Changes in the Composition and Properties of Cultured Bacterial Strains of Ginseng Rhizosphere According to Soil Characteristics in the Forest and Plots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Plant Materials
Soil Sampling
2.2. Soil Properties and Elemental Analysis
2.3. For Microbiological Investigation
2.3.1. Determination of Target Groups of Microorganisms
2.3.2. Molecular Genetic Identification of Bacteria and Phylogenetic Analysis
2.4. Statistical Analysis
3. Results
3.1. Physicochemical Characteristics and Element Composition of P. ginseng Soils
3.2. Bacterial Cultured Strains of P. ginseng Rhizosphere Soil from Forest and Plots
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baeg, I.-H.; So, S.-H. The World Ginseng Market and the Ginseng (Korea). J. Ginseng Res. 2013, 37, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.-W.; Xu, X.-T.; Cheng, H.; Sang, Z.; Shi, Y.-H. Standardization of Panax ginseng: Current Status of Global Trade, Demands, and Development. Am. J. Chin. Med. 2023, 51, 909–927. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Tang, M.; Wei, H.; Feng, Z.; Yu, N. Global Ginseng Trade Networks: Structural Characteristics and Influencing Factors. Front. Pharmacol. 2023, 14, 1119183. [Google Scholar] [CrossRef] [PubMed]
- Zhuravlev, Y.; Tomskikh, A.; Gorpenchenko, T. The History and the Future Prospects of Ginseng Study in the Russian Far East. Vestn. FEB RAS 2022, 4, 101–116. [Google Scholar] [CrossRef]
- Zhuravlev, Y.N.; Koren, O.G.; Reunova, G.D.; Muzarok, T.I.; Gorpenchenko, T.Y.; Kats, I.L.; Khrolenko, Y.A. Panax ginseng Natural Populations: Their Past, Current State and Perspectives. Acta Pharmacol. Sin. 2008, 29, 1127–1136. [Google Scholar] [CrossRef]
- Wang, Q.X.; Xu, C.L.; Sun, H.; Ma, L.; Li, L.; Zhang, D.D.; Zhang, Y.Y. Analysis of the Relationship between Rusty Root Incidences and Soil Properties in Panax ginseng. IOP Conf. Ser.Earth Environ. Sci. 2016, 41, 012001. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, H.; Xu, C.; Ma, L.; Li, M.; Shao, C.; Guan, Y.; Liu, N.; Liu, Z.; Zhang, S.; et al. Analysis of Rhizosphere Bacterial and Fungal Communities Associated with Rusty Root Disease of Panax ginseng. Appl. Soil. Ecol. 2019, 138, 245–252. [Google Scholar] [CrossRef]
- Bian, X.; Xiao, S.; Zhao, Y.; Xu, Y.; Yang, H.; Zhang, L. Comparative Analysis of Rhizosphere Soil Physiochemical Characteristics and Microbial Communities between Rusty and Healthy Ginseng Root. Sci. Rep. 2020, 10, 15756. [Google Scholar] [CrossRef]
- Benaissa, A. Rhizosphere: Role of Bacteria to Manage Plant Diseases and Sustainable Agriculture—A Review. J. Basic Microbiol. 2024, 64, e2300361. [Google Scholar] [CrossRef]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef]
- Brunel, C.; Pouteau, R.; Dawson, W.; Pester, M.; Ramirez, K.S.; van Kleunen, M. Towards Unraveling Macroecological Patterns in Rhizosphere Microbiomes. Trends Plant Sci. 2020, 25, 1017–1029. [Google Scholar] [CrossRef] [PubMed]
- Berezhnaya, V.V.; Klykov, A.G.; Sidorenko, M.L.; Sleptsova, N.A.; Timofeeva, Y.O. Use of Microbial Strains to Increase Yields of Spring Soft Wheat (Triticum aestivum L.). Russ. Agricult. Sci. 2021, 47, 1–5. [Google Scholar] [CrossRef]
- Sidorenko, M.L.; Sleptsova, N.A.; Bykovskaya, A.N.; Berezhnaya, V.V.; Klykov, A.G. Effects of nitrogen-fixing and phos-phate-solubilizing microorganisms from the far east agricultural soils on the cereal seed germination. Sel’skokhozyaistvennaya Biol. [Agric. Biol.] 2021, 56, 146–157. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, Y.; Dou, X.; Liao, D.; Li, K.; An, C.; Li, G.; Dong, Z. Microbial Fertilizers Improve Soil Quality and Crop Yield in Coastal Saline Soils by Regulating Soil Bacterial and Fungal Community Structure. Sci. Total Environ. 2024, 949, 175127. [Google Scholar] [CrossRef]
- Shi, X.; Zhao, Y.; Xu, M.; Ma, L.; Adams, J.; Shi, Y. Insights into plant–microbe interactions in the rhizosphere to pro-motesustainable agriculture in the new crops era. New Crops 2024, 1, 100004. [Google Scholar] [CrossRef]
- Ling, N.; Wang, T.; Kuzyakov, Y. Rhizosphere Bacteriome Structure and Functions. Nat. Commun. 2022, 13, 836. [Google Scholar] [CrossRef]
- Li, Y.; Ying, Y.; Ding, W. Dynamics of Panax ginseng Rhizospheric Soil Microbial Community and Their Metabolic Function. Evid.-Based Complement. Altern. Med. 2014, 2014, 160373. [Google Scholar] [CrossRef]
- Hong, C.E.; Jo, S.; Jo, I.-H.; Park, J.M. Diversity and Antifungal Activity of Endophytic Bacteria Associated with Panax ginseng Seedlings. Plant Biotechnol. Rep. 2018, 12, 409–418. [Google Scholar] [CrossRef]
- Hong, C.E.; Kim, J.U.; Lee, J.W.; Bang, K.H.; Jo, I.H. Metagenomic Analysis of Bacterial Endophyte Community Structure and Functions in Panax ginseng at Different Ages. 3 Biotech. 2019, 9, 300. [Google Scholar] [CrossRef]
- Goodwin, P.H. The Endosphere Microbiome of Ginseng. Plants 2022, 11, 415. [Google Scholar] [CrossRef]
- Chowdhury, M.E.K.; Jeon, J.; Rim, S.O.; Park, Y.-H.; Lee, S.K.; Bae, H. Composition, Diversity and Bioactivity of Culturable Bacterial Endophytes in Mountain-Cultivated Ginseng in Korea. Sci. Rep. 2017, 7, 10098. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wu, Y.; Gao, Q.; Li, X.; Zeng, Y.; Guo, Y.; Zhang, H.; Qin, Z. Metagenomic Exploration of the Rhizosphere Soil Microbial Community and Their Significance in Facilitating the Development of Wild-Simulated Ginseng. Appl. Environ. Microbiol. 2024, 90, e02335-23. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xiong, K.; Wen, W.; Li, L.; Xu, D. Functional Endophytes Regulating Plant Secondary Metabolism: Current Status, Prospects and Applications. Int. J. Mol. Sci. 2023, 24, 1153. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Q.; Gao, Y.; Zang, P.; Zheng, T. Effects of a Co-Bacterial Agent on the Growth, Disease Control, and Quality of Ginseng Based on Rhizosphere Microbial Diversity. BMC Plant Biol. 2024, 24, 647. [Google Scholar] [CrossRef]
- Fang, X.; Wang, H.; Zhao, L.; Wang, M.; Sun, M. Diversity and Structure of the Rhizosphere Microbial Communities of Wild and Cultivated Ginseng. BMC Microbiol. 2022, 22, 2. [Google Scholar] [CrossRef]
- He, C.; Wang, R.; Ding, W.; Li, Y. Effects of Cultivation Soils and Ages on Microbiome in the Rhizosphere Soil of Panax ginseng. Appl. Soil Ecol. 2022, 174, 104397. [Google Scholar] [CrossRef]
- Yun, Y.-B.; Kim, K.; Huh, J.-H.; Um, Y. Relationships between Rhizosphere Environments and Growth of 10-Year-Old Wild-Simulated Ginseng. Agronomy 2023, 13, 1313. [Google Scholar] [CrossRef]
- Xiao, C.; Yang, L.; Zhang, L.; Liu, C.; Han, M. Effects of Cultivation Ages and Modes on Microbial Diversity in the Rhizosphere Soil of Panax ginseng. J. Ginseng Res. 2016, 40, 28–37. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, H.; Li, M.; Xu, C.; Zhang, Y. Different Age-Induced Changes in Rhizosphere Microbial Composition and Function of Panax ginseng in Transplantation Mode. Front. Plant Sci. 2020, 11, 563240. [Google Scholar] [CrossRef]
- Shen, C.; Xiong, J.; Zhang, H.; Feng, Y.; Lin, X.; Li, X.; Liang, W.; Chu, H. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 2013, 57, 204–211. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. In World Soil Resources Reports; FAO: Rome, Italy, 2014; Volume 106. [Google Scholar]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis Mineralogical, Organic and Inorganic Methods; Springer: Berlin, Germany, 2006. [Google Scholar]
- Timofeeva, Y.; Purtova, L.; Emelyanov, A.; Burdukovskii, M.; Kiseleva, I.; Sidorenko, M. Contents, distribution, and fractionation of soil organic carbon and trace elements in soils under a green manure application. Soil Water Res. 2021, 16, 50–58. [Google Scholar] [CrossRef]
- GOST 26213-91; Soils. Methods for Determination of Organic Matter. Standartinform: Moscow, Russia, 1992. (In Russian)
- Shimadzu Europa GmbH. Available online: https://www.shimadzu.eu/products/elemental-analysis/edx-fs/edx-700080008100/applications.html#03 (accessed on 7 November 2024).
- GOST R 54650 2011 Soils. Determination of Mobile Phosphorus and Potassium Compounds by Kirsanov Method Modified by CINAO; Standartinform: Moscow, Russia, 2011. (In Russian) [Google Scholar]
- Spirina, V.; Solov’eva, T. Agrochemical Methods for Studying Soils, Plants and Fertilizers: Textbook; Tomsk State University: Tomsk, Russia, 2014. [Google Scholar]
- Barillot, C.D.C.; Sarde, C.-O.; Bert, V.; Tarnaud, E.; Cochet, N. A Standardized Method for the Sampling of Rhizosphere and Rhizoplan Soil Bacteria Associated to a Herbaceous Root System. Ann. Microbiol. 2013, 63, 471–476. [Google Scholar] [CrossRef]
- Meena, V.S.; Maurya, B.R.; Verma, J.P.; Aeron, A.; Kumar, A.; Kim, K.; Bajpai, V.K. Potassium Solubilizing Rhizobacteria (KSR): Isolation, Identification, and K-Release Dynamics from Waste Mica. Ecol. Eng. 2015, 81, 340–347. [Google Scholar] [CrossRef]
- Lane, D.J.; Pace, B.; Olsen, G.J.; Stahl, D.A.; Sogin, M.L.; Pace, N.R. Rapid Determination of 16S Ribosomal RNA Sequences for Phylogenetic Analyses. Proc. Natl. Acad. Sci. USA 1985, 82, 6955–6959. [Google Scholar] [CrossRef]
- Denisova, L.I.; Bel’kova, N.L.; Tulokhonov, I.I.; Zaĭchikov, E.F. Diversity of bacteria at various depths in the southern part of lake Baikal as detected by 16S rRNA sequencing. Mikrobiologiia 1999, 68, 547–556. [Google Scholar]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Liang, W.; Liu, S. Rhizosphere Microbiome: The Emerging Barrier in Plant-Pathogen Interactions. Front. Microbiol. 2021, 12, 772420. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Babalola, O.O. The Rhizosphere Microbial Complex in Plant Health: A Review of Interaction Dynamics. J. Integr. Agric. 2022, 21, 2168–2182. [Google Scholar] [CrossRef]
- Pantigoso, H.A.; Newberger, D.; Vivanco, J.M. The Rhizosphere Microbiome: Plant-Microbial Interactions for Resource Acquisition. J. Appl. Microbiol. 2022, 133, 2864–2876. [Google Scholar] [CrossRef]
- Zhang, R.; Vivanco, J.M.; Shen, Q. The Unseen Rhizosphere Root–Soil–Microbe Interactions for Crop Production. Curr. Opin. Microbiol. 2017, 37, 8–14. [Google Scholar] [CrossRef]
- Solanki, M.K.; Joshi, N.C.; Singh, P.K.; Singh, S.K.; Santoyo, G.; Basilio de Azevedo, L.C.; Kumar, A. From Concept to Reality: Transforming Agriculture through Innovative Rhizosphere Engineering for Plant Health and Productivity. Microbiol. Res. 2024, 279, 127553. [Google Scholar] [CrossRef] [PubMed]
- Mapelli, F.; Mengoni, A.; Riva, V.; Borin, S. Bacterial Culturing Is Crucial to Boost Sustainable Agriculture. Trends Microbiol. 2023, 31, 1–4. [Google Scholar] [CrossRef]
- Youseif, S.H.; Abd El-Megeed, F.H.; Humm, E.A.; Maymon, M.; Mohamed, A.H.; Saleh, S.A.; Hirsch, A.M. Comparative Analysis of the Cultured and Total Bacterial Community in the Wheat Rhizosphere Microbiome Using Culture-Dependent and Culture-Independent Approaches. Microbiol. Spectr. 2021, 9, e00678-21. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Xu, J.; Li, Y.; Fang, H.; Niu, W.; Li, X.; Zhang, Y.; Ding, W.; Chen, S. Manipulation of Microbial Community in the Rhizosphere Alleviates the Replanting Issues in Panax ginseng. Soil. Biol. Biochem. 2018, 125, 64–74. [Google Scholar] [CrossRef]
- Nguyen, N.-L.; Kim, Y.-J.; Hoang, V.-A.; Subramaniyam, S.; Kang, J.-P.; Kang, C.H.; Yang, D.-C. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time. PLoS ONE 2016, 11, e0155055. [Google Scholar] [CrossRef]
- Kostenkov, N.M. Oxidation-Reduction Regimes in Periodically Moistened Soils; Nauka: Moscow, Russia, 1987. (In Russian) [Google Scholar]
- Hardoim, P.R.; van Overbeek, L.S.; van Elsas, J.D. Properties of Bacterial Endophytes and Their Proposed Role in Plant Growth. Trends Microbiol. 2008, 16, 463–471. [Google Scholar] [CrossRef]
- Liu, H.; Carvalhais, L.C.; Crawford, M.; Singh, E.; Dennis, P.G.; Pieterse, C.M.J.; Schenk, P.M. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Front. Microbiol. 2017, 8, 2552. [Google Scholar] [CrossRef]
- Xiong, C.; Zhu, Y.-G.; Wang, J.-T.; Singh, B.; Han, L.-L.; Shen, J.-P.; Li, P.-P.; Wang, G.-B.; Wu, C.-F.; Ge, A.-H.; et al. Host Selection Shapes Crop Microbiome Assembly and Network Complexity. New Phytol. 2021, 229, 1091–1104. [Google Scholar] [CrossRef]
- Bai, Y.; Müller, D.B.; Srinivas, G.; Garrido-Oter, R.; Potthoff, E.; Rott, M.; Dombrowski, N.; Münch, P.C.; Spaepen, S.; Remus-Emsermann, M.; et al. Functional Overlap of the Arabidopsis Leaf and Root Microbiota. Nature 2015, 528, 364–369. [Google Scholar] [CrossRef]
- Chu, L.L.; Bae, H. Bacterial Endophytes from Ginseng and Their Biotechnological Application. J. Ginseng Res. 2022, 46, 1–10. [Google Scholar] [CrossRef]
- Comeau, D.; Balthazar, C.; Novinscak, A.; Bouhamdani, N.; Joly, D.L.; Filion, M. Interactions Between Bacillus spp., Pseudomonas spp. and Cannabis sativa Promote Plant Growth. Front. Microbiol. 2021, 12, 715758. [Google Scholar] [CrossRef] [PubMed]
- Daniel, A.I.; Fadaka, A.O.; Gokul, A.; Bakare, O.O.; Aina, O.; Fisher, S.; Burt, A.F.; Mavumengwana, V.; Keyster, M.; Klein, A. Biofertilizer: The Future of Food Security and Food Safety. Microorganisms 2022, 10, 1220. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Potential Use of Bacillus Spp. as an Effective Biostimulant against Abiotic Stresses in Crops—A Review. Curr. Res. Biotechnol. 2023, 5, 100128. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, J.; Wang, T.; Li, Z.; Liang, H.; Jiang, C.; Tang, H.; Gao, J.; Jiang, Y.; Chen, C. The Novel Pseudomonas Thivervalensis Strain JI6 Promotes Growth and Controls Rusty Root Rot Disease in Panax ginseng. Biol. Control 2024, 193, 105514. [Google Scholar] [CrossRef]
- Chowdhury, M.D.E.K.; Bae, H. Bacterial Endophytes Isolated from Mountain-Cultivated Ginseng (Panax Ginseng Mayer) Have Biocontrol Potential against Ginseng pathogens. Biol. Control 2018, 126, 97–108. [Google Scholar] [CrossRef]
- Anckaert, A.; Arguelles Arias, A.; Hoff, G.; Calonne-Salmon, M.; Declerck, S.; Ongena, M. The Use of Bacillus spp. as Bacterial Biocontrol Agents to Control Plant Diseases; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Chu, L.L.; Huy, N.Q.; Tung, N.H. Microorganisms for Ginsenosides Biosynthesis: Recent Progress, Challenges, and Perspectives. Molecules 2023, 28, 1437. [Google Scholar] [CrossRef]
№ Sample | Origin (Populations) | Title | Age (y) |
---|---|---|---|
1 | Wild Blue Mountain | WBM | >>20 |
2 | Wild Blue Mountain | WBM | >>15 |
3 | Blue Mountain | BM-Y | 4 |
4 | Blue Mountain | BM-O | 16 |
5 | Khasan | Kh-Y | 4 |
6 | Khasan | Kh-O | 16 |
7 | Sikhote-Alin | SA-Y | 4 |
8 | Sikhote-Alin | SA-O | 16 |
9 | China plants (Khasan) | Kh (Ch)-O | 12 |
10 | Korean plants with red seeds | KoR-O | 16 |
11 | Korean plants with yellow seeds | KoY-O | 16 |
№ Sample 2024 | Sample | pH H2O * | pH KCl ** | SOM, (g/kg) | TC, (g/kg) | TN, (g/kg) | AN, (g/kg) | P2O5, (g/kg) | AP, (g/kg) | K2O, (g/kg) | AK, (g/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | WBM | 5.86 | 4.85 | 49.99 ± 1.21 | 29.0 ± 1.2 | 12.6 ± 0.4 | 0.104 ± 0.01 | 1.2 ± 0.1 | 0.078 ± 0.16 | 20.1 ± 0.4 | 0.223 ± 0.03 |
2 | WBM | 5.73 | 4.79 | 37.23 ± 1.13 | 21.6 ± 1.1 | 9.8 ± 0.3 | 0.12 ± 0.13 | 1.1 ± 0.1 | 0.052 ± 0.01 | 20.6 ± 0.3 | 0.325 ± 0.05 |
3 | BM-Y | 6.47 | 5.47 | 40.85 ± 1.20 | 23.7 ± 1.2 | 10.5 ± 0.04 | 0.089 ± 0.01 | 1.3 ± 0.1 | 0.243 ± 0.13 | 22.0 ± 0.2 | 0.38 ± 0.09 |
4 | BM-O | 6.64 | 5.53 | 33.44 ± 1.14 | 19.4 ± 1.1 | 8.7 ± 0.03 | 0.092 ± 0.01 | 1.2 ± 0.1 | 0.252 ± 0.05 | 21.7 ± 0.3 | 0.442 ± 0.07 |
5 | SA-Y | 6.05 | 4.86 | 53.27 ± 1.63 | 30.9 ± 1.6 | 13.9 ± 0.05 | 0.087 ± 0.01 | 1.2 ± 0.0.1 | 0.239 ± 0.05 | 23.1 ± 0.5 | 0.325 ± 0.05 |
6 | SA-O | 6.85 | 5.96 | 38.96 ± 1.26 | 22.6 ± 1.3 | 9.9 ± 0.03 | 0.098 ± 0.01 | 1.1 ± 0.1 | 0.705 ± 0.14 | 23.7 ± 0.5 | 0.68 ± 0.1 |
7 | Kh-Y | 6.44 | 5.25 | 31.20 ± 0.78 | 18.1 ± 0.7 | 7.2 ± 0.02 | 0.498 ± 0.06 | 1.1 ± 0.1 | 0.513 ± 0.1 | 23.2 ± 0.5 | 0.44 ± 0.07 |
8 | Kh-O | 7.08 | 6.08 | 32.23 ± 0.99 | 18.7 ± 0.9 | 8.3 ± 0.02 | 0.118 ± 0.01 | 1.0 ± 0.1 | 0.592 ± 0.12 | 23.7 ± 0.5 | 0.73 ± 0.01 |
9 | Ch-O | 6.04 | 4.84 | 46.20 ± 1.16 | 26.8 ± 1.1 | 12.6 ± 0.04 | 0.134 ± 0.02 | 1.1 ± 0.1 | 0.576 ± 0.12 | 22.4 ± 0.5 | 0.37 ± 0.06 |
10 | KoR-O | 5.98 | 4.82 | 22.41 ± 0.53 | 13.0 ± 0.4 | 6.5 ± 0.02 | 0.101 ± 0.01 | 1.1 ± 0.1 | 0.28 ± 0.06 | 22.3 ± 0.5 | 0.76 ± 0.11 |
11 | KoY-O | 6.35 | 5.19 | 47.75 ± 1.51 | 27.7 ± 1.5 | 12.4 ± 0.04 | 0.16 ± 0.02 | 1.1 ± 0.1 | 0.561 ± 0.11 | 22.7 ± 0.5 | 0.63 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorpenchenko, T.Y.; Sidorenko, M.L.; Kim, A.V.; Vologzhanina, Y.V.; Rusakova, D.A.; Timofeeva, Y.O.; Perepelkina, P.A.; Kazarin, V.M.; Zhuravlev, Y.N. Changes in the Composition and Properties of Cultured Bacterial Strains of Ginseng Rhizosphere According to Soil Characteristics in the Forest and Plots. Agronomy 2024, 14, 3019. https://doi.org/10.3390/agronomy14123019
Gorpenchenko TY, Sidorenko ML, Kim AV, Vologzhanina YV, Rusakova DA, Timofeeva YO, Perepelkina PA, Kazarin VM, Zhuravlev YN. Changes in the Composition and Properties of Cultured Bacterial Strains of Ginseng Rhizosphere According to Soil Characteristics in the Forest and Plots. Agronomy. 2024; 14(12):3019. https://doi.org/10.3390/agronomy14123019
Chicago/Turabian StyleGorpenchenko, Tatiana Y., Marina L. Sidorenko, Alexandra V. Kim, Yuliya V. Vologzhanina, Darya A. Rusakova, Yana O. Timofeeva, Polina A. Perepelkina, Vitalii M. Kazarin, and Yuriy N. Zhuravlev. 2024. "Changes in the Composition and Properties of Cultured Bacterial Strains of Ginseng Rhizosphere According to Soil Characteristics in the Forest and Plots" Agronomy 14, no. 12: 3019. https://doi.org/10.3390/agronomy14123019
APA StyleGorpenchenko, T. Y., Sidorenko, M. L., Kim, A. V., Vologzhanina, Y. V., Rusakova, D. A., Timofeeva, Y. O., Perepelkina, P. A., Kazarin, V. M., & Zhuravlev, Y. N. (2024). Changes in the Composition and Properties of Cultured Bacterial Strains of Ginseng Rhizosphere According to Soil Characteristics in the Forest and Plots. Agronomy, 14(12), 3019. https://doi.org/10.3390/agronomy14123019