, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Baradi, M.A.U.; Dangcil, C.T.; Solero, J.M.; Corpuz, G.A.; Romero, M.V. Harvesting time influenced the grain quality, phenolics, and total antioxidants of aromatic and non-aromatic rice. Philipp. J. Crop Sci. 2023, 46, 27–33. [Google Scholar]
- Arai, E.; Itani, T. Effects of early harvesting of grains on taste characteristics of cooked rice. Food Sci. Technol. Res. 2000, 6, 252–256. [Google Scholar] [CrossRef]
- Wang, H.; Guan, H.; Chen, M.; Peng, A.; Liu, M.; Li, C. Effect of different harvesting periods on grain yield and stalk silage quality of maize. Pratacult. Sci. 2018, 35, 1574–1581. [Google Scholar]
- Jiamyangyuen, S.; Nuengchamnong, N.; Ngamdee, P. Bioactivity and chemical components of Thai rice in five stages of grain development. J. Cereal Sci. 2017, 74, 136–144. [Google Scholar] [CrossRef]
- Firouzi, S.; Alizadeh, M.R. An investigation of the effects of harvesting time and milling moisture content of paddy on the quality of milled rice. Int. J. Biosci. 2013, 3, 133–138. [Google Scholar] [CrossRef]
- Arai, E.; Itani, T. Effects of harvesting time on sweetness of cooked rice and activity of starch-degradation enzymes of rice grains. Food Sci. Technol. Res. 2007, 10, 282–289. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Yin, Y.; Li, L.I.; Zhao, S.; Liu, X. Effect of the different harvest time and method on processing quality and appearance quality of rice with drip irrigation under plastic film. North Rice 2014, 44, 35–38. [Google Scholar]
- Verma, D.K.; Srivastav, P.P. Extraction, identification and quantification methods of rice aroma compounds with emphasis on 2-acetyl-1-pyrroline (2-AP) and its relationship with rice quality: A comprehensive review. Food Rev. Intl. 2022, 38, 111–162. [Google Scholar] [CrossRef]
- Baktiar, M.H.K.; Siddique, M.A.; Khalequzzaman, M.; Bhuiya, A.; Islam, M.Z. Effect of maturity period and harvesting time on quality and yield in breeder seed of rice (Oryza sativa L.). Eco-friendly Agril. J. 2013, 6, 249–252. [Google Scholar]
- Jewel, M.H.; Rahman, M.R.; Rahman, M.M.; Islam, M.J. Effect of variety and date of harvesting on yield performance of boro rice. Fundam. Appl. Agric. 2016, 1, 66–69. [Google Scholar]
- Bao, L.; Lin, G.; Zhao, D.; Wang, L.; He, B.; Jiang, Q.; Zhang, J. Influence of different sowing date and harvest time on rice filling stage, yield and grain quality. J. South China Agric. Univ. 2017, 38, 32–37. [Google Scholar]
- Dong, C.F.; Ding, C.L.; Xu, N.X.; Cheng, Y.H.; Shen, Y.X.; Gu, H.R. A study on the harvest time of different rice (Oryza sativa L.) varieties for grain-straw dual use. Acta Prataculturae Sin. 2014, 23, 65–72. [Google Scholar]
- BRRI (Bangladesh Rice Research Institute). Adhunik Dhaner Chash; Bangladesh Rice Research Institute: Joydebpur, Dhaka, 2016; p. 26. [Google Scholar]
- Bhonsle, S.J.; Krishnan, S. Grain quality evaluation of traditionally cultivated rice varieties of Goa, India. Recent Res. Sci. Technol. 2010, 2, 88–97. [Google Scholar] [CrossRef]
- Chakraborty, R.; Roy, T.; Quamruzzaman, M.; Bandopaddhya, N.; Rasul, M.G. Performance of legendary local fragrant rice in Bangladesh. J. Agric. Ecol. Res. Intl. 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Oko, A.O.; Ubi, B.E.; Dambaba, N. Rice cooking quality and physico-chemical characteristics: A comparative analysis of selected local and newly introduced rice varieties in Ebonyi state, Nigeria. Food Pub. Health 2012, 2, 43–49. [Google Scholar] [CrossRef]
- Islam, M.Z.; Banik, S.; Haque, M.A.; Siddiquee, M.A.; Khalequzzaman, M.; Mian, M.A.K. Physico-chemical and cooking properties of local aromatic rice germplasm in Bangladesh. Eco-Friendly Agric. J. 2013, 6, 243–248. [Google Scholar]
- Sandhu, R.S.; Singh, N.; Kaler, R.S.S.; Kaur, A.; Shevkani, K. Effect of degree of milling on physicochemical, structural, pasting and cooking properties of short and long grain Indica rice cultivars. Food Chem. 2018, 260, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Cagampang, G.B.; Perez, C.M.; Juliano, B.O. A gel consistency test for eating quality of rice. J. Sci. Food Agric. 1973, 24, 1589–1594. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.X.; Khush, G.S.; Juliano, B.O. Genetics of gel consistency in rice (Oryza sativa L.). J. Genet. 1991, 70, 69–78. [Google Scholar] [CrossRef]
- Juliano, B.O.; Tuano, A.P.P.; Monteroso, D.N.; Aoki, N.; Mestres, C.; Duldulao, J.B.A.; Bergonio, K.B. Replacement of acetate with ammonium buffer to determine apparent amylose content of milled rice. Cereal Foods World. 2012, 57, 14. [Google Scholar] [CrossRef]
- Abeysundara, A.; Seneviratne, N.; Wickramasinghe, I.; Ekanayake, D. Determination of changes of amylose and amylopectin content of paddy during early storage. Intl. J. Sci. Res. 2017, 6, 2094–2097. [Google Scholar] [CrossRef]
- Chemutai, L.R.; Musyoki, M.A.; Kioko, W.F. Physicochemical characterization of selected rice (Oryza sativa L.) genotypes based on gel consistency and alkali digestion. Biochem. Anal. Biochem. 2016, 5, 285. [Google Scholar] [CrossRef]
- Graham, R. A Proposal for IRRI to Establish a Grain Quality and Nutrition Research Center (No. 2169-2019-1615); IRRI: Los Banos, Philippines, 2002. [Google Scholar]
- Nakamura, S.; Li, H.; Dai, C.J.; Zhang, R.Y.; Kawano, M.; Ohtsubo, K.I. Physicochemical measurements of Japonica rice cultivars in Heilongjiang Province. Biosci. Biotechnol. Biochem. 2019, 83, 970–973. [Google Scholar] [CrossRef]
- David, O.; Rongrong, Z.; Martin, O.; Michael, K.; Angele, P.I.; Agnes, A.; Bill, W.K.; Ephraim, N.; Jimmy, L.; Melissa, A.F.; et al. Relationship between 2-acetyl-1-pyrroline and aroma in Uganda rice populations with Oryza (barthi, glaberrima and sativa) backgrounds. Afr. J. Biotechnol. 2019, 18, 1016–1024. [Google Scholar] [CrossRef]
- Srivastava, D.; Shamim, M.; Mishra, A.; Yadav, P.; Kumar, D.; Pandey, P.; Khan, N.A.; Singh, K.N. Introgression of semi-dwarf gene in Kalanamak rice using marker-assisted selection breeding. Curr. Sci. 2019, 116, 597–603. [Google Scholar] [CrossRef]
- Huang, Z.; Tang, X.; Wang, Y.; Chen, M.; Zhao, Z.; Duan, M.; Pan, S. Effects of increasing aroma cultivation on aroma and grain yield of aromatic rice and their mechanism. Sci. Agric. Sin. 2012, 45, 1054–1065. [Google Scholar]
- Dong, M.H.; Chen, P.F.; Xie, Y.L.; Qiao, Z.Y.; Yang, J.C. Variations in carbohydrate and protein accumulation among spikelets at different positions within a panicle during rice grain filling. Rice Sci. 2012, 19, 223–232. [Google Scholar] [CrossRef]
- Liu, X.P.; Lai, T.; Huang, S.P.; Tang, J.; Zhang, J.H.; Wang, K.K.; Yao, E.P. Effects of different harvesting periods on japonica rice yield. Bull. Agril. Sci. Technol. 2018, 7, 105–107. (In Chinese) [Google Scholar]
- Afifah, A.; Jahan, M.S.; Khairi, M.; Nozulaidi, M. Effect of various water regimes on rice production in lowland irrigation. Aust. J. Crop Sci. 2015, 9, 153–159. [Google Scholar]
- Atapattu, A.J.; Prasantha, B.D.R.; Amaratunga, K.S.P.; Marambe, B. Increased rate of potassium fertilizer at the time of heading enhances the quality of direct seeded rice. Chem. Biol. Technol. Agric. 2018, 5, 22. [Google Scholar] [CrossRef]
- Yang, X.; Wang, B.; Chen, L.; Li, P.; Cao, C. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci. Rep. 2019, 9, 3742. [Google Scholar] [CrossRef]
- Zhang, J.; Tong, T.; Potcho, P.M.; Li, L.; Huang, S.; Yan, Q.; Tang, X. Harvest time effects on yield, quality and aroma of fragrant rice. J. Plant Growth Regul. 2021, 40, 2249–2257. [Google Scholar] [CrossRef]
- Kabir, M.H.; Liu, Q.; Su, Y.; Huang, Z.; Xiao, L. Dynamics of phytohormones and their relationship with chalkiness of early indica rice under different post-anthesis temperature regimes. Bangladesh J. Agric. Res. 2017, 42, 53–65. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Z.; Li, Y.; Xie, W.; Li, W.; Tang, X.; Ashraf, U.; Kong, L.; Wu, L.; Wang, S.; et al. Selenium-silicon (Se-Si) induced modulations in physio-biochemical responses, grain yield, quality, aroma formation and lodging in fragrant rice. Ecotoxicol. Environ. Saf. 2020, 196, 110525. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Ashraf, U.; Tang, Y.; Li, W.; Pan, S.; Duan, M.; Tang, X. Nitrogen application at the booting stage affects 2-acetyl-1-pyrroline, proline, and total nitrogen contents in aromatic rice. Chilean J. Agril. Res. 2018, 78, 165–172. [Google Scholar] [CrossRef]
- Itani, T.; Tamaki, M.; Hayata, Y.; Fushimi, T.; Hashizume, K. Variation of 2-acetyl-1-pyrroline concentration in aromatic rice grains collected in the same region in Japan and factors affecting its concentration. Plant Prod. Sci. 2004, 7, 178–183. [Google Scholar] [CrossRef]
- Deshmukh, Y.; Khare, P.; Patra, D. Rhizobacteria elevate principal basmati aroma compound accumulation in rice variety. Rhizosphere 2016, 1, 53–57. [Google Scholar] [CrossRef]
- Chinachanta, K.; Herrmann, L.; Lesueur, D.; Jongkaewwattana, S.; Santasup, C.; Shutsrirung, A. Influences of farming practices on soil properties and the 2-acetyl-1-pyrroline content of Khao Dawk Mali 105 rice grains. Appl. Environ. Soil Sci. 2020, 2020, 8818922. [Google Scholar] [CrossRef]
- Chinachanta, K.; Shutsrirung, A.; Herrmann, L.; Lesueur, D.; Pathom-Aree, W. Enhancement of the aroma compound 2-acetyl-1-pyrroline in thai jasmine rice (Oryza sativa L.) by rhizobacteria under salt stress. Biology 2021, 10, 1065. [Google Scholar] [CrossRef]
- Luo, H.; Duan, M.; Kong, L.; He, L.; Chen, Y.; Wang, Z.; Tang, X. The regulatory mechanism of 2-acetyl-1-pyrroline biosynthesis in fragrant rice (Oryza sativa L.) under different soil moisture contents. Front. Plant Sci. 2021, 12, 772728. [Google Scholar] [CrossRef]
Year | Month | Air Temperature (°C) | Relative Humidity (%) | Total Rainfall (mm) | |
---|---|---|---|---|---|
Maximum | Minimum | ||||
2022 (Aman season) | June | 26.5 | 10.71 | 69.59 | 279.9 |
July | 27.4 | 11.8 | 90.1 | 367.1 | |
August | 24.9 | 14.7 | 79.5 | 333.8 | |
September | 25.8 | 12.1 | 74.3 | 334.5 | |
October | 24.3 | 10.5 | 81.9 | 80.5 | |
November | 21.9 | 7.9 | 67.5 | 40.7 |
Soil Constituents | Preplanting | Postharvesting |
---|---|---|
pH | 5.59 | 5.66 |
Organic matter (%) | 1.227 | 1.616 |
Total nitrogen (%) | 0.125 | 0.311 |
K (meq/100 g soil) | 0.138 | 0.169 |
P (mg/g soil) | 5.75 | 6.98 |
S (mg/g soil) | 21.71 | 23.38 |
B (mg/g soil) | 0.41 | 0.47 |
Zn (mg/g soil) | 3.15 | 3.64 |
Treatments | Grain Yield (t ha−1) | Brown Rice Yield (%) | Head Rice Recovery (%) | Chalk Index Determination (%) |
---|---|---|---|---|
V1D1 | 1.97 g | 70.2 f | 69.1 | 32.0 d |
V1D2 | 2.21 fg | 77.4 bcd | 70.0 | 36.5 c |
V1D3 | 2.53 ef | 81.7 ab | 70.2 | 40.7 b |
V2D1 | 4.01 c | 70.3 f | 66.3 | 30.6 d |
V2D2 | 4.31 bc | 72.2 ef | 69.9 | 37.0 c |
V2D3 | 5.09 a | 84.0 a | 73.1 | 43.9 a |
V3D1 | 4.13 c | 73.9 def | 68.8 | 30.3 d |
V3D2 | 4.57 b | 81.7 ab | 70.2 | 36.0 c |
V3D3 | 5.12 a | 80.1 abc | 73.6 | 44.2 a |
V4D1 | 2.79 e | 76.4 cde | 68.8 | 30.4 d |
V4D2 | 3.15 d | 74.3 def | 69.2 | 44.5 a |
V4D3 | 3.19 d | 82.3 a | 73.0 | 44.8 a |
CV (%) | 5.81 | 3.37 | 5.24 | 3.58 |
LSD (0.05) | 0.353 | 4.393 | --- | 2.281 |
F-test | * | ** | NS | ** |
Varieties | ** | NS | NS | ** |
Harvesting time | ** | ** | * | ** |
Treatments | Water Uptake Ratio | Imbibition Ratio | Optimal Cooking Time (min) | Kernel Elongation Ratio | Gel Consistency (mm) |
---|---|---|---|---|---|
V1D1 | 6.7633 b | 4.0100 e | 17.670 a | 1.4400 d | 70.447 g |
V1D2 | 6.2167 c | 4.6200 bc | 16.240 bc | 1.9500 b | 75.347 ef |
V1D3 | 5.1533 d | 4.7900 b | 15.450 c | 2.4400 a | 78.207 e |
V2D1 | 6.6033 b | 4.2200 de | 17.910 a | 1.6700 c | 72.387 fg |
V2D2 | 6.0667 c | 4.4500 cd | 16.110 bc | 1.8800 b | 85.187 cd |
V2D3 | 4.5133 e | 5.2100 a | 12.950 d | 2.4100 a | 88.707 bc |
V3D1 | 6.7533 b | 4.5000 c | 18.150 a | 1.3200 d | 77.963 e |
V3D2 | 4.2500 f | 5.1400 a | 17.010 ab | 2.4600 a | 93.963 a |
V3D3 | 4.4533 ef | 5.2100 a | 12.980 d | 2.4800 a | 89.840 b |
V4D1 | 7.6667 a | 4.6200 bc | 18.090 a | 1.3900 d | 84.200 d |
V4D2 | 4.4933 e | 5.1100 a | 13.010 d | 2.4900 a | 89.983 b |
V4D3 | 4.5533 e | 5.2300 a | 12.920 d | 2.5000 a | 94.300 a |
CV (%) | 2.25 | 3.45 | 4.46 | 4.75 | 2.82 |
LSD (0.05) | 0.2146 | 0.2780 | 1.1864 | 0.1639 | 3.9766 |
F-test | ** | * | ** | ** | ** |
Varieties | ** | ** | ** | ** | ** |
Harvesting time | ** | ** | ** | ** | ** |
Treatments | Apparent Amylose Content (%) | Amylopectin Content (%) | Alkali Spreading Value | Gelatinization Temperature | Protein Content (%) |
---|---|---|---|---|---|
V1D1 | 24.917 a | 75.083 e | 3.0100 f | High | 6.8797 cd |
V1D2 | 24.727 ab | 75.273 de | 5.1100 c | Intermediate | 7.2197 cd |
V1D3 | 24.617 abc | 75.383 cde | 6.8700 a | Low | 8.5697 b |
V2D1 | 23.647 a–d | 76.353 b–e | 4.0100 e | Intermediate | 6.5597 d |
V2D2 | 23.477 bcd | 76.523 bcd | 4.4400 d | Intermediate | 7.3697 c |
V2D3 | 23.157 d | 76.843 b | 4.4900 d | Intermediate | 8.5597 b |
V3D1 | 23.807 a–d | 76.193 b–e | 3.3800 f | High | 6.6597 d |
V3D2 | 20.017 e | 79.983 a | 5.5200 b | Intermediate | 9.6897 a |
V3D3 | 20.047 e | 79.953 a | 6.8500 a | Low | 9.7097 a |
V4D1 | 23.407 cd | 76.593 bc | 3.1900 f | High | 7.0697 cd |
V4D2 | 20.087 e | 79.913 a | 4.5600 d | Intermediate | 9.7497 a |
V4D3 | 20.010 e | 79.990 a | 6.8800 a | Low | 9.7797 a |
CV (%) | 3.36 | 0.98 | 4.77 | ------- | 4.85 |
LSD (0.05) | 1.2889 | 1.2889 | 0.3928 | ------- | 0.6696 |
F-test | ** | ** | ** | ------- | ** |
Varieties | ** | ** | ** | ------- | ** |
Harvesting time | ** | ** | ** | ------- | ** |
Treatments | Sensory Aroma Score | Grain 2-AP Content (µg g−1) |
---|---|---|
V1D1 | 3.8897 a | 0.0707 ef |
V1D2 | 3.8697 a | 0.0727 de |
V1D3 | 2.8597 c | 0.0587 g |
V2D1 | 3.8997 a | 0.0948 c |
V2D2 | 3.8897 a | 0.0777 d |
V2D3 | 2.4097 d | 0.0657 f |
V3D1 | 3.9097 a | 0.1447 ab |
V3D2 | 3.8997 a | 0.1437 ab |
V3D3 | 2.3197 d | 0.0887 c |
V4D1 | 3.9497 a | 0.1507 a |
V4D2 | 3.9397 a | 0.1487 ab |
V4D3 | 3.4097 b | 0.0747 de |
CV (%) | 3.46 | 4.10 |
LSD (0.05) | 0.2060 | 0.0231 |
F-test | ** | ** |
Varieties | ** | ** |
Harvesting time | ** | ** |
Harvesting Time | Grain Yield Increase (%) | Grain 2-AP Increase (%) | Monetary Advantage (USD ha−1) |
---|---|---|---|
D1 | --- | 60.22 | 4701.97 |
D2 | 10.38 | 53.96 | 5190.44 |
D3 | 23.49 | --- | 5806.49 |
GY | BRY | HRR | CID | WUR | IR | OCT | KER | GC | AAC | APC | ASV | PR | SA | G2-AP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GY | 1.0000 | ||||||||||||||
BRY | 0.2827 NS | 1.0000 | |||||||||||||
HRR | 0.3282 NS | 0.5567 * | 1.0000 | ||||||||||||
CID | 0.2732 NS | 0.6177 * | 0.5937 * | 1.0000 | |||||||||||
WUR | −0.4252 NS | −0.6063 * | −0.3197 NS | 0.8358 ** | 1.0000 | ||||||||||
IR | 0.4707 NS | 0.7853 * | 0.6605 * | 0.8225 ** | −0.7784 * | 1.0000 | |||||||||
OCT | −0.2444 NS | −0.4741 NS | −0.2315 NS | 0.8884 ** | 0.8041 ** | −0.6585 * | 1.0000 | ||||||||
KER | 0.3248 NS | 0.6878 * | 0.5077 * | 0.9094 ** | 0.9277 ** | 0.8492 ** | −0.7590 * | 1.0000 | |||||||
GC | 0.5158 * | 0.6521 * | 0.4721 NS | 0.6634 * | −0.6942 * | 0.8624 ** | −0.5791 * | 0.6942 * | 1.0000 | ||||||
AAC | −0.3943 NS | −0.2993 NS | −0.0144 NS | −0.5000 * | 0.7127 * | −0.6171 * | 0.6239 * | −0.5754 * | −0.7654 * | 1.0000 | |||||
APC | 0.3943 NS | 0.2993 NS | 0.0144 NS | 0.5000 * | −0.7127 * | 0.6171 * | −0.6239 * | 0.5754 * | 0.7654 * | −1.0000 ** | 1.0000 | ||||
ASV | 0.1832 NS | 0.6606 * | 0.4756 NS | 0.7395 * | −0.7197 * | 0.6785 * | −0.5877 * | 0.8330 * | 0.4993 NS | −0.4331 NS | 0.4331 NS | 1.0000 | |||
PR | 0.3282 NS | 0.6518 * | 0.5710 * | 0.8531 ** | −0.8733 ** | 0.9048 ** | −0.6891 * | 0.9186 | 0.8253 ** | −0.7254 * | 0.7254 * | 0.7490 * | 1.0000 | ||
SA | −0.4122 NS | −0.5809 * | −0.3099 NS | −0.6120 * | 0.5621 * | −0.4814 NS | 0.6761 * | −0.5393 | −0.2747 NS | 0.2161 NS | −0.2161 NS | −0.5592 * | −0.4114 NS | 1.0000 | |
G2-AP | 0.1406 NS | −0.1602 NS | −0.1526 NS | −0.3082 NS | 0.1579 NS | 0.1201 NS | 0.3178 NS | −0.2167 | 0.2646 NS | −0.3280 NS | 0.3280 NS | −0.3703 NS | 0.0597 NS | 0.5120 * | 1.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, R.; Roy, T.S.; Sakagami, J.-I. Impact of Harvesting Time on Grain Yield, Physicochemical Attributes, and 2-Acetyl-1-pyrroline Biosynthesis in Aromatic Rice. Agronomy 2024, 14, 1714. https://doi.org/10.3390/agronomy14081714
Chakraborty R, Roy TS, Sakagami J-I. Impact of Harvesting Time on Grain Yield, Physicochemical Attributes, and 2-Acetyl-1-pyrroline Biosynthesis in Aromatic Rice. Agronomy. 2024; 14(8):1714. https://doi.org/10.3390/agronomy14081714
Chicago/Turabian StyleChakraborty, Rajesh, Tuhin Suvra Roy, and Jun-Ichi Sakagami. 2024. "Impact of Harvesting Time on Grain Yield, Physicochemical Attributes, and 2-Acetyl-1-pyrroline Biosynthesis in Aromatic Rice" Agronomy 14, no. 8: 1714. https://doi.org/10.3390/agronomy14081714
APA StyleChakraborty, R., Roy, T. S., & Sakagami, J.-I. (2024). Impact of Harvesting Time on Grain Yield, Physicochemical Attributes, and 2-Acetyl-1-pyrroline Biosynthesis in Aromatic Rice. Agronomy, 14(8), 1714. https://doi.org/10.3390/agronomy14081714