Organic Amendments Promoted Soil Agglomeration Mainly via Alleviating Abiotic Constraints and Stabilizing and Functionalizing Microbiomes in Coastal Salt-Affected Lands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Location, Experimental Design, and Soil Sampling
2.2. Physicochemical Property and Microbial Enzyme Activity Measurements
2.3. Soil Water-Stable Aggregate Fraction
2.4. Amplicon Sequencing and Bioinformatics Processing
2.5. Statistical Analysis
3. Results
3.1. Soil Aggregates
3.2. Soil Physicochemical Property and Microbial Enzyme Activity
3.3. Diversity and Stability of Soil Microbial Community
3.4. Core and Unique Microbiomes of Soil Bacterial and Fungal Communities
3.5. Linking Physical, Chemical, and Microbial Properties to Aggregation Status in Coastal Salt-Affected Soils
4. Discussion
4.1. Organic Amendment Significantly Promoted Soil Agglomeration
4.2. Organic Amendment Facilitated Microhabitat Amelioration and Microbial Community Diversification and Stabilization
4.3. Organic Amendments Promoted Soil Agglomeration Mainly via Alleviating Abiotic Constraints and Stabilizing and Functionalizing Microbiomes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Liu, D.Y.; Gong, H.R.; Liu, Z.; Zhang, Y.T. Crop yield increments will enhance soil carbon sequestration in coastal arable lands by 2100. J. Clean. Prod. 2023, 432, 139800. [Google Scholar] [CrossRef]
- Su, X.S.; Wang, Y.Q.; Wang, G.X.; Zhang, Y.; Gong, X.L.; Yu, J.; Gou, F.G.; Lyu, H. Assessment and prediction of coastal saline soil improvement effects combining substrate amendments and salt barrier materials in typical region of the Yangtze River Delta. Soil Tillage Res. 2022, 223, 105483. [Google Scholar] [CrossRef]
- Nikalje, G.C.; Srivastava, A.K.; Pandey, G.K.; Suprasanna, P. Halophytes in biosaline agriculture: Mechanism, utilization, and value addition. Land Degrad. Dev. 2018, 29, 1081–1095. [Google Scholar] [CrossRef]
- Li, Y.L.; Chen, W.F.; Xu, Y.W.; Yu, J.; Zuo, W.G.; Shan, Y.H.; Bai, Y.C. Environmental constraints mitigation directly drove the diversifications of fungal community and functional profile in amended coastal salt-affected soils. Agronomy 2024, 14, 2772. [Google Scholar] [CrossRef]
- Bai, Y.C.; Xue, W.J.; Yan, Y.Y.; Zuo, W.G.; Shan, Y.H.; Feng, K. The challenge of improving coastal mudflat soil: Formation and stability of organo-mineral complexes. Land Degrad. Dev. 2018, 29, 1074–1080. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, J.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Hartmann, M.; Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18. [Google Scholar] [CrossRef]
- Merino-Martín, L.; Stokes, A.; Gweon, H.S.; Moragues-Saitua, L.; Staunton, S.; Plassard, C.; Griffiths, R.I. Interacting effects of land use type, microbes and plant traits on soil aggregate stability. Soil Biol. Biochem. 2021, 154, 108072. [Google Scholar] [CrossRef]
- Cao, S.; Zhou, Y.Z.; Zhou, Y.Y.; Zhou, X.; Zhou, W.J. Soil organic carbon and soil aggregate stability associated with aggregate fractions in a chronosequence of citrus orchards plantations. J. Environ. Manag. 2021, 293, 112847. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.J.; Chen, Q.F.; Wu, L.F.; Yang, H.J.; Xu, J.K.; Zhang, Y.P. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: A 4-year field study. Soil Till. Res. 2020, 198, 104535. [Google Scholar] [CrossRef]
- Feng, H.J.; Wang, S.Y.; Gao, Z.D.; Pan, H.; Zhuge, Y.P.; Ren, X.Q.; Hu, S.W.; Li, C.L. Aggregate stability and organic carbon stock under different land uses integrally regulated by binding agents and chemical properties in saline-sodic soils. Land Degrad. Dev. 2021, 32, 4151–4161. [Google Scholar] [CrossRef]
- Wu, L.P.; Wang, Y.D.; Zhang, S.R.; Wei, W.L.; Kuzyakov, Y.; Ding, X.D. Fertilization effects on microbial community composition and aggregate formation in saline-alkaline soil. Plant Soil 2021, 463, 523–535. [Google Scholar] [CrossRef]
- Lehmann, A.; Zheng, W.S.; Rillig, M.C. Soil biota contributions to soil aggregation. Nat. Ecol. Evol. 2017, 1, 1828–1835. [Google Scholar] [CrossRef] [PubMed]
- Guhra, T.; Stolze, K.; Totsche, K.U. Pathways of biogenically excreted organic matter into soil aggregates. Soil Biol. Biochem. 2022, 164, 108483. [Google Scholar] [CrossRef]
- Lavelle, P.; Spain, A.; Blouin, M.; Brown, G.; Decaëns, T.; Grimaldi, M.; Jiménez, J.J.; McKey, D.; Mathieu, J.; Velasquez, E.; et al. Ecosystem engineers in a self-organized soil: A review of concepts and future research questions. Soil Sci. 2016, 181, 91–109. [Google Scholar] [CrossRef]
- Hale, L.; Curtis, D.; Leon, N.; McGiffen, M., Jr.; Wang, D. Organic amendments, deficit irrigation, and microbial communities impact extracellular polysaccharide content in agricultural soils. Soil Biol. Biochem. 2021, 162, 108428. [Google Scholar] [CrossRef]
- Landeweert, R.; Hoffland, E.; Finlay, R.D.; Kuyper, T.W.; van Breemen, N. Linking plants to rocks: Ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol. Evol. 2001, 16, 248–254. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.Y.; Liang, Y.Q.; Liang, Y.Y.; Zhao, Y.T.; Wang, Z.C.; Li, Y.Z.; Liu, W.C.; Wang, X.; Yang, G.H.; et al. The multifunctionality of soil aggregates is related to the complexity of aggregate microbial community during afforestation. Catena 2024, 236, 107737. [Google Scholar] [CrossRef]
- Wu, Q.C.; Chen, Y.; Dou, X.H.; Liao, D.X.; Li, K.Y.; An, C.C.; Li, G.H.; Dong, Z. Microbial fertilizers improve soil quality and crop yield in coastal saline soils by regulating soil bacterial and fungal community structure. Sci. Total Environ. 2024, 949, 175127. [Google Scholar] [CrossRef]
- Li, Y.L.; Shen, C.; Wang, Y.M.; Xu, L.; Zhao, Y.L.; Yi, S.Q.; Zuo, W.G.; Yao, R.J.; Zhang, X.; Gu, C.H.; et al. Alleviated environmental constraints and restructured fungal microbiome facilitate aggregate formation and stabilization in coastal mudflat saline soil amended by sewage sludge. Land Degrad. Dev. 2023, 34, 3064–3075. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, Y.M.; Gu, C.H.; Shen, C.; Xu, L.; Zhao, Y.L.; Yi, S.Q.; Zuo, W.G.; Shan, Y.H.; Zhang, Z.Q.; et al. Differential effects of organic ameliorants on the reassembly of bacterial communities in newly amended coastal mudflat salt-affected soil. Agronomy 2022, 12, 2525. [Google Scholar] [CrossRef]
- IUSS Working Group WRB (International Union of Soil Science Working Group on World Reference Base). World Reference Base for Soil Resources 2006 (First Update 2007); World Soil Resources Reports No. 103; FAO: Rome, Italy, 2007. [Google Scholar] [CrossRef]
- Lu, R.K. Soil Agricultural Chemical Analysis Method; China Agricultural Science Technology Press: Beijing, China, 2000. [Google Scholar]
- Hong, Y.H.; Zhao, D.; Zhang, F.Z.; Shen, G.N.; Yuan, Y.; Gao, Y.M.; Yan, L.; Wei, D.; Wang, W.D. Soil water-stable aggregates and microbial community under long-term tillage in black soil of Northern China. Ecotoxicology 2021, 30, 1754–1768. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.J.N. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Leng, F.F.; Cui, X.S.; Zhu, N.; Zhu, X.Q.; Wang, X.L.; Wang, Y.G. Characterization of root microbial communities associated with Astragalus membranaceus and their correlation with soil environmental factors. Rhizosphere 2023, 25, 100656. [Google Scholar] [CrossRef]
- Chen, Q.L.; An, X.L.; Li, H.; Su, J.Q.; Ma, Y.B.; Zhu, Y.G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ. Int. 2016, 92, 1–10. [Google Scholar] [CrossRef]
- Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Caravaca, F.; Alguacil, M.M.; Azcón, R.; Roldán, A. Formation of stable aggregates in rhizosphere soil of Juniperus oxycedrus: Effect of AM fungi and organic amendments. Appl. Soil Ecol. 2006, 33, 30–38. [Google Scholar] [CrossRef]
- Liu, M.L.; Wang, C.; Wang, F.Y.; Xie, Y.J. Vermicompost and humic fertilizer improve coastal saline soil by regulating soil aggregates and the bacterial community. Arch. Agron. Soil Sci. 2019, 65, 281–293. [Google Scholar] [CrossRef]
- Hanay, A.; Büyüksönmez, F.; Kiziloglu, F.M.; Canbolat, M.Y. Reclamation of saline-sodic soils with gypsum and MSW compost. Compost Sci. Util. 2004, 12, 175–179. [Google Scholar] [CrossRef]
- Xiao, R.; Guo, Y.T.; Zhang, M.X.; Pan, W.B.; Wang, J.J. Stronger network connectivity with lower diversity of soil fungal community was presented in coastal marshes after sixteen years of freshwater restoration. Sci. Total Environ. 2020, 744, 140623. [Google Scholar] [CrossRef]
- Curci, M.; Lavecchia, A.; Cucci, G.; Lacolla, G.; Corato, U.D.; Crecchio, C. Short-term effects of sewage sludge compost amendment on semiarid soil. Soil Syst. 2020, 4, 48. [Google Scholar] [CrossRef]
- Ferreras, L.; Gómez, E.; Toresani, S.; Firpo, I.; Rotondo, R. Effect of organic amendments on some physical, chemical and biological properties in a horticultural soil. Bioresource Technol. 2006, 97, 635–640. [Google Scholar] [CrossRef]
- Oades, J.M.; Waters, A.G. Aggregate hierarchy in soils. Soil Res. 1991, 29, 815–828. [Google Scholar] [CrossRef]
- Sandoval-Estrada, M.; Celis-Hidalgo, J.; Stolpe-Lau, N.; Capulín-Grande, J.J.A. Effect of sewage sludge and salmon wastes amendments on the structure of an Entisol and Alfisol in Chile. Agrociencia 2010, 44, 503–515. [Google Scholar] [CrossRef]
- Rashid, I.; Murtaza, G.; Zahir, Z.A.; Farooq, M. Effect of humic and fulvic acid transformation on cadmium availability to wheat cultivars in sewage sludge amended soil. Environ. Sci. Pollut. Res. 2018, 25, 16071–16079. [Google Scholar] [CrossRef]
- Aminiyan, M.M.; Sinegani, A.A.S.; Sheklabadi, M. Aggregation stability and organic carbon fraction in a soil amended with some plant residues, nanozeolite, and natural zeolite. Int. J. Recycling Org. 2015, 4, 11–22. [Google Scholar] [CrossRef]
- Zhang, L.M.; Luo, Y.H.; Wang, Y.; Zhang, C.F.; Cai, G.J.; Su, W.C.; Yu, L.F. Key microorganisms influencing mineral-protected organic carbon formation in soils with exogenous carbon addition. Agronomy 2024, 14, 2333. [Google Scholar] [CrossRef]
- Li, F.; Chen, L.; Redmile-Gordon, M.; Zhang, J.B.; Zhang, C.Z.; Ning, Q.; Li, W. Mortierella elongata’s roles in organic agriculture and crop growth promotion in a mineral soil. Land Degrad. Dev. 2018, 29, 1642–1651. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijakowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Al-Kindi, S.; Abed, R.M. Effect of biostimulation using sewage sludge; soybean meal; and wheat straw on oil degradation and bacterial community composition in a contaminated desert soil. Front. Microbiol. 2016, 7, 240. [Google Scholar] [CrossRef] [PubMed]
- Mattana, S.; Petrovičová, B.; Landi, L.; Gelsomino, A.; Cortés, P.; Ortiz, O.; Renella, G. Sewage sludge processing determines its impact on soil microbial community structure and function. Appl. Soil Ecol. 2014, 75, 150–161. [Google Scholar] [CrossRef]
- Guevara, R.; Ikenaga, M.; Dean, A.L.; Pisani, C.; Boyer, J.N. Changes in sediment bacterial community in response to long-term nutrient enrichment in a subtropical seagrass-dominated estuary. Microb. Ecol. 2014, 68, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Jousset, A.; Bienhold, C.; Chatzinotas, A.; Gallien, L.; Gobet, A.; Kurm, V.; Küsel, K.; Rillig, M.C.; Rivett, D.W.; Salles, J.F. Where less may be more: How the rare biosphere pulls ecosystems strings. ISME J. 2017, 4, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Kleber, M.; Johnson, M.G. Advances in understanding the molecular structure of soil organic matter: Implications for interactions in the environment. Adv. Agron. 2010, 106, 77–142. [Google Scholar] [CrossRef]
- Kaiser, K.; Guggenberger, G. Sorptive stabilization of organic matter by microporous goethite: Sorption into small pores vs. surface complexation. Eur. J. Soil Sci. 2007, 58, 45–59. [Google Scholar] [CrossRef]
- Aksakal, E.L.; Sari, S.; Angin, I. Effects of vermicompost application on soil aggregation and certain physical properties. Land Degrad. Dev. 2016, 27, 983–995. [Google Scholar] [CrossRef]
- Li, P.; Kong, D.N.; Zhang, H.J.; Xu, L.Y.; Li, C.K.; Wu, M.C.; Jiao, J.G.; Li, D.M.; Xu, L.; Li, H.X.; et al. Different regulation of soil structure and resource chemistry under animal-and plant-derived organic fertilizers changed soil bacterial communities. Appl. Soil Ecol. 2021, 165, 104020. [Google Scholar] [CrossRef]
- Wilpiszeski, R.L.; Aufrecht, J.A.; Retterer, S.T.; Sullivan, M.B.; Graham, D.E.; Pierce, E.M.; Zablocki, O.D.; Palumbo, A.V.; Elias, D.A. Soil aggregate microbial communities: Towards understanding microbiome interactions at biologically relevant scales. Appl. Environ. Microbiol. 2019, 85, e00324-19. [Google Scholar] [CrossRef]
- Tong, L.H.; Zhu, L.; Lv, Y.Z.; Zhu, K.; Liu, X.Y.; Zhao, R. Response of organic carbon fractions and microbial community composition of soil aggregates to long-term fertilizations in an intensive greenhouse system. J. Soil. Sediment. 2020, 20, 641–652. [Google Scholar] [CrossRef]
- Yao, J.C.; Yao, G.J.; Wang, Z.H.; Yan, X.J.; Lu, Q.Q.; Li, W.; Liu, Y.D. Bioaugmentation of intertidal sludge enhancing the development of salt-tolerant aerobic granular sludge. J. Environ. Manag. 2023, 325, 116394. [Google Scholar] [CrossRef] [PubMed]
- Asif, T.; Javed, U.; Zafar, S.B.; Ansari, A.; Qader, S.A.U.; Aman, A. Bioconversion of colloidal chitin using novel chitinase from Glutamicibacter uratoxydans exhibiting anti-fungal potential by hydrolyzing chitin within fungal cell wall. Waste Biomass Valor. 2020, 11, 4129–4143. [Google Scholar] [CrossRef]
- Adia, M.H.; Jacques, M.A.; Koebnik, R. Adhesion mechanisms of plant-pathogenic Xanthomonadaceae. In Advances in Experimental Medicine and Biology; Bacterial Adhesion; Springer: Dordrecht, The Netherlands, 2011; Volume 715, pp. 71–89. [Google Scholar] [CrossRef]
- Vuko, M.; Cania, B.; Vogel, C.; Kublik, S.; Schloter, M.; Schulz, S. Shifts in reclamation management strategies shape the role of exopolysaccharide and lipopolysaccharide-producing bacteria during soil formation. Microb. Biotechnol. 2020, 13, 584–598. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.X.; Cao, M.M.; Sang, C.C.; Li, T.X.; Zhang, Y.J.; Chang, Y.X.; Li, L.L. Trichoderma bio-fertilizer decreased C mineralization in aggregates on the southern North China Plain. Agriculture 2022, 12, 1001. [Google Scholar] [CrossRef]
- Kinsbursky, R.; Levanon, D.; Yaron, B. Role of fungi in stabilizing aggregates of sewage sludge amended soils. Soil Sci. Soc. Am. J. 1989, 53, 1086–1091. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Chen, L.; Zhu, F.; Wang, Y.J.; Jiang, J.; Chen, K.B.; Xue, S.G. Stable aggregate formation and microbial diversity resilience in soil formation of bauxite residue: Roles of extracellular polymeric substances secreted by Penicillium oxalicum. ACS EST Eng. 2023, 3, 1758–1769. [Google Scholar] [CrossRef]
Items | Treatments | |||
---|---|---|---|---|
CK | S50 | S100 | S200 | |
BD (g cm−3) | 1.34 ± 0.01 a | 1.31 ± 0.01 b | 1.28 ± 0.01 cd | 1.16 ± 0.02 d |
pH (soil/H2O 1:5) | 9.33 ± 0.09 a | 9.11 ± 0.04 ab | 8.78 ± 0.02 bc | 8.57 ± 0.20 c |
EC (mS cm−1) | 1.55 ± 0.07 a | 1.25 ± 0.04 b | 0.82 ± 0.08 c | 0.72 ± 0.06 c |
SOC (g kg−1) | 3.60 ± 0.32 c | 11.27 ± 1.13 b | 11.92 ± 1.83 a | 21.69 ± 3.71 a |
TN (g kg−1) | 0.33 ± 0.01 b | 0.67 ± 0.06 b | 0.70 ± 0.13 b | 1.33 ± 0.35 a |
C/N | 10.78 ± 3.19 a | 16.90 ± 4.60 a | 17.12 ± 6.35 a | 16.35 ± 6.08 a |
TP (g kg−1) | 0.4 ± 0.02 b | 0.61 ± 0.04 b | 0.68 ± 0.14 b | 1.24 ± 0.09 a |
AN (mg kg−1) | 38.0 ± 0.3 b | 107.1 ± 14.8 ab | 82.8 ± 11.4 ab | 183.8 ± 64.0 a |
AP (mg kg−1) | 21.4 ± 1.8 b | 84.5 ± 11.4 ab | 94.8 ± 21.6 ab | 159.0 ± 37.4 a |
Treatments | FDA (mg g−1 24 h−1) | SUC (mg g−1 24 h−1) | URE (mg g−1 24 h−1) | ALP (mg g−1 24 h−1) |
---|---|---|---|---|
CK | 5.84 ± 0.87 b | 0.47 ± 0.06 c | 0.02 ± 0.01 c | 0.67 ± 0.01 c |
S50 | 10.07 ± 1.71 b | 0.81 ± 0.15 c | 0.03 ± 0.01 c | 0.97 ± 0.01 b |
S100 | 14.96 ± 1.24 a | 1.02 ± 0.02 b | 0.09 ± 0.02 b | 1.05 ± 0.10 b |
S200 | 17.63 ± 1.30 a | 1.95 ± 0.04 a | 0.24 ± 0.02 a | 1.98 ± 0.09 a |
Core Microbiome | Bacterial Community Stability | Fungal Community Stability | Aggregate Formation (R0.25) | Aggregate Stability (MWD) | |||||
---|---|---|---|---|---|---|---|---|---|
r | Radj2 | r | Radj2 | r | Radj2 | r | Radj2 | ||
Bacteria | Xanthomonadaceae | 0.75 ** | 0.63 *** | 0.92 ** | 0.88 *** | 0.88 ** | 0.81 *** | ||
Pelobacteraceae | −0.65 * | 0.47 ** | 0.48 ** | −0.78 ** | 0.31 * | −0.72 ** | 0.28 * | ||
Cytophagaceae | −0.68 * | 0.55 ** | 0.48 ** | ||||||
Sinobacteraceae | −0.83 ** | 0.48 ** | −0.71 ** | 0.42 * | |||||
Nitrospiraceae | −0.67 * | 0.44 * | −0.60 * | 0.35 * | −0.64 * | 0.38 * | −0.74 ** | 0.38 * | |
Thermomonosporaceae | 0.33 * | 0.59 * | 0.27 * | 0.29 * | |||||
Rhodospirillaceae | 0.72 * | 0.73 *** | 0.66 * | 0.49 ** | 0.70 * | 0.61 ** | 0.77 ** | 0.61 ** | |
Marinicellaceae | −0.58 * | 0.33 * | 0.34 * | −0.60 ** | 0.33 * | ||||
Rhodothermaceae | −0.65 * | 0.47 ** | −0.88 ** | 0.91 *** | −0.80 ** | 0.82 *** | |||
Micrococcaceae | 0.78 ** | 0.58 ** | 0.81 ** | 0.63 *** | 0.80 ** | 0.65 *** | |||
Pirellulaceae | 0.68 *** | ||||||||
Fungi | Stachybotrys | −0.874 ** | 0.71 *** | 0.64 *** | −0.90 ** | 0.29 * | −0.92 ** | 0.34 * | |
Trichoderma | 0.748 ** | 0.77 *** | 0.59 * | 0.49 ** | 0.91 ** | 0.69 *** | 0.87 ** | 0.69 *** | |
Fusarium | 0.35 * | 0.59 * | 0.47 ** | ||||||
Mortierella | 0.61 * | 0.42 * | 0.31 * | ||||||
Myriococcum | 0.45 ** | 0.44 * | |||||||
Myxocephala | 0.83 ** | 0.84 *** | 0.49 ** | 0.94 ** | 0.68 *** | 0.92 ** | 0.69 *** | ||
Acremonium | −0.80 ** | 0.69 *** | −0.62 * | 0.64 *** | −0.85 ** | 0.31 * | |||
Cephaliophora | 0.30 * | 0.76 *** | 0.64 *** | ||||||
Penicillium | 0.80 ** | 0.85 *** | 0.33 * | 0.87 ** | 0.71 *** | 0.88 ** | 0.75 *** | ||
Cladosporium | 0.60 * | 0.31* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, M.; Fan, M.; Li, X.; Jiang, L.; Hao, Z.; Yu, J.; Yang, Y.; Zuo, W.; Shan, Y.; et al. Organic Amendments Promoted Soil Agglomeration Mainly via Alleviating Abiotic Constraints and Stabilizing and Functionalizing Microbiomes in Coastal Salt-Affected Lands. Agronomy 2024, 14, 2864. https://doi.org/10.3390/agronomy14122864
Li Y, Wang M, Fan M, Li X, Jiang L, Hao Z, Yu J, Yang Y, Zuo W, Shan Y, et al. Organic Amendments Promoted Soil Agglomeration Mainly via Alleviating Abiotic Constraints and Stabilizing and Functionalizing Microbiomes in Coastal Salt-Affected Lands. Agronomy. 2024; 14(12):2864. https://doi.org/10.3390/agronomy14122864
Chicago/Turabian StyleLi, Yunlong, Mengyao Wang, Mengwei Fan, Xuxia Li, Lan Jiang, Zequn Hao, Jie Yu, Yanju Yang, Wengang Zuo, Yuhua Shan, and et al. 2024. "Organic Amendments Promoted Soil Agglomeration Mainly via Alleviating Abiotic Constraints and Stabilizing and Functionalizing Microbiomes in Coastal Salt-Affected Lands" Agronomy 14, no. 12: 2864. https://doi.org/10.3390/agronomy14122864
APA StyleLi, Y., Wang, M., Fan, M., Li, X., Jiang, L., Hao, Z., Yu, J., Yang, Y., Zuo, W., Shan, Y., & Bai, Y. (2024). Organic Amendments Promoted Soil Agglomeration Mainly via Alleviating Abiotic Constraints and Stabilizing and Functionalizing Microbiomes in Coastal Salt-Affected Lands. Agronomy, 14(12), 2864. https://doi.org/10.3390/agronomy14122864