Spatial Heterogeneity in the Response of Winter Wheat Yield to Meteorological Dryness/Wetness Variations in Henan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Datasets
2.3. Methods
2.3.1. Characteristic-Based Time Series Clustering Analysis
2.3.2. Calculation of sc-PDSI
2.3.3. Calculations of Climate-Driven Winter Wheat Yield (CDWWY)
2.3.4. Relationships between the KMDWI and Atmospheric Circulation Indices
3. Results
3.1. AWWY-Based Regionalization in Henan
3.2. Spatial Differences in AWWY in Henan
3.3. Relationships between CDWWY and sc-PDSIs during the Wheat Growing Season in Henan
3.4. Relationships between the KMDWI and Atmospheric Circulation Indices in Henan
4. Discussion
5. Conclusions
- (1)
- A PCA and a K-means clustering analysis were used to partition the AWWY time series from 17 cities into four sub-regions. Although AWWY exhibited an increasing trend in all of the four sub-regions (p < 0.05), it was high and stable in Regions III and IV.
- (2)
- The sc-PDSI for a specific month could be considered the KMDWI affecting CDWWY in each sub-region, for example, the sc-PDSI in February of the current year for Regions I and II, the sc-PDSI in December of the previous year for Region III and the sc-PDSI in May of the current year for Region IV.
- (3)
- The atmospheric circulation indices had time-lag effects on the KMDWIs, and empirical KMDWI simulation models were constructed based on selected atmospheric circulation indices in the four sub-regions. Their R2 values were in the range of 0.49 to 0.65, and the corresponding RMSE values were in the range of 0.58 to 0.72.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef] [PubMed]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, Q.; Singh, V.P.; Shi, P.; Zheng, Y. Variations of dryness/wetness across China: Changing properties, drought risks, and causes. Global Planet. Chang. 2017, 155, 1–12. [Google Scholar] [CrossRef]
- Wei, W.; Wang, J.; Ma, L.; Wang, X.; Xie, B.; Zhou, J.; Zhang, H. Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data. Land 2024, 13, 95. [Google Scholar] [CrossRef]
- Chen, S.; Gong, B. Response and adaptation of agriculture to climate change: Evidence from China. J. Dev. Econ. 2021, 148, 102557. [Google Scholar] [CrossRef]
- Kang, L.; Zhao, R.; Wu, K.; Huang, Q.; Zhang, S. Impacts of Farming Layer Constructions on Cultivated Land Quality under the Cultivated Land Balance Policy. Agronomy 2021, 11, 2403. [Google Scholar] [CrossRef]
- Tian, X.; Engel, B.A.; Qian, H.; Hua, E.; Sun, S.; Wang, Y. Will reaching the maximum achievable yield potential meet future global food demand? J. Clean. Prod. 2021, 294, 126285. [Google Scholar] [CrossRef]
- Hasegawa, T.; Sakurai, G.; Fujimori, S.; Takahashi, K.; Hijioka, Y.; Masui, T. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food 2021, 2, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, R.; Xu, J.; Luo, Y.; Tan, M.L.; Jiang, Y. Analysis of meteorological dryness/wetness features for spring wheat production in the Ili River basin, China. Int. J. Biometeorol. 2018, 62, 2197–2204. [Google Scholar] [CrossRef]
- Wang, X.; Qian, L.; Dong, C.; Tang, R. Evaluating the Impacts of Waterlogging Disasters on Wheat and Maize Yields in the Middle and Lower Yangtze River Region, China, by an Agrometeorological Index. Agronomy 2023, 13, 2590. [Google Scholar] [CrossRef]
- Li, C.; Chen, J.; Wang, R.; Huang, J.; Qian, Z.; Xu, Y. Multi-indices analysis of heavy precipitation changes in Anhui Province, China. Meteorol. Atmos. Phys. 2021, 133, 1317–1325. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, F.; Zhou, L.; Hu, Z.; Li, Y. Regional changes of climate extremes and its effect on rice yield in Jiangsu province, southeast China. Environ. Earth. Sci. 2018, 77, 106. [Google Scholar] [CrossRef]
- Song, C.; Pei, T. Research Progress in Time Series Clustering Methods Based on Characteristics. Prog. Geogr. 2012, 10, 1307–1317, (In Chinese with English abstract). [Google Scholar]
- Wang, X.; Smith, K.; Hyndman, R. Characteristic-Based Clustering for Time Series Data. Data Min. Knowl. Discov. 2006, 13, 335–364. [Google Scholar] [CrossRef]
- Garcia-Gutierrez, L.; Voyant, C.; Notton, G.; Almorox, J. Evaluation and Comparison of Spatial Clustering for Solar Irradiance Time Series. Appl. Sci. 2022, 12, 8529. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, L.; Zhang, F.; Hu, Z.; Tian, H. Responses of yield variability of summer maize in Henan province, north China, to large-scale atmospheric circulation anomalies. Theor. Appl. Climatol. 2021, 143, 1655–1665. [Google Scholar] [CrossRef]
- Iizumi, T.; Sakai, T. The global dataset of historical yields for major crops 1981–2016. Sci. Data 2020, 7, 97. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; She, D.; Zheng, H.; Lin, P.; Yang, Z. Elucidating diverse drought characteristics from two meteorological drought indices (SPI and SPEI) in China. J. Hydrometeorol. 2020, 21, 1513–1530. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, J.; Zhang, H.; Yao, F.; Bai, Y.; Zhang, S.; Meng, X.; Liu, Q. Evaluating the performance of eight drought indices for capturing soil moisture dynamics in various vegetation regions over China. Sci. Total Environ. 2021, 789, 147803. [Google Scholar] [CrossRef]
- Saharwardi, M.S.; Kumar, P. Future drought changes and associated uncertainty over the homogenous regions of India: A multimodel approach. Int. J. Climatol. 2022, 42, 652–670. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Pan, Y.; Li, W. Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. J. Hydrometeorol. 2015, 523, 283–296. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, G.; An, W.; Zou, X.; Li, H.; Hou, M. Timescale differences between sc-PDSI and SPEI for drought monitoring in China. Phys. Chem. Earth 2017, 102, 48–58. [Google Scholar] [CrossRef]
- Faiz, M.A.; Zhang, Y.; Tian, X.; Tian, J.; Zhang, X.; Ma, N.; Aryal, S. Drought index revisited to assess its response to vegetation in different agro-climatic zones. J. Hydrometeorol. 2022, 614, 128543. [Google Scholar]
- Ray, D.; Gerber, J.; MacDonald, G.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Tao, F.; Zhang, Z. A review on statistical models for identifying climate contributions to crop yields. J. Geogr. Sci. 2013, 23, 567–576. [Google Scholar] [CrossRef]
- Nikraftar, Z.; Mostafaie, A.; Sadegh, M.; Afkueieh, J.H.; Pradhan, B. Multi-type assessment of global droughts and teleconnections. Weather Clim. Extrem. 2021, 34, 100402. [Google Scholar] [CrossRef]
- Kretschmer, M.; Adams, S.V.; Arribas, A.; Prudden, R.; Robinson, N.; Saggioro, E.; Shepherd, T.G. Quantifying causal pathways of teleconnections. Bull. Am. Meteorol. Soc. 2021, 102, E2247–E2263. [Google Scholar] [CrossRef]
- Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, L.; Zhou, S.; Zhang, T.; Zhai, S.; Yang, Z.; Wang, D.; Song, H. Effects of ground-level ozone pollution on yield and economic losses of winter wheat in Henan, China. Atmos. Environ. 2021, 262, 118654. [Google Scholar] [CrossRef]
- Zheng, H.; Huang, J.; Chen, J. Climate-Induced Yield Losses for Winter Wheat in Henan Province, North China and Their Relationship with Circulation Anomalies. Water 2021, 13, 3341. [Google Scholar] [CrossRef]
- Shi, B.; Zhu, X.; Hu, Y.; Yang, Y. Drought characteristics of Henan province in 1961-2013 based on Standardized Precipitation Evapotranspiration Index. J. Geogr. Sci. 2017, 27, 311–325. [Google Scholar] [CrossRef]
- Liu, X.; Cao, K.; Li, M. Assessing the impact of meteorological and agricultural drought on maize yields to optimize irrigation in Heilongjiang Province, China. J. Clean. Prod. 2024, 434, 139897. [Google Scholar] [CrossRef]
- Ghose, B.; Islam, A.R.M.T.; Islam, H.M.T.; Hasanuzzaman, M.; Huang, J.; Hu, Z.; Moniruzzaman, M.; Gustave, W.; Karim, M.; Ibrahim, S.M. Rain-fed rice yield fluctuation to climatic anomalies in Bangladesh. Int. J. Plant Prod. 2021, 15, 183–201. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Wang, W.; Chen, X.; Shi, P.; van Gelder, P.H.A.J.M. Detecting changes in extreme precipitation and extreme streamflow in the Dongjiang River basin in southern China. Hydrol. Earth Syst. Sci. 2008, 12, 207–221. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mandelbrot, B.; Willis, J.R. Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence. Water Resour. Res. 1969, 5, 967–988. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Z.; Liu, Y.; Wu, J.; Han, Y. Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent. Ecol. Indic. 2012, 14, 28–39. [Google Scholar] [CrossRef]
- Kim, T.; Shin, J.Y.; Kim, S.; Heo, J.H. Identification of relationships between climate indices and long-term precipitation in South Korea using ensemble empirical mode decomposition. J. Hydrol. 2018, 557, 726–739. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Lei, Y.; He, Z.; Zi, Y. Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 2009, 23, 1327–1338. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Xu, H.; Huang, J.; Zhang, F.; Qian, Z. Fluctuation Characteristics of Wheat Yield and Their Relationships with Precipitation Anomalies in Anhui Province, China. Int. J. Plant Prod. 2022, 16, 483–494. [Google Scholar] [CrossRef]
- Santos, J.F.; Pulido-Calvo, I.; Portela, M.M. Spatial and temporal variability of droughts in Portugal. Water Resour Res. 2010, 46, W03503. [Google Scholar] [CrossRef]
- Bonaccorso, B.; Bordi, I.; Cancelliere, A.; Rossi, G.; Sutera, A. Spatial variability of drought: An analysis of the SPI in Sicily. Water Resour. Manag. 2003, 17, 273–296. [Google Scholar] [CrossRef]
- Bordi, I.; Sutera, A. Fifty years of precipitation: Some spatially remote teleconnections. Water Resour. Manag. 2001, 15, 247–280. [Google Scholar] [CrossRef]
- Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Liu, H.; Zhan, Q.; Yang, C.; Wang, J. Characterizing the Spatio-temporal pattern of land surface temperature through time series clustering: Based on the latent pattern and morphology. Remote Sens. 2018, 10, 654. [Google Scholar] [CrossRef]
- Kazor, K.; Hering, A.S. Assessing the performance of model-based clustering methods in multivariate time series with application to identifying regional wind regimes. Agric. Biol. Environ. Stat. 2015, 20, 192–217. [Google Scholar] [CrossRef]
- Zhe, M.; Zhang, X. Time-lag effects of NDVI responses to climate change in the Yamzhog Yumco Basin, South Tibet. Ecol. Indic. 2021, 124, 107431. [Google Scholar] [CrossRef]
- Li, Z.; Wu, Y.; Wang, R.; Liu, B.; Qian, Z.; Li, C. Assessment of Climatic Impact on Vegetation Spring Phenology in Northern China. Atmosphere 2023, 14, 117. [Google Scholar] [CrossRef]
- Wells, N.; Goddard, S.; Hayes, M.J. A self-calibrating Palmer drought severity index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Han, J.; Singh, V.P. A review of widely used drought indices and the challenges of drought assessment under climate change. Environ. Monit. Assess. 2023, 195, 1438. [Google Scholar] [CrossRef]
- Najafi, E.; Devineni, N.; Khanbilvardi, R.M.; Kogan, F. Understanding the changes in global crop yields through changes in climate and technology. Earth’s Future 2018, 6, 410–427. [Google Scholar] [CrossRef]
- Huang, J.; Chen, X.; Zhou, L.; Xue, Y.; Lin, J. Statistical analysis of the relationship between climate-induced maize yield and rainy-season precipitation across Inner Mongolia, North China. Theor. Appl. Climatol. 2017, 129, 1145–1156. [Google Scholar] [CrossRef]
- Fan, L.; Wang, Y.; Cao, C.; Chen, W. Teleconnections of Atmospheric Circulations to Meteorological Drought in the Lancang-Mekong River Basin. Atmosphere 2024, 15, 89. [Google Scholar] [CrossRef]
- Yue, Y.; Shen, S.; Wang, Q. Trend and Variability in Droughts in Northeast China Based on the Reconnaissance Drought Index. Water 2018, 10, 318. [Google Scholar] [CrossRef]
- Zhou, W.; Guan, K.; Peng, B.; Shi, J.; Jiang, C.; Wardlow, B.; Pan, M.; Kimball, J.S.; Franz, T.E.; Gentine, P.; et al. Connections between the hydrological cycle and crop yield in the rainfed US Corn Belt. J. Hydrometeorol. 2020, 590, 125398. [Google Scholar]
- Liu, Y.; Wu, K.; Li, X.; Li, X.; Cao, H. Adaptive Management of Cultivated Land Use Zoning Based on Land Types Classification: A Case Study of Henan Province. Land 2022, 11, 346. [Google Scholar] [CrossRef]
- Hu, Z.; Wu, Z.; Islam, A.R.M.T.; You, X.; Liu, C.; Li, Q.; Zhang, S. Spatiotemporal characteristics and risk assessment of agricultural drought disasters during the winter wheat-growing season on the Huang-Huai-Hai Plain, China. Theor. Appl. Climatol. 2021, 143, 1393–1407. [Google Scholar] [CrossRef]
- Guan, X.; Wang, X.; Chen, W. Risk Assessment and Regulation Strategy of Farmland Marginalization: A Case Study of Mengjin County, Henan Province. Front. Environ. Sci. 2022, 10, 892665. [Google Scholar] [CrossRef]
- Zeng, R.; Yao, F.; Zhang, S.; Yang, S.; Bai, Y.; Zhang, J.; Wang, J.; Wang, X. Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain. Agric. Water Manag. 2021, 256, 107063. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Feng, Y.; Shang, M.; Bo, X.; Gao, Z.; Chen, F.; Chu, Q. Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat–maize cropping systems. Agric. Water Manag. 2021, 248, 106762. [Google Scholar] [CrossRef]
- Mwadzingeni, L.; Shimelis, H.; Dube, E.; Laing, M.D.; Tsilo, T.J. Breeding wheat for drought tolerance: Progress and technologies. J. Integr. Agric. 2016, 15, 935–943. [Google Scholar] [CrossRef]
- Chen, C.; Lu, W.; Sun, X.; Yu, H. Regional differences of winter wheat phenophase and grain yields response to global warming in the Huang-Huai-Hai plain in China since 1980s. Int. J. Plant Prod. 2018, 12, 33–41. [Google Scholar] [CrossRef]
- Song, Y.; Linderholm, H.W.; Wang, C.; Tian, J.; Huo, Z.; Gao, P.; Song, Y.; Guo, A. The influence of excess precipitation on winter wheat under climate change in China from 1961 to 2017. Sci. Total Environ. 2019, 690, 189–196. [Google Scholar] [CrossRef]
- Schultz, B.; Wrachien, D.D. Irrigation and drainage systems research and development in the 21st century. Irrig. Drain. 2002, 51, 311–327. [Google Scholar] [CrossRef]
- Tang, R.; Wang, X.; Han, X.; Yan, Y.; Huang, S.; Huang, J.; Shen, T.; Wang, Y.; Liu, J. Effects of Combined Main Ditch and Field Ditch Control Measures on Crop Yield and Drainage Discharge in the Northern Huaihe River Plain, Anhui Province, China. Agriculture 2022, 12, 1167. [Google Scholar] [CrossRef]
- Martinez-Vazquez, P. Crop Lodging Induced by Wind and Rain. Agric. For. Meteorol. 2016, 228, 265–275. [Google Scholar] [CrossRef]
- Zheng, D.; Yang, X.; Mínguez, M.I.; Mu, C.; He, Q.; Wu, X. Effect of freezing temperature and duration on winter survival and grain yield of winter wheat. Agric. For. Meteorol. 2018, 260, 1–8. [Google Scholar] [CrossRef]
- Hao, Z.; Geng, X.; Wang, F.; Zheng, J. Impacts of climate change on agrometeorological indices at winter wheat overwintering stage in Northern China during 2021–2050. Int. J. Climatol. 2018, 38, 5576–5588. [Google Scholar] [CrossRef]
- Nouri, M.; Homaee, M.; Bannayan, M.; Hoogenboom, G. Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change. Agric. Water Manag. 2017, 186, 108–109. [Google Scholar] [CrossRef]
- Rafiullah; Khan, M.J.; Muhammad, D.; Fahad, S.; Adnan, M.; Wahid, F.; Alamri, S.; Khan, F.; Dawar, K.M.; Irshad, I.; et al. Phosphorus Nutrient Management through Synchronization of Application Methods and Rates in Wheat and Maize Crops. Plants 2020, 9, 1389. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wei, B.; Wang, L.; Zhang, Y.; Zhang, H.; Zhang, Y. Performance of Winter-Seeded Spring Wheat in Inner Mongolia. Agronomy 2019, 9, 507. [Google Scholar] [CrossRef]
- Sigaroodi, S.K.; Chen, Q.; Ebrahimi, S.; Nazari, A.; Choobin, B. Long-term precipitation forecast for drought relief using atmospheric circulation factors: A study on the Maharloo Basin in Iran. Hydrol. Earth Syst. Sci. 2014, 18, 1995–2006. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Y.P.; Wang, G. Agricultural drought prediction using climate indices based on Support Vector Regression in Xiangjiang River basin. Sci. Total Environ. 2018, 622–623, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.G.; Kim, J.H.; Luo, J.J. Deep learning for multi-year ENSO forecasts. Nature 2019, 573, 568–572. [Google Scholar]
- Schillerberg, T.A.; Tian, D.; Miao, R. Spatiotemporal patterns of maize and winter wheat yields in the United States: Predictability and impact from climate oscillations. Agric. For. Meteorol. 2019, 275, 208–222. [Google Scholar] [CrossRef]
- Feng, P.; Wang, B.; Luo, J.J.; Liu, D.L.; Waters, C.; Ji, F.; Ruan, H.; Xiao, D.; Shi, L.; Yu, Q. Using large-scale climate drivers to forecast meteorological drought condition in growing season across the Australian wheatbelt. Sci. Total Environ. 2020, 724, 138162. [Google Scholar] [CrossRef] [PubMed]
- Iwańska, M.; Paderewski, J.; Stępień, M.; Rodrigues, P.C. Adaptation of Winter Wheat Cultivars to Different Environments: A Case Study in Poland. Agronomy 2020, 10, 632. [Google Scholar] [CrossRef]
- Ljubičić, N.; Popović, V.; Ćirić, V.; Kostić, M.; Ivošević, B.; Popović, D.; Pandžić, M.; El Musafah, S.; Janković, S. Multivariate Interaction Analysis of Winter Wheat Grown in Environment of Limited Soil Conditions. Plants 2021, 10, 604. [Google Scholar] [CrossRef]
- Allen, R.J.; Sherwood, S.C. The impact of natural versus anthropogenic aerosols on atmospheric circulation in the Community Atmosphere Model. Clim. Dynam. 2011, 36, 1959–1978. [Google Scholar] [CrossRef]
- Arshad, S.; Kazmi, J.H.; Prodhan, F.A.; Mohammed, S. Exploring dynamic response of agrometeorological droughts towards winter wheat yield loss risk using machine learning approach at a regional scale in Pakistan. Field Crop Res. 2023, 302, 109057. [Google Scholar] [CrossRef]
- Farooq, A.; Farooq, N.; Akbar, H.; Hassan, Z.U.; Gheewala, S.H. A Critical Review of Climate Change Impact at a Global Scale on Cereal Crop Production. Agronomy 2023, 13, 162. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.Z.; Zhang, F.M.; Lu, Y.Y.; Duan, C.F.; Xu, Y. Seasonal dynamics of carbon dioxide and water fluxes in a rice-wheat rotation system in the Yangtze-Huaihe region of China. Agric. Water Manag. 2023, 275, 107992. [Google Scholar] [CrossRef]
No. | Types | Indices | Definition |
---|---|---|---|
1 | Statistical characteristics | MIN | The minimum value of the AWWY time series |
2 | MAX | The maximum value of the AWWY time series | |
3 | AVE | The mean value of the AWWY time series | |
4 | RNG | The range value of the AWWY time series | |
5 | STD | The standard deviation of the AWWY time series | |
6 | CV | The coefficient of variation in the AWWY time series | |
7 | Time-domain characteristics | ZMK | The Z statistic of the AWWY time series |
8 | MAG | The magnitude of the AWWY time series | |
9 | H | The persistent pattern of the AWWY time series | |
10 | Frequency-domain characteristics | CIMF1 | The variance contribution of a short-period oscillation component to AWWY |
11 | CIMF2 | The variance contribution of a medium-period oscillation component to AWWY | |
12 | CIMF3 | The variance contribution of a long-period oscillation component to AWWY | |
13 | CTrend | The variance contribution of a trend component to AWWY |
Eigenvalue | Variance (%) | Cumulative (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | 6.64 | 51.11 | 51.11 | ||||||||||
PC2 | 3.61 | 27.80 | 78.90 | ||||||||||
PC3 | 1.42 | 10.92 | 89.83 | ||||||||||
The loadings of PC1, PC2 and PC3 on 13 indices | |||||||||||||
MIN | MAX | AVE | RNG | STD | CV | ZMK | MAG | H | CIMF1 | CIMF2 | CIMF3 | Ctrend | |
PC1 | 0.51 | 0.51 | 0.52 | 0.14 | 0.23 | −0.14 | 0.93 | 0.51 | 0.86 | −0.90 | −0.57 | −0.84 | 0.98 |
PC2 | −0.33 | 0.59 | 0.37 | 0.96 | 0.98 | 0.85 | 0.36 | 0.92 | 0.32 | −0.07 | −0.49 | 0.08 | 0.17 |
PC3 | 0.82 | 0.90 | 0.98 | 0.30 | 0.35 | −0.32 | 0.66 | 0.46 | 0.71 | −0.63 | −0.21 | −0.29 | 0.60 |
No. | Indices | Region I | Region II | Region III | Region IV |
---|---|---|---|---|---|
1 | MIN (kg/hm2) | 1861.0 | 2554.3 | 3592.8 | 2118.3 |
2 | MAX (kg/hm2) | 4812.0 | 5098.1 | 7154.0 | 6855.2 |
3 | AVE (kg/hm2) | 3536.3 | 4023.1 | 5770.9 | 5091.3 |
4 | RNG (kg/hm2) | 2951.0 | 2543.8 | 3561.2 | 4736.9 |
5 | STD | 796.0 | 710.1 | 1048.8 | 1416.1 |
6 | CV (%) | 22.5 | 17.8 | 18.3 | 27.8 |
7 | ZMK | 4.2 | 5.2 | 6.9 | 6.5 |
8 | MAG (kg/(hm2·a)) | 62.2 | 63.3 | 111.5 | 138.1 |
9 | H | 0.7 | 0.8 | 0.8 | 0.8 |
10 | CIMF1 (%) | 26.9 | 16.8 | 2.3 | 11.2 |
11 | CIMF2 (%) | 5.8 | 4.4 | 2.6 | 2.6 |
12 | CIMF3 (%) | 3.4 | 2.4 | 1.1 | 2.5 |
13 | CTrend (%) | 63.9 | 76.4 | 94.0 | 83.8 |
Lag Time | Region I | Region II | Region III | Region IV | ||||
---|---|---|---|---|---|---|---|---|
Indices | Coefficients | Indices | Coefficients | Indices | Coefficients | Indices | Coefficients | |
0 | AO | −0.08 | AO | 0.02 | AO | 0.06 | PDO | −0.45 |
1 | NAO | 0.19 | NAO | 0.10 | NAO | 0.35 | Niño 3 | 0.27 |
2 | NAO | −0.30 | NAO | −0.39 | NAO | −0.10 | Niño 3 | −0.11 |
3 | PDO | 0.30 | PDO | 0.27 | AO | 0.73 | Niño 4 | 0.92 |
4 | PDO | 0.13 | NAO | −0.11 | AO | 1.07 | Niño 3.4 | −0.62 |
5 | PDO | 0.08 | AO | 0.35 | AO | 0.44 | Niño 3 | −0.50 |
6 | Niño 4 | −0.57 | PDO | −0.05 | AO | 0.25 | Niño 3 | 1.19 |
7 | Niño 1+2 | −0.18 | AO | −0.05 | AO | 0.17 | Niño 3 | −0.97 |
8 | Niño 3 | 0.29 | NAO | 0.38 | NAO | −0.04 | Niño 3 | −0.11 |
9 | Niño 3 | −0.53 | Niño 3 | −0.04 | AO | 0.19 | Niño 3 | 1.90 |
10 | AO | −0.08 | AO | −0.13 | NAO | 0.08 | Niño 3 | −0.99 |
11 | NAO | −0.10 | Niño 3 | −0.14 | NAO | −0.29 | Niño 3 | 0.24 |
Intercept | 27.29 | 5.16 | −0.02 | −32.42 | ||||
R2 | 0.50 | 0.55 | 0.65 | 0.49 | ||||
RMSE | 0.66 | 0.64 | 0.58 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Gu, Y.; Xu, H.; Huang, J.; Liu, B.; Chun, K.P.; Octavianti, T. Spatial Heterogeneity in the Response of Winter Wheat Yield to Meteorological Dryness/Wetness Variations in Henan Province, China. Agronomy 2024, 14, 817. https://doi.org/10.3390/agronomy14040817
Li C, Gu Y, Xu H, Huang J, Liu B, Chun KP, Octavianti T. Spatial Heterogeneity in the Response of Winter Wheat Yield to Meteorological Dryness/Wetness Variations in Henan Province, China. Agronomy. 2024; 14(4):817. https://doi.org/10.3390/agronomy14040817
Chicago/Turabian StyleLi, Cheng, Yuli Gu, Hui Xu, Jin Huang, Bo Liu, Kwok Pan Chun, and Thanti Octavianti. 2024. "Spatial Heterogeneity in the Response of Winter Wheat Yield to Meteorological Dryness/Wetness Variations in Henan Province, China" Agronomy 14, no. 4: 817. https://doi.org/10.3390/agronomy14040817
APA StyleLi, C., Gu, Y., Xu, H., Huang, J., Liu, B., Chun, K. P., & Octavianti, T. (2024). Spatial Heterogeneity in the Response of Winter Wheat Yield to Meteorological Dryness/Wetness Variations in Henan Province, China. Agronomy, 14(4), 817. https://doi.org/10.3390/agronomy14040817