Neodymium Nitrate Improves the Germination of Aged Wheat Seeds by Increasing Soluble Substances and Activating Antioxidative and Metabolic Enzymes in Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Determination of the Optimal Neodymium Nitrate Treatment Concentration
2.3. Seedling Growth and Biochemical Analyses
2.4. Enzyme Activity Assays
2.5. Statistical Analysis
3. Results
3.1. Neodymium Nitrate Concentration Affects Vigor Recovery in Aged Seeds
3.2. Effects of Neodymium on Seed Germination and Seedling Biochemical Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, X.; Lv, G.; Mou, Q.; Mi, Y.; Yin, F.; Li, N.; Qian, Z.; Wu, K. Effects of Different Sowing amounts on yield and dry matter production and transport of ‘Xinmai 296’. Chin. Agric. Sci. Bull. 2022, 38, 1–7. [Google Scholar] [CrossRef]
- Kirkwood, T.B.; Melov, S. On the Programmed/Non-Programmed Nature of Ageing within the Life History. Curr. Biol. 2011, 21, R701–R707. [Google Scholar] [CrossRef] [PubMed]
- Matthews, S.; Noli, E.; Demir, I.; Khajeh-Hosseini, M.; Wagner, M.-H. Evaluation of seed quality: From physiology to international standardization. Seed Sci. Res. 2012, 22, S69–S73. [Google Scholar] [CrossRef]
- Hu, D.; Ma, G.; Wang, Q.; Yao, J.; Wang, Y.; Pritchard, H.W.; Wang, X. Spatial and temporal nature of reactive oxygen species production and programmed cell death in elm (Ulmus pumila L.) seeds during controlled deterioration. Plant Cell Environ. 2012, 35, 2045–2059. [Google Scholar] [CrossRef] [PubMed]
- Murthy, U.M.N.; Kumar, P.P.; Sun, W.Q. Mechanisms of seed ageing under different storage conditions for Vigna radiata (L.) Wilczek: Lipid peroxidation, sugar hydrolysis, Maillard reactions and their relationship to glass state transition. J. Exp. Bot. 2003, 54, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Siadat, S.A.; Moosavi, A.; Zadeh, M.S. Effects of Seed Priming on Antioxidant Activity and Germination Characteristics of Maize Seeds under Different Ageing Treatment. Res. J. Seed Sci. 2012, 5, 51–62. [Google Scholar] [CrossRef]
- Delouche, J.C.; Baskin, C.C. Accelerated aging techniques for predicting the relative storability of seed lots. Seed Sci. Technol. 1973, 1, 427–452. [Google Scholar]
- Zhang, S.-B.; Lv, Y.-Y.; Wang, Y.-L.; Jia, F.; Wang, J.-S.; Hu, Y.-S. Physiochemical changes in wheat of different hardnesses during storage. J. Stored Prod. Res. 2017, 72, 161–165. [Google Scholar] [CrossRef]
- Tian, P.-P.; Lv, Y.-Y.; Yuan, W.-J.; Zhang, S.-B.; Hu, Y.-S. Effect of artificial aging on wheat quality deterioration during storage. J. Stored Prod. Res. 2019, 80, 50–56. [Google Scholar] [CrossRef]
- Calucci, L.; Capocchi, A.; Galleschi, L.; Ghiringhelli, S.; Pinzino, C.; Saviozzi, F.; Zandomeneghi, M. Antioxidants, Free Radicals, Storage Proteins, Puroindolines, and Proteolytic Activities in Bread Wheat (Triticum aestivum) Seeds during Accelerated Aging. J. Agric. Food Chem. 2004, 52, 4274–4281. [Google Scholar] [CrossRef]
- Mira, S.; Pirredda, M.; Martín-Sánchez, M.; Marchessi, J.E.; Martín, C. DNA methylation and integrity in aged seeds and regenerated plants. Seed Sci. Res. 2020, 30, 92–100. [Google Scholar] [CrossRef]
- Kranner, I.; Chen, H.; Pritchard, H.W.; Pearce, S.R.; Birtić, S. Inter-nucleosomal DNA fragmentation and loss of RNA integrity during seed ageing. Plant Growth Regul. 2011, 63, 63–72. [Google Scholar] [CrossRef]
- Ahmed, Z.; Yang, H.; Fu, Y.-B. The Associative Changes in Scutellum Nuclear Content and Morphology with Viability Loss of Naturally Aged and Accelerated Aging Wheat (Triticum aestivum) Seeds. Front. Plant Sci. 2016, 7, 1474. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-B.; Yang, M.-H.; Horbach, C.; Kessler, D.; Diederichsen, A.; You, F.M.; Wang, H. Patterns of SSR variation in bread wheat (Triticum aestivum L.) seeds under ex situ genebank storage and accelerated ageing. Genet. Resour. Crop Evol. 2017, 64, 277–290. [Google Scholar] [CrossRef]
- Bailly, C.; El-Maarouf-Bouteau, H.; Corbineau, F. From intracellular signaling networks to cell death: The dual role of reactive oxygen species in seed physiology. Comptes Rendus Biol. 2008, 331, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Bellani, L.M.; Salvini, L.; Dell’aquila, A.; Scialabba, A. Reactive oxygen species release, vitamin E, fatty acid and phytosterol contents of artificially aged radish (Raphanus sativus L.) seeds during germination. Acta Physiol. Plant. 2012, 34, 1789–1799. [Google Scholar] [CrossRef]
- Oracz, K.; El-Maarouf-Bouteau, H.; Kranner, I.; Bogatek, R.; Corbineau, F.; Bailly, C. The Mechanisms Involved in Seed Dormancy Alleviation by Hydrogen Cyanide Unravel the Role of Reactive Oxygen Species as Key Factors of Cellular Signaling during Germination. Plant Physiol. 2009, 150, 494–505. [Google Scholar] [CrossRef]
- Suliman, M.S.E.; Elradi, S.B.M.; Zhou, G.; Nimir, N.E.A.; Zhu, G.; Ali, A.Y.A. Seeds primed with 5-aminolevulinic acid mitigated temperature and drought stresses of wheat at germination and early seedling growth. Chil. J. Agric. Res. 2022, 82, 111–123. [Google Scholar] [CrossRef]
- Samarah, N.H.; Al-Quraan, N.A.; Al-Wraikat, B.S. Ultrasonic treatment to enhance seed germination and vigour of wheat (Triticum durum) in association with γ-aminobutyric acid (GABA) shunt pathway. Funct. Plant Biol. 2023, 50, 277–293. [Google Scholar] [CrossRef]
- D’aquino, L.; de Pinto, M.C.; Nardi, L.; Morgana, M.; Tommasi, F. Effect of some light rare earth elements on seed germination, seedling growth and antioxidant metabolism in Triticum durum. Chemosphere 2009, 75, 900–905. [Google Scholar] [CrossRef]
- Rocha, L.; Silva, E.; Pavia, I.; Ferreira, H.; Matos, C.; Osca, J.M.; Moutinho-Pereira, J.; Lima-Brito, J. Seed Soaking with Sodium Selenate as a Biofortification Approach in Bread Wheat: Effects on Germination, Seedling Emergence, Biomass and Responses to Water Deficit. Agronomy 2022, 12, 1975. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, H.; Wen, X.-X.; Liao, Y.-C. Effect of polyamine on seed germination of wheat under drought stress is related to changes in hormones and carbohydrates. J. Integr. Agric. 2016, 15, 2759–2774. [Google Scholar] [CrossRef]
- Wang, J.; Lv, P.; Yan, D.; Zhang, Z.; Xu, X.; Wang, T.; Wang, Y.; Peng, Z.; Yu, C.; Gao, Y.; et al. Exogenous Melatonin Improves Seed Germination of Wheat (Triticum aestivum L.) under Salt Stress. Int. J. Mol. Sci. 2022, 23, 8436. [Google Scholar] [CrossRef] [PubMed]
- Fashui, H.; Ling, W.; Chao, L. Study of Lanthanum on Seed Germination and Growth of Rice. Biol. Trace Elem. Res. 2003, 94, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Chao, L.; Fashui, H.; Lei, Z. Effects of rare earth elements on vigor enhancement of aged spinach seeds. J. Rare Earth 2004, 22, 547–551. [Google Scholar] [CrossRef]
- Ramírez-Olvera, S.M.; Trejo-Téllez, L.I.; García-Morales, S.; Pérez-Sato, J.A.; Gómez-Merino, F.C. Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice. PLoS ONE 2018, 13, e0194691. [Google Scholar] [CrossRef] [PubMed]
- Sobarzo-Bernal, O.; Gómez-Merino, F.C.; Alcántar-González, G.; Saucedo-Veloz, C.; Trejo-Téllez, L.I. Biostimulant Effects of Cerium on Seed Germination and Initial Growth of Tomato Seedlings. Agronomy 2021, 11, 1525. [Google Scholar] [CrossRef]
- Song, K.; Gao, J.; Li, S.; Sun, Y.; Sun, H.; An, B.; Hu, T.; He, X. Experimental and Theoretical Study of the Effects of Rare Earth Elements on Growth and Chlorophyll of Alfalfa (Medicago sativa L.) Seedling. Front. Plant Sci. 2021, 12, 731838. [Google Scholar] [CrossRef]
- Fashui, H. Study on the Mechanism of Cerium Nitrate Effects on Germination of Aged Rice Seed. Biol. Trace Elem. Res. 2002, 87, 191–200. [Google Scholar] [CrossRef]
- Gudasi, K.B.; Shenoy, R.V.; Vadavi, R.S.; Patil, M.S.; Patil, S.A.; Hanchinal, R.R.; Desai, S.A.; Lohithaswa, H. Lanthanide(III) and Yttrium(III) Complexes of Benzimidazole-2-Acetic Acid: Synthesis, Characterisation and Effect of La(III) Complex on Germination of Wheat. Bioinorg. Chem. Appl. 2006, 2006, 075612. [Google Scholar] [CrossRef]
- Lu, C.H.; Niu, H.J.; Qi, F.; Liu, M.L.; Sun, H. Effects of cerium on physiological Parameters of wheat seed germination under salt stress. Agric. Sci. Equip. 2014, 8–9, 11. [Google Scholar] [CrossRef]
- Guo, B.S.; Zhu, W.M.; Xiong, B.K. Rare Earths in Agriculture; China Agricultural Science and Technology Press: Beijing, China, 1988; pp. 1–22, 45–202. (In Chinese) [Google Scholar]
- Ni, J.Z. Bioinorganic Chemistry of Rare Earth Elements; Science Press: Beijing, China, 1995; pp. 13–37. (In Chinese) [Google Scholar]
- Ning, J.B. Application of Rare Earths in Agriculture; Hunan Science and Technology Press: Changsha, China, 1988; pp. 94–98. (In Chinese) [Google Scholar]
- Akbari, G.A.; Heshmati, S.; Soltani, E.; Dehaghi, M.A. Influence of Seed Priming on Seed Yield, Oil Content and Fatty Acid Composition of Safflower (Carthamus tinctorius L.) Grown Under Water Deficit. Int. J. Plant Prod. 2020, 14, 245–258. [Google Scholar] [CrossRef]
- Matthews, S.; Powell, A.A.; Perry, D.A.; Hampton, J.G.; Tekrony, D.M.; Tekrony, D.; Powellrichards, A.; Matheus, S.; Carvalho, N.M. Handbook for Vigour Test Methods, 3rd ed.; The ISTA Vigour Test Committee: Wallisellen, Switzerland, 1995. [Google Scholar]
- Wang, J.Q.; Yang, Z.R.; Zhang, F.L.; Zhang, X.Y.; Zhang, D.; Song, Y.J. Effects of different treatments of Rare Earth Elements on the vigor and physiological and biochemical characteristics of allium mongolicum regel seeds. North. Hortic. 2021, 20, 11–17. [Google Scholar]
- Ritchie, R.J. Consistent Sets of Spectrophotometric Chlorophyll Equations for Acetone, Methanol and Ethanol Solvents. Photosynth. Res. 2006, 89, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Sumanta, N.; Choudhury, I.; Haque Nishika, J.; Suprakash, R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 2014, 4, 63–69. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxi-dation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]
- Havir, E.A.; McHale, N.A. Biochemical and Developmental Characterization of Multiple Forms of Catalase in Tobacco Leaves. Plant Physiol. 1987, 84, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Baik, B.-K.; Czuchajowska, Z.; Pomeranz, Y. Comparison of Polyphenol Oxidase Activities in Wheats and Flours from Australian and U.S. Cultivars. J. Cereal Sci. 1994, 19, 291–296. [Google Scholar] [CrossRef]
- Islam, E.; Yang, X.; Li, T.; Liu, D.; Jin, X.; Meng, F. Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J. Hazard. Mater. 2007, 147, 806–816. [Google Scholar] [CrossRef] [PubMed]
- Ben Elarbi, M.; Khemiri, H.; Jridi, T.; Ben Hamida, J. Purification and characterization of α-amylase from safflower (Carthamus tinctorius L.) germinating seeds. Comptes Rendus Biol. 2009, 332, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-J.; Hu, Q.-P. Effect of Bacillus subtilis QM3 on β-amylase Isoenzyme in Early Germination of Wheat Seed. South Asian J. Res. Microbiol. 2020, 6, 24–32. [Google Scholar] [CrossRef]
- Xu, J.-J.; Jiang, B.; Xu, S.-Y. Rapid determination of glutamate decarboxylase activity from lactic acid bacteria by spectrometric method and its application. Bull. Microbiol. 2004, 31, 66–71. [Google Scholar] [CrossRef]
- Rifna, E.; Ramanan, K.R.; Mahendran, R. Emerging technology applications for improving seed germination. Trends Food Sci. Technol. 2019, 86, 95–108. [Google Scholar] [CrossRef]
- Probert, R.; Adams, J.; Coneybeer, J.; Crawford, A.; Hay, F. Seed quality for conservation is critically affected by pre-storage factors. Aust. J. Bot. 2007, 55, 326–335. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, F.; Zhao, S.; Yang, C.; Meng, Y.; Shuai, H.; Luo, X.; Dai, Y.; Yin, H.; Du, J.; et al. DA-6 promotes germination and seedling establishment from aged soybean seeds by mediating fatty acid metabolism and glycometabolism. J. Exp. Bot. 2019, 70, 101–114. [Google Scholar] [CrossRef]
- Xia, F.; Cheng, H.; Chen, L.; Zhu, H.; Mao, P.; Wang, M. Influence of exogenous ascorbic acid and glutathione priming on mitochondrial structural and functional systems to alleviate aging damage in oat seeds. BMC Plant Biol. 2020, 20, 104. [Google Scholar] [CrossRef]
- Sheng, Y.; Xiao, H.; Guo, C.; Wu, H.; Wang, X. Effects of exogenous gamma-aminobutyric acid on α-amylase activity in the aleurone of barley seeds. Plant Physiol. Biochem. 2018, 127, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Pawar, V.A.; Laware, S.L. Seed Priming A Critical Review. Int. J. Sci. Res. Biol. Sci. 2018, 5, 94–101. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, J.; Wang, Y. Changes in endogenous hormone levels and redox status during enhanced adventitious rooting by rare earth element neodymium of Dendrobium densiflorum shoot cuttings. J. Rare Earths 2008, 26, 869–874. [Google Scholar] [CrossRef]
- Rezaee, A.; Hale, B.; Santos, R.M.; Chiang, Y.W. Accumulation and toxicity of lanthanum and neodymium in horticultural plants (Brassica chinensis L. and Helianthus annuus L.). Can. J. Chem. Eng. 2018, 96, 2263–2272. [Google Scholar] [CrossRef]
- Wang, L.; Christakos, G.; Wu, C.; Wu, J. Spatial variability assessment of La and Nd concentrations in coastal China soils following 1000 years of land reclamation. J. Soils Sediments 2020, 20, 1651–1661. [Google Scholar] [CrossRef]
- The Ministry of Environmental Protection and the State Administration of Quality Supervision and Inspection. GB26451-2011; Emission Standards for Rare Earth Industry Pollutants. China Environmental Science Press: Beijing, China, 2011; pp. 4–9.
- Tonguç, M.; Güler, M.; Önder, S. Germination, reserve metabolism and antioxidant enzyme activities in safflower as affected by seed treatments after accelerated aging. S. Afr. J. Bot. 2023, 153, 209–218. [Google Scholar] [CrossRef]
- Sattler, S.E.; Gilliland, L.U.; Magallanes-Lundback, M.; Pollard, M.; DellaPenna, D. Vitamin E Is Essential for Seed Longevity and for Preventing Lipid Peroxidation during Germination. Plant Cell 2004, 16, 1419–1432. [Google Scholar] [CrossRef] [PubMed]
- Ben-Moumen, A.B.; Masouri, F.; Richard, G.; Fauconnier, M.L.; Sindic, M.; Nabloussi, A.; Elamrani, A.; Caid, H.S. Variations in the phytosterol and tocopherol compositions and the oxidative stability in seed oils from four safflower (Carthamus tinctorius L.) varieties grown in north-eastern Morocco. Int. J. Food Sci. Technol. 2015, 50, 2264–2270. [Google Scholar] [CrossRef]
- Singh, B.; Amritphale, D. Effect of seed aging on chlorophyll(ide) accumulation and Hill activity in greening soybean seedling cotyledons. Photosynthetica 1992, 26, 455–459. [Google Scholar]
- Smolikova, G.N.; Laman, N.A.; Boriskevich, O.V. Role of chlorophylls and carotenoids in seed tolerance to abiotic stressors. Russ. J. Plant Physiol. 2011, 58, 965–973. [Google Scholar] [CrossRef]
- Howitt, C.A.; Pogson, B.J. Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell Environ. 2006, 29, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Tian, Q.; Yin, G.; Chen, X.; Zhang, J.; Ng, S.; Lu, X. Reduced mitochondrial and ascorbate–glutathione activity after artificial ageing in soybean seed. J. Plant Physiol. 2014, 171, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Yalamalle, V.; Ithape, D.; Kumar, A.; Bhagat, K.; Ghosh, S.; Singh, M. Seed treatment with 5-azacytidine reduces ageing-induced damage in onion seeds. Seed Sci. Technol. 2020, 48, 407–412. [Google Scholar] [CrossRef]
- Cabas-Lühmann, P.A.; Manthey, F.A.; Elias, E.M. Variations of colour, polyphenol oxidase and peroxidase activities during the production of low temperature dried pasta in various durum wheat genotypes. Int. J. Food Sci. Technol. 2021, 56, 4700–4709. [Google Scholar] [CrossRef]
- Raj, S.N.; Sarosh, B.R.; Shetty, H.S. Induction and accumulation of polyphenol oxidase activities as implicated in development of resistance against pearl millet downy mildew disease. Funct. Plant Biol. 2006, 33, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Ganguli, S.; Sen-Mandi, S. Effects of ageing on amylase activity and scutellar cell structure during imbibition in wheat seed. Ann. Bot. 1993, 71, 411–416. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Deswal, D.P.; Dahiya, O.S.; Punia, R.C. Change in storage enzymes activities in natural and accelerated aged seed of wheat (Triticum aestivum). Indian J. Agric. Sci. 2011, 81, 1037–1040. [Google Scholar]
- Hu, Q.-P.; Guo, J.; Liu, J.-J. Wheat seed germination based on α-amylase activity to study promoting mechanism of Bacillus subtilis QM3. J. Seed Sci. 2022, 44, e202244039. [Google Scholar] [CrossRef]
- Sharma, S.; Punia, R.C.; Singh, V.; Mor, V.; Tanwar, H. Genetic Divergence Analysis Based on Seed Vigour Parameters in Wheat. Seed Res. 2017, 45, 105–110. [Google Scholar]
- AL-Quraan, N.; Al-Ajlouni, Z.; Obedat, D.I. The GABA shunt pathway in germinating seeds of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) under salt stress. Seed Sci. Res. 2019, 29, 250–260. [Google Scholar] [CrossRef]
- Kaspal, M.; Kanapaddalagamage, M.H.; Ramesh, S.A. Emerging Roles of γ Aminobutyric Acid (GABA) Gated Channels in Plant Stress Tolerance. Plants 2021, 10, 2178. [Google Scholar] [CrossRef]
- Al-Quraan, N.A.; Samarah, N.H.; Tanash, A.A. Effect of drought stress on wheat (Triticum durum) growth and metabolism: Insight from GABA shunt, reactive oxygen species and dehydrin genes expression. Funct. Plant Biol. 2022. online ahead of print. [Google Scholar] [CrossRef]
- Xu, B.; Long, Y.; Feng, X.; Zhu, X.; Sai, N.; Chirkova, L.; Betts, A.; Herrmann, J.; Edwards, E.J.; Okamoto, M.; et al. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat. Commun. 2021, 12, 1952. [Google Scholar] [CrossRef]
Cultivars | Treatments | GP4 (%) | GI | VI | Ca [mg/(g Fw)] | Cb [mg/(g Fw)] | Cc [mg/(g Fw)] | Total Soluble Sugars [ug/(mg Fw)] | Total Soluble Proteins [mg/(g Fw)] | MDA [umol/(gFw)] |
---|---|---|---|---|---|---|---|---|---|---|
AK58 | NAT | 28.3 de | 32.75 d | 5.06 e | 0.2982 d | 0.1315 d | 0.0631 c | 5.6709 f | 8.3583 d | 4.3804 b |
NATS | 30.7 de | 34.7 d | 5.23 e | 0.3437 bc | 0.1669 a | 0.0694 b | 10.9715 b | 9.0446 bc | 3.1320 d | |
AAT | 26.7 e | 26.7 e | 4.17 f | 0.2713 e | 0.1226 e | 0.0497 d | 5.3190 f | 7.9680 e | 4.3730 b | |
AATS | 27.3 e | 27.15 e | 4.57 f | 0.3083 d | 0.1347 d | 0.0607 c | 9.6892 c | 10.5629 a | 3.5234 c | |
Control | 51.3 a | 56.65 a | 7.43 c | 0.2989 d | 0.1348 d | 0.0683 c | 11.9787 a | 9.6455 b | 4.2432 b | |
BN4199 | NAT | 34.4 d | 41.80 c | 6.33 d | 0.3584 b | 0.1697 a | 0.0692 c | 11.0625 b | 6.4821 g | 4.8196 a |
NATS | 40.5 c | 46.75 bc | 7.39 c | 0.3776 a | 0.1702 a | 0.0764 b | 11.8576 a | 8.9129 c | 3.3012 cd | |
AAT | 17.2 g | 18.15 g | 3.27 g | 0.3625 a | 0.1637 b | 0.0713 b | 6.7320 e | 8.0038 d | 4.6907 a | |
AATS | 21.2 f | 23.45 f | 3.88 g | 0.3762 a | 0.1727 a | 0.0728 b | 10.4423 bc | 8.4193 d | 3.4415 c | |
Control | 51.0 a | 48.25 b | 8.81 b | 0.3676 a | 0.1731 a | 0.0789 b | 11.7757 a | 9.0789 bc | 4.2265 b | |
BN207 | NAT | 46.0 b | 46.5 bc | 8.00 bc | 0.3402 bc | 0.1380 d | 0.0729 b | 5.9967 f | 7.0605 f | 4.8511 a |
NATS | 52.7 a | 50.15 b | 8.85 b | 0.3543 b | 0.1484 c | 0.0809 a | 10.2929 bc | 7.4233 f | 3.4409 c | |
AAT | 8.7 h | 8.83 i | 1.45 h | 0.2807 de | 0.1182 f | 0.0530 d | 8.0325 d | 6.8769 fg | 4.6050 a | |
AATS | 14.0 g | 11.08 h | 1.66 h | 0.2917 d | 0.1291 e | 0.0540 d | 10.2277 bc | 8.9409 c | 3.1254 d | |
Control | 52.0 a | 54.31 a | 9.48 a | 0.3478 bc | 0.1464 c | 0.0731 b | 11.3270 a | 9.1346 b | 4.2637 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, G.; Zhou, X.; Zhu, Q.; Chao, M.; Fu, Y.; Hu, H. Neodymium Nitrate Improves the Germination of Aged Wheat Seeds by Increasing Soluble Substances and Activating Antioxidative and Metabolic Enzymes in Seeds. Agronomy 2023, 13, 2370. https://doi.org/10.3390/agronomy13092370
Hu G, Zhou X, Zhu Q, Chao M, Fu Y, Hu H. Neodymium Nitrate Improves the Germination of Aged Wheat Seeds by Increasing Soluble Substances and Activating Antioxidative and Metabolic Enzymes in Seeds. Agronomy. 2023; 13(9):2370. https://doi.org/10.3390/agronomy13092370
Chicago/Turabian StyleHu, Genhai, Xiuren Zhou, Qidi Zhu, Maoni Chao, Yuanzhi Fu, and Haiyan Hu. 2023. "Neodymium Nitrate Improves the Germination of Aged Wheat Seeds by Increasing Soluble Substances and Activating Antioxidative and Metabolic Enzymes in Seeds" Agronomy 13, no. 9: 2370. https://doi.org/10.3390/agronomy13092370