Characteristics of the Soil Microbial Community Structure under Long-Term Chemical Fertilizer Application in Yellow Soil Paddy Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Test Method
2.2.1. Sampling
2.2.2. Soil Microbial Assay
2.2.3. Determination of Soil Physical and Chemical Properties
2.3. Statistical Analysis
3. Results
3.1. Effect of Long-Term Fertilization on Soil Nutrients
3.2. Different Long-Term Fertilization Effects on Soil Microorganisms and the Impact of Diversity
3.3. Response of the Microbial Community Composition to Long-Term Fertilization
3.4. Relationships between the Microbial α Diversity Index and Soil Environmental Factors
3.5. Relationships between Microbial Community Structure and Soil Environmental Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garba, H.N.; Liu, Y.R.; Zhang, S.X.; Liu, K.L.; Huang, J.; Lv, Z.Z.; Hou, H.Q.; Lan, X.J.; Ji, J.H.; Han, T.F.; et al. Long-term effect of fertilizations on yield sustainability, soil organic carbon sequestration and apparent phosphorus balance in acidic paddy soil. J. Soil Sci. Plant Nutr. 2022, 22, 4282–4298. [Google Scholar] [CrossRef]
- Tyagi, J.; Ahmad, S.; Malik, M. Nitrogenous fertilizers: Impact on environment sustainability, mitigation strategies, and challenges. Int. J. Environ. Sci. Technol. 2022, 19, 11649–11672. [Google Scholar] [CrossRef]
- Aune, J.B. Conventional, organic and conservation agriculture: Production and environmental impact. Sustain. Agric. Rev. 2012, 8, 149–165. [Google Scholar]
- Thiombiano, B.A.; Le, Q.B.; Ouédraogo, D. The role of responsive heterogeneity in sub-Saharan smallholder farming sustainability: Socio-economic and biophysical determinants of mineral and organic fertilizers used in South Western Burkina Faso. Int. J. Agric. Sustain. 2023, 21, 2219921. [Google Scholar] [CrossRef]
- Falconnier, G.N.; Cardinael, R.; Corbeels, M.; Baudron, F.; Chivenge, P.; Couëdel, A.; Ripoche, A.; Affholder, F.; Naudin, K.; Benaillon, E.; et al. The input reduction principle of agroecology is wrong when it comes to mineral fertilizer use in sub-Saharan Africa. Outlook Agric. 2023, 52, 311–326. [Google Scholar] [CrossRef]
- Degens, B.P.; Schipper, L.A.; Sparling, G.P.; Vojvodic-Vukovic, M. Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol. Biochem. 2000, 32, 189–196. [Google Scholar] [CrossRef]
- Wang, G.Y.; Su, T.; Han, H.L.; Tan, H.P.; Bao, F.; Zhao, F.C. Effects of long-term fertilization on soil microbial community structure, labile organic carbon and nitrogen and enzyme activity in paddy field and upland. Meteorol. Environ. Res. 2019, 10, 105–111. [Google Scholar]
- Hicks, L.C.; Rousk, K.; Rinnan, R.; Rousk, J. Soil microbial responses to 28 years of nutrient fertilization in a Subarctic heath. Ecosystems 2020, 23, 1107–1119. [Google Scholar] [CrossRef]
- Shi, P.; Wang, S.P.; Jia, S.G.; Gao, Q. Effect of 25-year fertilization on soil microbial biomass and community structure in a continuous corn cropping system. Arch. Agron. Soil Sci. 2015, 61, 1303–1317. [Google Scholar] [CrossRef]
- Wang, J.L.; Liu, K.L.; Zhao, X.Q.; Zhang, H.Q.; Shen, R.F. Balanced fertilization over four decades has sustained soil microbial communities and improved soil fertility and rice productivity in red paddy soil. Sci. Total Environ. 2021, 793, 148664. [Google Scholar] [CrossRef]
- Liang, G.Q.; Sun, J.W.; Wang, X.B.; Zhou, W. Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Geoderma 2011, 173, 330–338. [Google Scholar] [CrossRef]
- Shumilova, L.P.; Banetskaya, E.V. The effect of long-term use of fertilizers on soil-dwelling micromycetes of meadow chernozem soil in wheat crops. Agrokhimiya 2023, 7, 27–36. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms: A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Pavlov, K.V.; Morachevskaya, E.V.; Vlasova, A.P.; Manucharova, N.A. Microbiological activity of chernozem in the combined use of potassium chloride with nitrogen fertilizers. Eurasian Soil Sci. 2023, 56, 63–68. [Google Scholar] [CrossRef]
- Ullah, S.; Ai, C.; Huang, S.H.; Zhang, J.J.; Jia, L.L.; Jia, J.C.; Zhou, W.; He, P. The responses of extracellular enzyme activities and microbial community composition under nitrogen addition in an upland soil. PLoS ONE 2019, 14, e0223026. [Google Scholar] [CrossRef] [PubMed]
- Enebe, M.C.; Babalola, O.O. Effects of inorganic and organic treatments on the microbial community of maize rhizosphere by a shotgun metagenomics approach. Ann. Microbiol. 2020, 70, 49. [Google Scholar] [CrossRef]
- Kokovic, N.; Jacimovic, G.; Sikiric, B.; Ciric, V.; Ugrenovic, V.; Zhapparova, A.; Saljnikov, E. Changes in Eutric Cambisol due to long-term mineral fertilisation: A case study in Serbia. Ital. J. Agron. 2022, 17, 2029. [Google Scholar] [CrossRef]
- Geisseler, D.; Lazicki, P.A.; Scow, K.M. Mineral nitrogen input decreases microbial biomass in soils under grasslands but not annual crops. Appl. Soil Ecol. 2016, 106, 1–10. [Google Scholar] [CrossRef]
- Tosi, M.; Deen, W.; Drijber, R.; McPherson, M.; Stengel, A.; Dunfield, K. Long-term N inputs shape microbial communities more strongly than current-year inputs in soils under 10-year continuous corn cropping. Soil Biol. Biochem. 2021, 160, 108361. [Google Scholar] [CrossRef]
- Li, J.F.; Gan, G.Y.; Zeng, Q.Q. Impacts of long-term fertilization on crop yield and microbial communities under rice–rapeseed rotation. Agron. J. 2023, 115, 208–221. [Google Scholar] [CrossRef]
- Cai, F.F.; Luo, P.Y.; Yang, J.F.; Irfan, M.; Zhang, S.Y.; An, N.; Dai, J.; Han, X.R. Effect of long-term fertilization on ammonia-oxidizing microorganisms and nitrification in brown soil of northeast China. Front. Microbiol. 2021, 11, 3579. [Google Scholar] [CrossRef]
- Liu, M.H.; Gan, B.P.; Li, Q.; Xiao, W.F.; Song, X.Z. Effects of Effects of Nitrogen and Phosphorus Addition on Soil Extracellular Enzyme Activity and Stoichiometry in Chinese Fir (Cunninghamia lanceolata) Forests. Front. Plant Sci. 2022, 13, 834184. [Google Scholar] [CrossRef] [PubMed]
- Qaswar, M.; Ahmed, W.; Jing, H.; Huang, J.; Liu, K.L.; Zhang, L.; Han, T.F.; Du, J.X.; Ali, S.; Ur-Rahim, H.; et al. Interaction of soil microbial communities and phosphorus fractions under long-term fertilization in paddy soil. J. Integr. Agric. 2022, 21, 2134–2144. [Google Scholar] [CrossRef]
- Carrascosa, A.; Pascual, J.A.; López-García, A.; Romo-Vaquero, M.; De Santiago, A.; Ros, M.; Petropoulos, S.A.; Alguacil, M.D. Effects of inorganic and compost tea fertilizers application on the taxonomic and functional microbial diversity of the purslane rhizosphere. Front. Plant Sci. 2023, 14, 1159823. [Google Scholar] [CrossRef] [PubMed]
- Evdokimova, E.V.; Gladkov, G.V.; Kuzina, N.I.; Ivanova, E.A.; Kimeklis, A.K.; Zverev, A.O. The difference between cellulolytic culturomes and microbiomes inhabiting two contrasting soil types. PLoS ONE 2020, 15, e0242060. [Google Scholar] [CrossRef]
- Jansson, J.K.; Hofmockel, K.S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 2020, 18, 35–46. [Google Scholar] [CrossRef]
- Kaur, T.; Devi, R.; Kumar, S.; Sheikh, I.; Kour, D.; Yadav, A.N. Microbial consortium with nitrogen fixing and mineral solubilizing attributes for growth of barley. Heliyon 2022, 8, e09326. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.M. Moisture Dynamic in Yellow Soil and Its Environment Factors in Karst Mountainous Area of Guizhou. Ph.D. Thesis, Southwest University, Chongqing, China, 2007. [Google Scholar] [CrossRef]
- Yang, Y.H.; Huang, X.C.; Zhu, H.Q.; Li, Y.; Zhang, S.; Zhang, Y.R.; Liu, Y.L.; Jiang, T.M. Bacterial community structure and composition under long-term combined application of organic and inorganic fertilizers in a yellow paddy soil. J. Plant Nutr. Fertil. 2022, 28, 984–992. [Google Scholar]
- Li, Y.; Liu, Y.L.; Bai, Y.J.; Zhang, Y.R.; Huang, X.C.; Zhang, W.A.; Jiang, T.M. Responses of soil microbial biomass C and P to different long-term fertilization treatments in the yellow paddy soil. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2019, 30, 1327–1334. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.L.; Wei, Q.Q.; Gou, J.L. Effects of Short-term Application of Moutai Lees Biochar on Nutrients and Fungal Community Structure in Yellow Soil of Guizhou. Environ. Sci. Pollut. Res. 2021, 28, 67404–67413. [Google Scholar] [CrossRef]
- NY/T 1377-2007; Determination of pH in Soil pH. Ministry of Agriculture: Beijing, China, 2007.
- Bao, S.D. An Exploratory Method for Fractionation of Organic Phosphorus from Grassland Soils; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Custer, G.E.; Diepen, L.T.A.V. Plant invasion has limited impact on soil microbial a-diversity: A meta-analysis. Diversity 2020, 12, 112. [Google Scholar] [CrossRef]
- Walters, K.E.; Martiny, J.B.H. Alpha-, beta-, and gamma-diversity of bacteria varies across habitats. PLoS ONE 2020, 15, e0233872. [Google Scholar] [CrossRef]
- Souza, T.; Freitas, H. Long-Term Effects of Fertilization on Soil Organism Diversity; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Sun, R.P.; Zhang, P.; Riggins, C.W.; Zabaloy, M.C.; Rodríguez-Zas, S.; Villami, M.B. Long-term N fertilization decreased diversity and altered the composition of soil bacterial and archaeal communities. Agronomy 2019, 9, 574. [Google Scholar] [CrossRef]
- Eo, J.; Park, K.C. Long-term effects of imbalanced fertilization on the composition and diversity of soil bacterial community. Agric. Ecosyst. Environ. 2016, 231, 176–182. [Google Scholar] [CrossRef]
- Li, L.L.; Luo, Z.Z.; Li, L.L.; Niu, Y.N.; Zhang, Y.Q.; He, R.Y.; Liu, J.H.; Nian, L.L. Long-term phosphorus fertilization reveals the phosphorus limitation shaping the soil micro-food web stability in the Loess Plateau. Front. Micobiol. 2024, 14, 1256269. [Google Scholar] [CrossRef]
- Wasaki, J.; Sakaguchi, J.; Yamamura, T.; Ito, S.; Shinano, T.; Osaki, M. P and N deficiency change the relative abundance and function of rhizosphere microorganisms during cluster root development of white lupin (Lupinus albus L.). Soil Sci. Plant Nutr. 2018, 64, 686–696. [Google Scholar] [CrossRef]
- Liu, D.; Liu, G.H.; Chen, L.; Han, W.Y.; Wang, D.B. Plant diversity is coupled with soil fungal diversity in a natural temperate steppe of northeastern China. Soil Ecol. Lett. 2022, 4, 454–469. [Google Scholar] [CrossRef]
- Wang, J.J.; Zhu, Z.J.; Qian, X.Q.; Wang, G.L. Effects of reducing chemical fertilizer combined with application of different organic fertilizers on soil bacterial community structure during rice season. Soils 2021, 53, 983–990. [Google Scholar] [CrossRef]
- Fierer, N.; Lauber, C.L.; Ramirez, K.S.; Zaneveld, J.; Bradford, M.A.; Knight, R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. Isme J. 2011, 6, 1007–1017. [Google Scholar] [CrossRef]
- Miransari, M. Soil microbes and plant fertilization. Appl. Microbiol. Biotechnol. 2011, 92, 875–885. [Google Scholar] [CrossRef]
- Wang, J.C.; Song, Y.; Ma, T.F.; Raza, W.; Li, J.; Howland, J.G.; Huang, Q.W.; Shen, Q.R. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Appl. Soil Ecol. 2017, 112, 42–50. [Google Scholar] [CrossRef]
- Li, W.B.; Yang, M.; Hao, Z.H.; Wang, X.L.; Shi, Y. Synergistic phosphate fertilizer effects on soil nutrient and microbial diversity in wheat. Agon. J. 2023, 115, 2071–2082. [Google Scholar] [CrossRef]
- Zhao, G.R.; Fan, Z.W.; An, T.X.; Kai, L.; Zhou, F.; Wu, K.X.; Wu, B.Z.; Fullen, M.A. Long-term fertilizer use altered soil microbial community structure but not alpha-diversity in subtropical southwestern China. Eurasian Soil Sci. 2022, 55, 1116–1125. [Google Scholar] [CrossRef]
- Geng, H.T.; Wang, X.D.; Shi, S.B.; Ye, Z.Q.; Zhou, W.J. Effect of combined application of fungal residue and chemical fertilizer on soil microbial community composition and diversity in paddy soil. Huanjing Kexue 2023, 44, 2338–2347. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.H.; Wang, C.; Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 2020, 11, 3072. [Google Scholar] [CrossRef]
- Scholier, T.; Lavrinienko, A.; Brila, I.; Tukalenko, E.; Hindström, R.; Vasylenko, A.; Cayol, C.; Ecke, F.; Singh, N.J.; Forsman, J.T.; et al. Urban forest soils harbour distinct and more diverse communities of bacteria and fungi compared to less disturbed forest soils. Mol. Ecol. 2023, 32, 504–517. [Google Scholar] [CrossRef]
Treatment Code | Fertilizer Application Amount (kg∙ha−1) | ||
---|---|---|---|
N | P2O5 | K2O | |
NPK | 165.00 | 82.50 | 82.50 |
PK | 0.00 | 82.50 | 82.50 |
NK | 165.00 | 0.00 | 82.50 |
NP | 165.00 | 82.50 | 0.00 |
CK | 0.00 | 0.00 | 0.00 |
Treatment | pH | OM (g∙kg−1) | TN (g∙kg−1) | TP (g∙kg−1) | TK (g∙kg−1) | AN (mg∙kg−1) | AP (mg∙kg−1) | AK (mg∙kg−1) |
---|---|---|---|---|---|---|---|---|
NPK | 6.74 ± 0.09 b | 48.17 ± 15.62 a | 1.90 ± 0.00 a | 1.07 ± 0.00 a | 16.67 ± 0.06 ab | 122.00 ± 7.21 a | 15.43 ± 1.62 b | 264.33 ± 10.79 c |
PK | 6.85 ± 0.08 ab | 38.73 ± 1.23 a | 1.80 ± 0.00 a | 1.00 ± 0.00 a | 15.57 ± 0.21 b | 117.67 ± 7.51 a | 18.80 ± 1.87 a | 295.00 ± 2.65 b |
NK | 6.81 ± 0.05 b | 38.97 ± 1.19 a | 1.87 ± 0.06 a | 0.80 ± 0.06 b | 16.43 ± 0.71 ab | 116.00 ± 4.58 a | 8.47 ± 0.46 c | 317.33 ± 10.12 a |
NP | 6.89 ± 0.09 ab | 40.47 ± 2.00 a | 1.90 ± 0.00 a | 1.03 ± 0.06 a | 16.47 ± 0.61 ab | 123.23 ± 6.11 a | 15.70 ± 2.08 b | 233.33 ± 7.77 d |
CK | 7.02 ± 0.14 a | 39.73 ± 0.90 a | 1.90 ± 0.10 a | 0.83 ± 0.06 b | 17.20 ± 0.80 a | 116.67 ± 9.81 a | 8.33 ± 0.46 c | 250.00 ± 18.52 cd |
Treatment | Bacteria | Fungi | ||||||
---|---|---|---|---|---|---|---|---|
Chao1 Index | Shannon Index | Simpson Index | Pielou e Index | Chao1 Index | Shannon Index | Simpson Index | Pielou e Index | |
NPK | 3276.15 ± 276.57 a | 10.12 ± 0.08 ab | 0.9981 ± 0.0002 a | 0.8845 ± 0.0045 a | 346.81 ± 85.99 a | 6.50 ± 0.22 a | 0.9682 ± 0.0073 a | 0.7742 ± 0.0089 a |
PK | 3135.46 ± 31.53 ab | 10.00 ± 0.03 bc | 0.9978 ± 0.0001 ab | 0.8793 ± 0.0021 a | 299.43 ± 53.78 ab | 6.53 ± 0.56 a | 0.9670 ± 0.0138 a | 0.7952 ± 0.0562 a |
NK | 2683.41 ± 435.49 b | 9.85 ± 0.18 c | 0.9974 ± 0.0006 b | 0.8791 ± 0.0110 a | 298.05 ± 12.61 ab | 6.43 ± 0.38 a | 0.9674 ± 0.0153 a | 0.7834 ± 0.0406 a |
NP | 3140.61 ± 122.23 ab | 10.05 ± 0.04 ab | 0.9980 ± 0.001 a | 0.8824 ± 0.0034 a | 261.56 ± 6.44 ab | 6.52 ± 0.14 a | 0.9754 ± 0.0044 a | 0.8117 ± 0.0179 a |
CK | 3434.21 ± 88.20 a | 10.20 ± 0.02 a | 0.9984 ± 0.0000 a | 0.8873 ± 0.0013 a | 244.49 ± 21.57 b | 6.59 ± 0.16 a | 0.9784 ± 0.0057 a | 0.8320 ± 0.0107 a |
Item | Name | Explains % | Pseudo-F | p | p (adj) |
---|---|---|---|---|---|
Bacteria | AK | 10.8 | 1.6 | 0.010 | 0.080 |
TP | 9.6 | 1.4 | 0.020 | 0.140 | |
pH | 6.8 | 1.0 | 0.444 | 1.000 | |
AP | 7.2 | 1.1 | 0.374 | 1.000 | |
TN | 6.8 | 1.0 | 0.428 | 1.000 | |
AN | 6.3 | 1.0 | 0.536 | 1.000 | |
OM | 6.1 | 0.9 | 0.584 | 1.000 | |
TK | 6.1 | 0.9 | 0.58 | 1.000 | |
Fungi | AP | 12.0 | 1.8 | 0.002 | 0.016 |
AK | 9.3 | 1.4 | 0.032 | 0.224 | |
pH | 8.9 | 1.4 | 0.044 | 0.264 | |
OM | 6.4 | 1.0 | 0.442 | 1.000 | |
TK | 6.2 | 1.0 | 0.532 | 1.000 | |
TN | 5.3 | 0.8 | 0.674 | 1.000 | |
AN | 5.1 | 0.8 | 0.728 | 1.000 | |
TP | 4.7 | 0.7 | 0.772 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Huang, X.; Li, Y.; Liu, Y.; Zhang, Y.; Zhu, H.; Xiong, H.; Zhang, S.; Jiang, T. Characteristics of the Soil Microbial Community Structure under Long-Term Chemical Fertilizer Application in Yellow Soil Paddy Fields. Agronomy 2024, 14, 1186. https://doi.org/10.3390/agronomy14061186
Yang Y, Huang X, Li Y, Liu Y, Zhang Y, Zhu H, Xiong H, Zhang S, Jiang T. Characteristics of the Soil Microbial Community Structure under Long-Term Chemical Fertilizer Application in Yellow Soil Paddy Fields. Agronomy. 2024; 14(6):1186. https://doi.org/10.3390/agronomy14061186
Chicago/Turabian StyleYang, Yehua, Xingcheng Huang, Yu Li, Yanling Liu, Yarong Zhang, Huaqing Zhu, Han Xiong, Song Zhang, and Taiming Jiang. 2024. "Characteristics of the Soil Microbial Community Structure under Long-Term Chemical Fertilizer Application in Yellow Soil Paddy Fields" Agronomy 14, no. 6: 1186. https://doi.org/10.3390/agronomy14061186
APA StyleYang, Y., Huang, X., Li, Y., Liu, Y., Zhang, Y., Zhu, H., Xiong, H., Zhang, S., & Jiang, T. (2024). Characteristics of the Soil Microbial Community Structure under Long-Term Chemical Fertilizer Application in Yellow Soil Paddy Fields. Agronomy, 14(6), 1186. https://doi.org/10.3390/agronomy14061186