Effects of Maize/Peanut Intercropping and Nitrogen Fertilizer Application on Soil Fungal Community Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sample Collection and Soil Property Measurement Methods
2.4. Data Analysis
3. Results
3.1. Soil Chemical Properties
3.2. Soil Fungal Alpha Diversity
3.3. Soil Fungal Community Structure
3.4. Relative Abundance of Soil Fungal Taxa
4. Discussion
4.1. Effects of Maize/Peanut Intercropping and Nitrogen Application on Soil Chemical Properties
4.2. Effects of Maize/Peanut Intercropping and Nitrogen Fertilization on Soil Fungal Diversity
4.3. Impact of Maize/Peanut Intercropping and Nitrogen Fertilization on Soil Fungal Community Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martin-Guay, M.O.; Paquette, A.; Dupras, J.; Rivest, D. The new green revolution: Sustainable intensification of agriculture by intercropping. Sci. Total Environ. 2018, 615, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Wang, Z.G.; Bao, X.G.; Sun, J.H.; Yang, S.C.; Wang, P.; Wang, C.B.; Wu, J.P.; Liu, X.R.; Tian, X.L.; et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 2021, 4, 943–950. [Google Scholar] [CrossRef]
- Paungfoo-Lonhienne, C.; Yeoh, Y.K.; Kasinadhuni, N.R.P.; Lonhienne, T.G.A.; Robinson, N.; Hugenholtz, P.; Ragan, M.A.; Schmidt, S. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Sci. Rep. 2015, 5, 8678. [Google Scholar] [CrossRef]
- Zhou, J.; Guan, D.; Zhou, B.; Zhao, B.; Ma, M.; Qin, J.; Jiang, X.; Chen, S.; Cao, F.; Shen, D.; et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol. Biochem. 2015, 90, 42–51. [Google Scholar] [CrossRef]
- Zhang, N.N.; Sun, Y.M.; Wang, E.T.; Yang, J.S.; Yuan, H.L.; Scow, K.M. Effects of intercropping and Rhizobial inoculation on the ammonia-oxidizing microorganisms in rhizospheres of maize and faba bean plants. App. Soil Ecol. 2014, 85, 76–85. [Google Scholar] [CrossRef]
- Li, Y. Study on Nitrogen Uptake and Rhizosphere Azotobacter Diversity in Maize/Soybea Intercropping by Nitrogen Fertilizer. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2021. (In Chinese). [Google Scholar]
- Zhang, X.Q.; Huang, G.Q.; Bian, X.M.; Jiang, X.H.; Zhao, Q.G. Effects of intercropping on quality and yield of maize grain, microorganism quantity, and enzyme activities in soils. Acta Ecol. Sin. 2012, 32, 7082–7090. [Google Scholar] [CrossRef]
- Li, L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives. Chin. J. Eco-Agr. 2016, 24, 403–415. [Google Scholar] [CrossRef]
- Tian, X.L.; Wang, C.B.; Bao, X.G.; Wang, P.; Li, X.F.; Yang, S.C.; Ding, G.C.; Christie, P.; Li, L. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant Soil. 2019, 436, 173–192. [Google Scholar] [CrossRef]
- Sandra, G.; Kristin, K.; Bernd, W.; Birgit, P.; Rolf, D.; Stefan, V.; Franziska, W. The effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment. Front. Microbiol. 2017, 8, 902. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.X.; Pan, X.H.; Yuan, Z.Q.; Xiao, Y.P.; Liu, R.G.; Wang, R.Q.; Lü, F.J. Effects of nitrogen application and cassava-peanut intercropping on cassava nutrient accumulation and system nutrient utilization. Sci. Agric. Sin. 2018, 51, 3275–3290. [Google Scholar]
- Wang, D.; Yi, W.B.; Li, H.; Chen, L.K.; Zhao, P.; Long, G.Q. Effects of intercropping and nitrogen application on soil microbial metabolic functional diversity in a maize cropping soil. Chin. J. Appl. Ecol. 2021, 33, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Sun, J.H.; Li, C.J.; Li, L.; Cheng, X.; Zhang, F.S. Effects of interspecific interactions and nitrogen fertilization rates on the agoronmic and nodulation characteristics of intercropped faba bean. Sci. Agric. Sin. 2009, 42, 3467–3474. [Google Scholar]
- Jiang, Y.Y.; Zheng, Y.; Tang, L.; Xiao, J.X.; Zeng, J.; Zhang, K.X. Rhizosphere biological processes of legume//cereal intercropping systems: A review. J. Agric. Resour. Environ. 2016, 33, 407–415. [Google Scholar] [CrossRef]
- Peršoh, D. Plant associated fungal communities in the light of meta omics. Fungal Divers. 2015, 75, 1–25. [Google Scholar] [CrossRef]
- De Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.S.; Hallin, S.; Kaisermann, A.; Keitn, A.M.; Kretzschmar, M.; et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 2018, 9, 3033. [Google Scholar] [CrossRef] [PubMed]
- Cooperative Research Group on Chinese Soil Taxonomy. Chinese Soil Taxonomy; Science Press: Beijing, China; New York, NY, USA, 2001. [Google Scholar]
- Lu, R.K. Soil Agrochemical Analysis; China Agricultural Science and Technology Press: Beijing, China, 1999. (In Chinese) [Google Scholar]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.L.; Luo, C.Y.; Qiu, H.Z.; Zhang, J.; Zhang, C.H.; Fu, X.; Shen, Q.R. Effects of continuous application of different nitrogen rates on fungal community structure in potato rhizosphere in semi-arid area of Gansu Province. Agric. Res. Arid. Areas 2020, 38, 50–58. [Google Scholar]
- Chen, S.H.; Xiang, X.L.; Lei, F.; Zou, Q.S.; Ai, D.L.; Zheng, T.; Huang, X.L.; Fan, G.Q. Relationship between rhizosphere fungal community and wheat yield under straw mulching combined with nitrogen fertilizer. Acta Ecol. Sin. 2022, 42, 8751–8761. [Google Scholar] [CrossRef]
- Ye, Y.L.; Bao, X.G.; Song, J.L.; Sun, J.H.; Li, L.; Zhang, F.S.; Li, Q.J.; Zhou, L.L. Effect of long-term fertilizer application on yield, nitrogen uptake and soil NO3−-N accumulation in wheat/maize intercropping. J. Plant Nutr. Fertil. 2004, 10, 113–119. [Google Scholar] [CrossRef]
- Zhao, W.; Yi, W.B.; Wang, D.; Wu, K.X.; Zhao, P.; Long, G.Q.; Tang, L. Effects of intercropping on soil nitrification and nitrogen supply in potato field. Chin. J. Appl. Ecol. 2020, 31, 4171–4179. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.S.; Wu, L.K.; Chen, J.; Khan, M.A.; Luo, X.M.; Lin, W.X. Biochemical and microbial properties of rhizospheres under maize/peanut intercropping. J. Integr. Agric. 2016, 15, 101–110. [Google Scholar] [CrossRef]
- Luo, Y.F.; Qin, X.M.; Nong, Y.Q.; Lu, J.M.; Qin, H.Y.; Yang, J.Y.; Li, J.T.; Wei, J.J. Effects of maize and soybean intercropping on inorganic phosphorus forms and available phosphorus in red soil under different phosphorus levels. Soils 2022, 54, 72–79. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Xiao, J.X.; Tang, L.; Zheng, Y. Effects of wheat and faba bean intercropping on the available phosphorus contents in rhizospheric soil and phosphorus uptake by crops under different phosphorus levels. J. Plant Nutr. Fertil. 2019, 25, 1157–1165. [Google Scholar]
- Layati, M.; Bargaz, A.; Belarbi, B.; Lazali, M.; Benlahrech, S.; Tellah, S.; Kaci, G.; Drevon, J.; Ounane, S.M. The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. Eur. J. Agron. 2016, 72, 80–90. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, C.; Yu, Y.; Shen, J.; Van Der Werf, W.; Zhang, F. Intercropping legumes and cereals increases phosphorus use efficiency; a meta-analysis. Plant Soil 2021, 460, 89–104. [Google Scholar] [CrossRef]
- Kennedy, A.C.; Smith, K.L. Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 1995, 170, 75–86. [Google Scholar] [CrossRef]
- Delgado Baquerizo, M.; Maestre, F.T.; Reich, P.B.; Jeffrie, T.C.; Gaitan, J.J.; Encinar, D.; Berdugo, M.; Campbell, C.D.; Singh, B.K. Microbial diversity drives multifunctionality in terrestrial eco systems. Nat. Commun. 2016, 7, 10541. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Wang, X.; Wang, J.; Liu, G.; Zhang, C. Nitrogen fertilization increases fungal diversity and abundance of saprotrophs while reducing nitrogen fixation potential in a semiarid grassland. Plant Soil 2021, 465, 515–532. [Google Scholar] [CrossRef]
- Li, Q.K. Study on the Mechanism of Maize-Peanut Intercropping to Alleviate the Obstacle of Peanut Continuous Cropping. Ph.D. Thesis, Hunan Agricultural University, Changsha, China, 2020. (In Chinese). [Google Scholar]
- Chen, D.M.; Chen, X.M.; Liang, Y.J.; Huo, X.J.; Zhang, C.H.; Duan, Y.Q.; Yang, Y.H.; Yuan, L. Effects of crop rotation on soil nutrient, microbial activity and bacterial community structure. Acta Pratacul. Sin. 2015, 24, 56–65. [Google Scholar] [CrossRef]
- Li, Q.K.; Liu, P.; Zhao, H.J.; Song, X.Z.; Lin, H.T.; Shen, Y.W.; Li, L.; Wan, S.B. Effects of maize root exudates on allelopathy of phenolic acids in soil of continuous cropping peanut. J. Agric. Sci. Technol. 2020, 22, 119–130. [Google Scholar] [CrossRef]
- Fontaine, S.; Henault, C.; Aamor, A.; Bdioui, N.; Bloor, J.M.G.; Maire, V.; Mary, B.; Revaillot, S.; Maron, P.A. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol. Biochem. 2011, 43, 86–96. [Google Scholar] [CrossRef]
- Morrison, E.W.; Frey, S.D.; Sadowsky, J.J.; Diepen, L.T.A.V.; Pringle, A. Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest. Fungal Ecol. 2016, 23, 48–57. [Google Scholar] [CrossRef]
- Yao, X.D.; Li, X.G.; Ding, C.F.; Han, Z.M.; Wang, X.X. Microzone distribution characteristics of soil microbial community with peanut cropping system, monocropping or rotation. Soil J. 2019, 56, 975–985. [Google Scholar] [CrossRef]
- Yuan, J.; Wen, T.; Zhang, H.; Zhao, M.L.; Penton, C.R.; Thomashow, L.S.; Shen, Q.R. Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt. ISME J. 2020, 14, 2936–2950. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.L.; Sun, Z.X.; Bai, W.; Feng, L.S.; Cai, Q.; Feng, C.; Zhang, Z. Spatial distribution characteristics of root system and the yield in maize-peanut intercropping system. J. Maize Sci. 2016, 24, 79–87. [Google Scholar] [CrossRef]
N Fertilization Level | Cropping Pattern | NO3− | NH4+ | Available P | Available K | Total N | Organic Matter | pH | |
---|---|---|---|---|---|---|---|---|---|
(N) | (C) | (mg·kg−1) | (mg·kg−1) | (mg·kg−1) | (mg·kg−1) | (g·kg−1) | (g·kg−1) | ||
Maize | N0 | SM | 6.21 ± 0.44 aB | 1.29 ± 0.06 aB | 34.32 ± 0.81 bA | 60.81 ± 1.11 aA | 0.66 ± 0.01 aA | 16.28 ± 0.23 aA | 7.54 ± 0.02 aA |
IM | 5.13 ± 0.43 aB | 1.20 ± 0.08 aB | 44.77 ± 0.31 aA | 66.52 ± 2.42 aA | 0.62 ± 0.02 aA | 15.81 ± 0.59 aA | 7.37 ± 0.02 bA | ||
N1 | SM | 7.47 ± 0.30 aB | 1.22 ± 0.09 aB | 26.97 ± 0.29 bB | 66.91 ± 3.35 aA | 0.63 ± 0.02 aA | 15.79 ± 0.43 aA | 7.28 ± 0.02 bB | |
IM | 6.59 ± 0.89 aB | 1.24 ± 0.04 aAB | 34.85 ± 0.34 aB | 68.40 ± 0.36 aA | 0.62 ± 0.01 aA | 15.19 ± 0.14 aA | 7.38 ± 0.03 aA | ||
N2 | SM | 12.57 ± 1.25 aA | 1.82 ± 0.12 aA | 26.80 ± 0.26 bB | 65.33 ± 0.59 aA | 0.62 ± 0.01 aA | 14.74 ± 0.20 aB | 7.10 ± 0.03 bC | |
IM | 9.16 ± 0.80 aA | 1.56 ± 0.14 aA | 32.27 ± 0.09 aC | 67.96 ± 5.18 aA | 0.63 ± 0.03 aA | 15.33 ± 0.91 aA | 7.36 ± 0.01 aA | ||
p value | N | 0.000 | 0.001 | 0.000 | 0.355 | 0.666 | 0.168 | 0.000 | |
C | 0.013 | 0.171 | 0.000 | 0.171 | 0.376 | 0.706 | 0.003 | ||
N × C | 0.221 | 0.349 | 0.000 | 0.737 | 0.498 | 0.448 | 0.000 | ||
Peanut | N0 | SP | 7.81 ± 0.36 aB | 1.41 ± 0.10 aA | 34.12 ± 0.22 bA | 78.82 ± 1.36 aA | 0.60 ± 0.04 bA | 15.86 ± 0.96 aA | 7.21 ± 0.01 aC |
IP | 11.39 ± 2.95 aA | 1.73 ± 0.31 aA | 43.03 ± 0.84 aA | 79.36 ± 1.24 aB | 0.83 ± 0.03 aA | 17.46 ± 0.40 aA | 7.22 ± 0.01 aC | ||
N1 | SP | 9.45 ± 0.36 aA | 1.62 ± 0.11 aA | 31.73 ± 0.29 bB | 81.36 ± 1.71 bA | 0.62 ± 0.04 aA | 14.61 ± 0.66 aA | 7.26 ± 0.01 bB | |
IP | 11.22 ± 1.97 aA | 1.16 ± 0.06 bA | 38.70 ± 0.31 aB | 93.46 ± 2.96 aA | 0.72 ± 0.02 aB | 15.94 ± 0.49 aB | 7.48 ± 0.04 aB | ||
N2 | SP | 4.07 ± 0.08 bC | 1.50 ± 0.18 aA | 29.43 ± 0.10 bC | 84.25 ± 2.75 bA | 0.64 ± 0.02 aA | 15.44 ± 0.46 aA | 7.46 ± 0.02 bA | |
IP | 9.78 ± 0.59 aA | 1.46 ± 0.07 aA | 39.58 ± 0.66 aB | 98.57 ± 1.69 aA | 0.66 ± 0.02 aB | 14.63 ± 0.21 aB | 7.58 ± 0.02 aA | ||
p value | N | 0.092 | 0.554 | 0.000 | 0.000 | 0.079 | 0.033 | 0.000 | |
C | 0.010 | 0.657 | 0.000 | 0.000 | 0.000 | 0.161 | 0.000 | ||
N × C | 0.440 | 0.090 | 0.019 | 0.013 | 0.005 | 0.115 | 0.000 |
Alpha Diversity Indexes | NO3− | NH4+ | Available P | Available K | Total N | Organic Matter | pH | |
---|---|---|---|---|---|---|---|---|
Maize | Shannon index | −0.020 | 0.047 | 0134 | −0.455 | 0.438 | 0.364 | 0.141 |
Ace index | −0.121 | −0.317 | −0.261 | −0.471 * | 0.197 | 0.273 | 0.112 | |
Chao index | −0.116 | −0.313 | −0.248 | −0.427 | 0.112 | 0.215 | 0.042 | |
Peanut | Shannon index | 0.213 | −0.323 | 0.430 | 0.400 | −0.008 | −0.017 | 0.261 |
Ace index | 0.144 | −0.533 * | 0.221 | 0.001 | −0.051 | −0.036 | 0.083 | |
Chao index | 0.189 | −0.448 | 0.327 | 0.043 | 0.067 | 0.005 | 0.097 |
Environmental Factors | Explains (%) | Contribution (%) | Pseudo-F Value | p Value | |
---|---|---|---|---|---|
Maize | NO3− | 34.3 | 54.5 | 8.37 | 0.002 |
Organic matter | 8.5 | 13.5 | 2.22 | 0.082 | |
Available K | 6.5 | 10.4 | 1.81 | 0.152 | |
Total N | 6.0 | 9.5 | 1.80 | 0.164 | |
Available P | 4.0 | 6.4 | 1.20 | 0.270 | |
pH | 3.3 | 5.2 | 0.96 | 0.406 | |
NH4+ | 0.3 | 0.5 | 0.09 | 0.984 | |
Peanut | NO3− | 14.7 | 31.8 | 2.75 | 0.032 |
Available K | 8.2 | 17.8 | 1.60 | 0.188 | |
Total N | 7.7 | 16.8 | 1.56 | 0.190 | |
NH4+ | 6.6 | 14.3 | 1.36 | 0.260 | |
Organic matter | 5.9 | 12.9 | 1.25 | 0.314 | |
Available P | 2.0 | 4.3 | 0.40 | 0.772 | |
pH | 1.0 | 2.1 | 0.18 | 0.950 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhao, F.; Feng, C.; Bai, W.; Zhang, Z.; Cai, Q.; Sun, Z.; Feng, L. Effects of Maize/Peanut Intercropping and Nitrogen Fertilizer Application on Soil Fungal Community Structure. Agronomy 2024, 14, 1053. https://doi.org/10.3390/agronomy14051053
Zhang Y, Zhao F, Feng C, Bai W, Zhang Z, Cai Q, Sun Z, Feng L. Effects of Maize/Peanut Intercropping and Nitrogen Fertilizer Application on Soil Fungal Community Structure. Agronomy. 2024; 14(5):1053. https://doi.org/10.3390/agronomy14051053
Chicago/Turabian StyleZhang, Yongyong, Fengyan Zhao, Chen Feng, Wei Bai, Zhe Zhang, Qian Cai, Zhanxiang Sun, and Liangshan Feng. 2024. "Effects of Maize/Peanut Intercropping and Nitrogen Fertilizer Application on Soil Fungal Community Structure" Agronomy 14, no. 5: 1053. https://doi.org/10.3390/agronomy14051053
APA StyleZhang, Y., Zhao, F., Feng, C., Bai, W., Zhang, Z., Cai, Q., Sun, Z., & Feng, L. (2024). Effects of Maize/Peanut Intercropping and Nitrogen Fertilizer Application on Soil Fungal Community Structure. Agronomy, 14(5), 1053. https://doi.org/10.3390/agronomy14051053