Diversity of Sweet Basil Accessions from Croatian National Plant Gene Bank Based on Amplified Fragment Length Polymorphism Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and DNA Extraction
2.2. AFLP Analysis
- For the selection of PCR primer combinations, we followed the recommendations of the manufacturer of the fluorescently labeled AFLP primers (Applied Biosystems, Foster City, CA, USA). Of the 128 possible combinations suggested by the manufacturer, we selected 16 combinations that were complementary to the DNA adapters and PCR primers used in the previous AFLP steps of DNA ligation and pre-selective PCR amplification.
- We generated dozens of DNA fragments in the range of 50–500 base pairs and peak heights above the absolute value of 50 in the computer program GeneMapper (Applied Biosystems, Foster City, CA, USA).
- We had an estimated error rate per primer combination of less than 5%.
- We produced polymorphic fragments that discriminate between different individuals, taxa, or species in this study.
2.3. Data Analysis
3. Results and Discussion
3.1. Molecular Diversity of Basil Morphotypes and Chemotypes
3.2. Genetic Structure of Basil Morphotypes and Chemotypes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hosseinzadeh, S.; Jafarikukhdan, A.; Hosseini, A.; Armand, R. The Application of Medicinal Plants in Traditional and Modern Medicine: A Review of Thymus vulgaris. Int. J. Clin. Med. 2015, 06, 635–642. [Google Scholar] [CrossRef]
- Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal Plants: Past History and Future Perspective. J. HerbMed. Pharmacol. 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Chen, S.L.; Yu, H.; Luo, H.M.; Wu, Q.; Li, C.F.; Steinmetz, A. Conservation and Sustainable Use of Medicinal Plants: Problems, Progress, and Prospects. Chin. Med. 2016, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Salgotra, R.K.; Chauhan, B.S. Genetic Diversity, Conservation, and Utilization of Plant Genetic Resources. Genes 2023, 14, 174. [Google Scholar] [CrossRef]
- Deja, A.; Forycka, A.; Szalata, M.; Adamczak, A.; Słomski, R. DNA Banking for the Conservation of Genetic Resources of Crop and Wild Medicinal and Aromatic Plants (MAPs): Preliminary Study. Herba Pol. 2023, 69, 71–81. [Google Scholar] [CrossRef]
- Halapija Kazija, D.; Cegur, Ž.; Petrović, T.; Delić, I.; Zokić, S. Legislative Framework of National Program for Conservation and Sustainable Use of Plant Genetic Resources for Food and Agriculture 2021–2027. Sjemenarstvo 2021, 32, 105–114. [Google Scholar] [CrossRef]
- Kolak, I.; Šatović, Z. Očuvanje Biljnih Genetskih Izvora. Sjemenarstvo 1996, 13, 423–432. [Google Scholar]
- Kolak, I.; Šatović, Z.; Carović, K. Croatian Bank of Plant Genes—The Basis for Seed and Seedlings Production. Sjemenarstvo 2004, 21, 17–18. [Google Scholar]
- Šatović, Z.; Carović-Stanko, K.; Grdiša, M.; Jug-Dujaković, M.; Kolak, I.; Liber, Z. Conservation of Medicinal and Aromatic Plants in Croatia. In Proceedings of the Environmental and Food Safety and Security for South-East Europe and Ukraine; NATO Science for Peace and Security Series C: Environmental Security; Vitale, K., Ed.; Springer: Dordrecht, The Netherlands, 2012; Volume 122, pp. 261–269. [Google Scholar]
- Croatian Agency for Agriculture and Food Croatian Plant Genetic Resources Database (CPGRD). Available online: https://cpgrd.hapih.hr/ (accessed on 28 October 2024).
- Weise, S.; Lohwasser, U.; Oppermann, M. Document or Lose It—On the Importance of Information Management for Genetic Resources Conservation in Genebanks. Plants 2020, 9, 1050. [Google Scholar] [CrossRef] [PubMed]
- Díez, M.J.; De la Rosa, L.; Martín, I.; Guasch, L.; Cartea, M.E.; Mallor, C.; Casals, J.; Simó, J.; Rivera, A.; Anastasio, G.; et al. Plant Genebanks: Present Situation and Proposals for Their Improvement. The Case of the Spanish Network. Front. Plant Sci. 2018, 871, 1–13. [Google Scholar] [CrossRef]
- Fowler, C.; Hodgkin, T. Plant Genetic Resources for Food and Agriculture: Assessing Global Availability. Annu. Rev. Environ. Resour. 2004, 29, 143–179. [Google Scholar] [CrossRef]
- Al-Hadeithi, Z.S.M.; Jasim, S.A. Study of Plant Genetic Variation through Molecular Markers: An Overview. J. Pharm. Res. Int. 2021, 33, 464–473. [Google Scholar] [CrossRef]
- Sharma, R.S.; Vaidya, N.; Maloo, S.R.; Kumar, A.; Sharma, S.; Ramkrishnan, R.S.; Kumari, V. Application of Molecular Markers in Assessment of Genetic Diversity of Medicinal Plants. In Molecular Marker Techniques: A Potential Approach of Crop Improvement; Kumar, N., Ed.; Springer: Singapore, 2023; pp. 103–116. ISBN 978-981-99-1612-2. [Google Scholar]
- Ganie, S.H.; Upadhyay, P.; Das, S.; Prasad Sharma, M. Authentication of Medicinal Plants by DNA Markers. Plant Gene 2015, 4, 83–99. [Google Scholar] [CrossRef]
- Moghaddam, M.; Omidbiagi, R.; Naghavi, M.R. Evaluation of Genetic Diversity among Iranian Accessions of Ocimum Spp. Using AFLP Markers. Biochem. Syst. Ecol. 2011, 39, 619–626. [Google Scholar] [CrossRef]
- Cherian, M.; Radhamany, P.M. Genetic Diversity in Ocimum basilicum. Abrahamia 2017, 3, 30–40. [Google Scholar]
- Shabahang, D.; Samsampoor, D.; Zeinali, H.; Ebrahimi, M.; Farhadi, A. Evaluation of Genetic and Biochemical Variation in Six Basil (Ocimum basilicum L.) Populations. Iran. J. Rangel. For. Plant Breed. Genet. Res. 2022, 30, 56–71. [Google Scholar] [CrossRef]
- Malav, P.; Singh, R.; Pandey, A.; Bhatt, K.C. Molecular Diversity Study within Holy Basil Species (Ocimum Tenuiflorum L.) Using ISSR and RAPD Markers. Indian J. Hortic. 2015, 72, 528–534. [Google Scholar] [CrossRef]
- Chowdhury, T.; Mandal, A.; Roy, S.C.; De Sarker, D. Diversity of the Genus Ocimum (Lamiaceae) through Morpho-Molecular (RAPD) and Chemical (GC–MS) Analysis. J. Genet. Eng. Biotechnol. 2017, 15, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Carović-Stanko, K.; Liber, Z.; Grdiša, M.; Kolak, I.; Šatović, Z. Synergistic Effects of Combining Morphological and Molecular Data in Resolving the Intraspecific Classification in O. Basilicum L. Agric. Conspec. Sci. cus 2010, 75, 33–37. [Google Scholar]
- Bernhardt, B.; Fazekas, G.; Ladányi, M.; Inotai, K.; Zámbori-Németh, É.; Bernáth, J.; Szabó, K. Morphological-, Chemical- and RAPD-PCR Evaluation of Eight Different Ocimum basilicum L. Gene Bank Accessions. J. Appl. Res. Med. Aromat. Plants 2014, 1, 23–29. [Google Scholar] [CrossRef]
- Aburigal, Y.A.A.; Hamza, N.B.; Sirible, A.M.; Elmogtaba, E.Y.; Hussein, I.H. Identification of Genetic Diversity Among Basil (Ocimum Sp.) Accessions Collected from Africa, Europe, Asia, and USA. Biol. Nat. Resour. Eng. J. 2020, 3, 46–54. [Google Scholar]
- Abuhashem, Y.S.; Khalil, H.B.; El-Tahawey, M.A.F.A.; Soliman, K.A. Exploring the Morphological and Genetic Diversity of Egyptian Basil Landraces (Ocimum Sp.) for Future Breeding Strategies. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 70. [Google Scholar] [CrossRef]
- Carović-Stanko, K.; Liber, Z.; Besendorfer, V.; Javornik, B.; Bohanec, B.; Kolak, I.; Satovic, Z. Genetic Relations among Basil Taxa (Ocimum L.) Based on Molecular Markers, Nuclear DNA Content, and Chromosome Number. Plant Syst. Evol. 2010, 285, 13–22. [Google Scholar] [CrossRef]
- Beltrán-Noboa, A.; Jordan-Álvarez, A.; Guevara-Terán, M.; Gallo, B.; Berrueta, L.A.; Giampieri, F.; Battino, M.; Álvarez-Suarez, J.M.; Tejera, E. Exploring the Chemistry of Ocimum Species under Specific Extractions and Chromatographic Methods: A Systematic Review. ACS Omega 2023, 8, 10747–10756. [Google Scholar] [CrossRef] [PubMed]
- Mulugeta, S.M.; Gosztola, B.; Radácsi, P. Evaluation of Genetic and Biochemical Variation in Dfsfssix Basil (Ocimum basilicum L.) Populations. Biochem. Syst. Ecol. 2024, 114, 1–13. [Google Scholar] [CrossRef]
- Mulugeta, S.M.; Pluhár, Z.; Radácsi, P. Phenotypic Variations and Bioactive Constituents among Selected Ocimum Species. Plants 2024, 13, 64. [Google Scholar] [CrossRef]
- Osei Akoto, C.; Acheampong, A.; Boakye, Y.D.; Naazo, A.A.; Adomah, D.H. Anti-Inflammatory, Antioxidant, and Anthelmintic Activities of Ocimum basilicum (Sweet Basil) Fruits. J. Chem. 2020, 2153534, 1–9. [Google Scholar] [CrossRef]
- Kamelnia, E.; Mohebbati, R.; Kamelnia, R.; El-Seedi, H.R.; Boskabady, M.H. Anti-Inflammatory, Immunomodulatory and Anti-Oxidant Effects of Ocimum basilicum L. and Its Main Constituents: A Review. Iran. J. Basic Med. Sci. 2023, 26, 617–627. [Google Scholar] [CrossRef]
- Labra, M.; Miele, M.; Ledda, B.; Grassi, F.; Mazzei, M.; Sala, F. Morphological Characterization, Essential Oil Composition and DNA Genotyping of Ocimum basilicum L. Cultivars. Plant Sci. 2004, 167, 725–731. [Google Scholar] [CrossRef]
- International Union for the Protection of new Varieties of Plants (UPOV). Basil (Ocimum basilicum L.). Guidelines for the Conduct of Tests for Distinctness; UPOV: Geneva, Switzerland, 2003. [Google Scholar]
- Varga, F.; Carović-Stanko, K.; Ristić, M.; Grdiša, M.; Liber, Z.; Šatović, Z. Morphological and Biochemical Intraspecific Characterization of Ocimum basilicum L. Ind. Crops Prod. 2017, 109, 611–618. [Google Scholar] [CrossRef]
- Carović-Stanko, K.; Šalinović, A.; Grdǐa, M.; Liber, Z.; Kolak, I.; Satovic, Z. Efficiency of Morphological Trait Descriptors in Discrimination of Ocimum basilicum L. Accessions. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2011, 145, 298–305. [Google Scholar] [CrossRef]
- Liber, Z.; Carović-Stanko, K.; Politeo, O.; Strikić, F.; Kolak, I.; Milos, M.; Satovic, Z. Chemical Characterization and Genetic Relationships among Ocimum basilicum L. Cultivars. Chem. Biodivers. 2011, 8, 1978–1989. [Google Scholar] [CrossRef] [PubMed]
- Applied Biosystems. AFLP® Plant Mapping Protocol; Applied Biosystems: Foster City, CA, USA, 2010. [Google Scholar]
- Carović-Stanko, K.; Liber, Z.; Politeo, O.; Strikić, F.; Kolak, I.; Milos, M.; Satovic, Z. Molecular and Chemical Characterization of the Most Widespread Ocimum Species. Plant Syst. Evol. 2011, 294, 253–262. [Google Scholar] [CrossRef]
- Herrmann, D.; Poncet, B.N.; Manel, S.; Rioux, D.; Gielly, L.; Taberlet, P.; Gugerli, F. Selection Criteria for Scoring Amplified Fragment Length Polymorphisms (AFLPs) Positively Affect the Reliability of Population Genetic Parameter Estimates. Genome 2010, 53, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Lewontin, R.C. The Apportionment of Human Diversity. Evol. Biol. 1972, 6, 381–398. [Google Scholar]
- SAS Institute Inc. The SAS System for Windows, Release 9.4; Statistical Analysis Systems Institute: Cary, NC, USA, 2013; 556p. [Google Scholar]
- Novoselović, D.; Bentley, A.R.; Šimek, R.; Dvojković, K.; Sorrells, M.E.; Gosman, N.; Horsnell, R.; Drezner, G.; Šatović, Z. Characterizing Croatian Wheat Germplasm Diversity and Structure in a European Context by DArT Markers. Front. Plant Sci. 2016, 7, 167824. [Google Scholar] [CrossRef] [PubMed]
- Dice, R.L. Measures of the Amount of Ecologic Association between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1. [Google Scholar]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of Molecular Variance Inferred from Metric Distances among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E.L. Arlequin Suite Ver 3.5: A New Series of Programs to Perform Population Genetics Analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Huff, D.R. RAPD Characterization of Heterogeneous Perennial Ryegrass Cultivars. Crop Sci. 1997, 37, 557–564. [Google Scholar] [CrossRef]
- Corander, J.; Waldmann, P.; Sillanpaa, M.J. Bayesian Analysis of Genetic Differentiation between Populations. Genetics 2003, 163, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Corander, J.; Cheng, L.; Marttinen, P.; Siren, J.; Tang, J. BAPS: Bayesian Analysis of Population Structure. Manual v. 6.0; Department of Mathematics and Statistics, University of Helsinki: Helsinki, Finland, 2012. [Google Scholar]
- Corander, J.; Marttinen, P. Bayesian Identification of Admixture Events Using Multilocus Molecular Markers. Mol. Ecol. 2006, 15, 2833–2843. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, Y.; Mitchell, S.E.; Kresovich, S.; Goodman, M.; Doebley, J. Microsatellites in Zea—Variability, Patterns of Mutations, and Use for Evolutionary Studies. Theor. Appl. Genet. 2002, 104, 436–450. [Google Scholar] [CrossRef]
- Srivastava, A.; Gupta, A.K.; Sarkar, S.; Lal, R.K.; Yadav, A.; Gupta, P.; Chanotiya, C.S. Genetic and Chemotypic Variability in Basil (Ocimum basilicum L.) Germplasm towards Future Exploitation. Ind. Crops Prod. 2018, 112, 815–820. [Google Scholar] [CrossRef]
- Erum, S.; Naeemullah, M.; Masood, S.; Khan, M.I. Genetic variation in the living repository of ocimum germplasm. Pakistan J. Agric. Res 2011, 24, 42–50. [Google Scholar]
- Mkaddem Mounira, G.; Ahlem, Z.; Abdallah Mariem, B.; Romdhane, M.; Okla, M.K.; Al-Hashimi, A.; Alwase, Y.A.; Madnay, M.M.; AbdElgayed, G.; Asard, H.; et al. Essential Oil Composition and Antioxidant and Antifungal Activities of Two Varieties of Ocimum basilicum L. (Lamiaceae) at Two Phenological Stages. Agronomy 2022, 12, 825. [Google Scholar] [CrossRef]
- Hasan, N.; Laskar, R.A.; Farooqui, S.A.; Naaz, N.; Sharma, N.; Budakoti, M.; Joshi, D.C.; Choudhary, S.; Bhinda, M.S. Genetic Improvement of Medicinal and Aromatic Plant Species: Breeding Techniques, Conservative Practices and Future Prospects. Crop Des. 2024, 3, 100080. [Google Scholar] [CrossRef]
- Gupta, S.; Srivastava, A.; Shasany, A.K.; Gupta, A.K. Genetics, Cytogenetics, and Genetic Diversity in the Genus Ocimum. In The Ocimum Genome, Compendium of Plant Genomes; Shasany, A.K., Kole, C., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 73–87. [Google Scholar]
No. | Accession No. a | Taxon/Cultivar | Country of Origin | Morphotype | Chemotype (A–E) b |
---|---|---|---|---|---|
S01 | MAP02297 | ‘Albahaca Grande Verde’ | Spain | True basil | A |
S02 | MAP02291 | - | Azerbaijan | True basil | A |
S03 | MAP02293 | ‘Bavires’ | Germany | True basil | A |
S04 | MAP02328 | Genovese Basil—Compatto FT | Canada | True basil | A |
S05 | MAP01645 | ‘Envigor’ | Canada | True basil | A |
S06 | MAP02336 | Gecofure Basil | Canada | True basil | A |
S07 | MAP00294 | Genovese Basil | Croatia | True basil | A |
S08 | MAP00558 | Genovese Basil | Italy | True basil | A |
S09 | MAP00331 | Genovese Basil | Macedonia | True basil | A |
S10 | MAP00391 | Genovese Basil | Croatia | True basil | A |
S11 | MAP00298 | Genovese Basil | Italy | True basil | A |
S12 | MAP00005 | Genovese Basil | Slovakia | True basil | A |
S13 | MAP02331 | Genovese Basil—‘Superbo’ | Canada | True basil | A |
S14 | MAP00145 | Genoveser | Austria | True basil | A |
S15 | MAP02301 | Genoveser grossblättrig | Germany | True basil | A |
S16 | MAP02303 | ‘Gigante’ | Germany | True basil | A |
S17 | MAP02282 | ‘Grand Vert de Genes’ | Germany | True basil | A |
S18 | MAP01642 | ‘Green Gate’ | Canada | True basil | A |
S19 | MAP00576 | Grosses gruenes | Austria | True basil | A |
S20 | MAP02290 | Italian Large-Leafed | Italy | True basil | C |
S21 | MAP02287 | - | Italy | True basil | A |
S22 | MAP02295 | - | Japan | True basil | A |
S23 | MAP02315 | Japan A | Germany | True basil | B |
S24 | MAP02320 | - | Madagascar | True basil | A |
S25 | MAP02314 | Mittelgrossblättriges Grünes | Germany | True basil | A |
S26 | MAP02337 | Genovese Basil—Nufar F1 | Canada | True basil | C |
S27 | MAP02288 | Genovese Basil—Nufar F1 | Germany | True basil | C |
S28 | MAP01622 | Ohre | Germany | True basil | A |
S29 | MAP02283 | - | Russia | True basil | C |
S30 | MAP02338 | ‘Stella’ | Canada | True basil | A |
S31 | MAP00186 | Sweet basil | Croatia | True basil | A |
S32 | MAP00232 | Sweet basil | Croatia | True basil | A |
S33 | MAP00414 | Sweet basil | USA | True basil | C |
S34 | MAP02296 | - | Togo | True basil | A |
S35 | MAP01640 | Bush Basil | Canada | Small-leaf basil | B |
S36 | MAP01632 | Comune a Foglia Piccola | Germany | Small-leaf basil | A |
S37 | MAP00560 | ‘Fine verde’ | Italy | Small-leaf basil | B |
S38 | MAP02334 | Greek Bush Basil | Canada | Small-leaf basil | A |
S39 | MAP01648 | ‘Green Globe’ | Canada | Small-leaf basil | B |
S40 | MAP02327 | ‘Marseilles’ | Canada | Small-leaf basil | A |
S41 | MAP02298 | ‘Massilia’ | Germany | Small-leaf basil | A |
S42 | MAP02326 | ‘Medinette’ | Canada | Small-leaf basil | A |
S43 | MAP02300 | ‘Piccolo’ | Italy | Small-leaf basil | A |
S44 | MAP01641 | ‘Spicy Globe’ | Canada | Small-leaf basil | B |
S45 | MAP00559 | Blistered lettuce-leaf basil | Italy | Lettuce-leaf basil | C |
S46 | MAP02286 | - | Italy | Lettuce-leaf basil | C |
S47 | MAP02281 | Lactucaefolium | Germany | Lettuce-leaf basil | C |
S48 | MAP01654 | var. difforme/Napoletano Basil | Canada | Lettuce-leaf basil | B |
S49 | MAP01623 | var. difforme | Germany | Lettuce-leaf basil | C |
S50 | MAP00375 | var. difforme/‘A foglie di lattuga’ | Italy | Lettuce-leaf basil | C |
S51 | MAP02307 | var. difforme | Uzbekistan | Lettuce-leaf basil | C |
S52 | MAP02321 | var. purpurescens | Jemen | Purple basil A | C |
S53 | MAP02333 | ‘Magical Michael’ | Canada | Purple basil A | A |
S54 | MAP01658 | ‘Oriental Breeze’ | Canada | Purple basil A | A |
S55 | MAP02311 | - | Romania | Purple basil A | A |
S56 | MAP02313 | var. purpurascens | Uzbekistan | Purple basil A | A |
S57 | MAP02292 | var. purpurascens | China | Purple basil A | C |
S58 | MAP02302 | var. purpurascens | Irak | Purple basil A | D |
S59 | MAP01629 | var. purpurascens/Mexican Basil | Germany | Purple basil A | D |
S60 | MAP00146 | var. purpurascens/no. 3193 | Austria | Purple basil A | D |
S61 | MAP02305 | var. purpurascens/Persian Anise-scented Basil | Germany | Purple basil A | D |
S62 | MAP01644 | Anise Basil | Canada | Purple basil B | C |
S63 | MAP01639 | Ararat | Canada | Purple basil B | C |
S64 | MAP00333 | ‘Dark Opal’ | Russia | Purple basil B | A |
S65 | MAP00284 | ‘Dark Opal’ | Russia | Purple basil B | A |
S66 | MAP00004 | ‘Opal’ | Slovakia | Purple basil B | A |
S67 | MAP00283 | Opal-ZS98 | Slovakia | Purple basil B | A |
S68 | MAP02308 | ‘Licorice’ | Germany | Purple basil B | A |
S69 | MAP01630 | ‘Metalica’ | Germany | Purple basil B | A |
S70 | MAP01650 | ‘Osmin’ | Canada | Purple basil B | A |
S71 | MAP02330 | ‘Purple Delight’ | Canada | Purple basil B | A |
S72 | MAP02306 | ‘Susambari’ | Georgia | Purple basil B | B |
S73 | MAP02335 | ‘Sweet Salad’ | Canada | Purple basil B | C |
S74 | MAP01657 | Thai Basil ‘Queenette’ | Canada | Purple basil B | D |
S75 | MAP02294 | var. purpurascens | Armenia | Purple basil B | C |
S76 | MAP02289 | var. purpurascens | Armenia | Purple basil B | C |
S77 | MAP02319 | var. purpurascens/‘Kardinal’ | Germany | Purple basil B | C |
S78 | MAP02309 | var. purpurascens/‘Rothaut’ | Germany | Purple basil B | A |
S79 | MAP02317 | var. thyrsiflorum/‘Siam Queen’ | Thailand | Purple basil B | E |
S80 | MAP01643 | ‘Purple Ruffles’ | Canada | Purple basil B | B |
Morphotype | Chemotype | ||||||||
---|---|---|---|---|---|---|---|---|---|
True basil | Small-leaf basil | Lettuce-leaf basil | Purple basil A | Purple basil B | A | B | C | D | |
n | 34 | 10 | 7 | 10 | 19 | 47 | 8 | 19 | 5 |
P | 95.6% | 76.96% | 72.52% | 80.84% | 89.4% | 99.432% | 77.862% | 94.986% | 61.258% |
Sh | 0.618 | 0.576 | 0.583 | 0.616 | 0.631 | 0.668 | 0.592 | 0.676 | 0.515 |
Npr | 2 | 0 | 0 | 0 | 4 | 18 | 0 | 0 | 0 |
RI | 0.942 | 0.98 | 1.128 | 1.034 | 1.049 | 0.976 | 1.018 | 1.025 | 1.1 |
Davg | 0.365 | 0.387 | 0.391 | 0.402 | 0.377 | 0.391 | 0.401 | 0.412 | 0.376 |
Analysis | Source of Variation | df | Variance Components | Percentage of Variation | φ-Statistics | p (φ) |
---|---|---|---|---|---|---|
(A) | Among morphotypes | 4 | 34.54 | 9.94% | 0.099 | <0.0001 |
Within morphotypes | 75 | 312.85 | 90.06% | |||
(B) | Between groups of morphotypes (‘green’ vs. ‘purple’) | 1 | 19.88 | 5.61% | 0.056 | <0.0001 |
Among morphotypes within groups | 3 | 21.85 | 6.16% | 0.065 | <0.0001 | |
Within morphotypes | 75 | 312.85 | 88.23% | 0.118 | <0.0001 | |
(C) | Among chemotypes | 3 | 14.76 | 4.30% | 0.043 | <0.0001 |
Within chemotypes | 75 | 328.63 | 95.70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varga, F.; Vidak, M.; Liber, Z.; Carović-Stanko, K.; Šatović, Z. Diversity of Sweet Basil Accessions from Croatian National Plant Gene Bank Based on Amplified Fragment Length Polymorphism Markers. Agronomy 2024, 14, 3073. https://doi.org/10.3390/agronomy14123073
Varga F, Vidak M, Liber Z, Carović-Stanko K, Šatović Z. Diversity of Sweet Basil Accessions from Croatian National Plant Gene Bank Based on Amplified Fragment Length Polymorphism Markers. Agronomy. 2024; 14(12):3073. https://doi.org/10.3390/agronomy14123073
Chicago/Turabian StyleVarga, Filip, Monika Vidak, Zlatko Liber, Klaudija Carović-Stanko, and Zlatko Šatović. 2024. "Diversity of Sweet Basil Accessions from Croatian National Plant Gene Bank Based on Amplified Fragment Length Polymorphism Markers" Agronomy 14, no. 12: 3073. https://doi.org/10.3390/agronomy14123073
APA StyleVarga, F., Vidak, M., Liber, Z., Carović-Stanko, K., & Šatović, Z. (2024). Diversity of Sweet Basil Accessions from Croatian National Plant Gene Bank Based on Amplified Fragment Length Polymorphism Markers. Agronomy, 14(12), 3073. https://doi.org/10.3390/agronomy14123073