Mycotoxins and Crop Yield in Maize as Affected by Irrigation Management and Tillage Practices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Experimental Conditions
2.2. Mycotoxin Analysis
2.3. Statistical Analysis
3. Results
3.1. Effect of Irrigation Time and Irrigation Frequency
3.2. Effect of Irrigation System and Tillage Practices
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oldenburg, E.; Höppner, F.; Ellner, F.; Weinert, J. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Res. 2017, 33, 167–182. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Opinion of the Scientific Panel on Contaminants in Food Chain on a request from the Commission related to fumonisins as undesirable substances in animal feed. Request nº EFSA-Q-2003-040. EFSA J. 2005, 235, 1–32. [Google Scholar]
- IARC (International Agency for Research on Cancer). Monographs on the Evaluation of Carcinogenic Risks to Humans: Chemical Agents and Related Occupations. A Review of Human Carcinogens; IARC: Lyon, France, 2002; Volume 82, Available online: https://publications.iarc.fr/100 (accessed on 30 January 2023).
- Covarelli, L.; Beccari, G.; Salvi, S. Infection by mycotoxigenic fungal species and mycotoxin contamination of maize grain in Umbria, central Italy. Food Chem. Toxicol. 2011, 49, 2365–2369. [Google Scholar] [CrossRef] [PubMed]
- Manu, N.; Opit, G.P.; Osekre, E.A.; Arthur, F.H.; Mbata, G.; Armstrong, P.; Danso, J.K.; McNeill, S.G.; Campbell, J.F. Moisture content, insect pest infestation and mycotoxin levels of maize in markets in the northern region of Ghana. J. Stored Prod. Res. 2019, 80, 10–20. [Google Scholar] [CrossRef]
- Kos, J.; Hajnal, E.J.; Malachová, A.; Steiner, D.; Stranska, M.; Krska, R.; Poschmaier, B.; Sulyok, M. Mycotoxins in maize harvested in Republic of Serbia in the period 2012–2015. Part 1: Regulated mycotoxins and its derivatives. Food Chem. 2020, 312, 126034. [Google Scholar] [CrossRef]
- Alborch, L.; Bragulat, M.R.; Castellá, G.; Abarca, M.L.; Cabañes, F.J. Mycobiota and mycotoxin contamination of maize flours and popcorn kernels for human consumption commercialized in Spain. Food Microbiol. 2012, 32, 97–103. [Google Scholar] [CrossRef]
- Ruiz de Galarreta, J.I.; Butrón, A.; Ortiz-Barredo, A.; Malvar, R.A.; Ordás, A.; Landa, A.; Revilla, P. Mycotoxins in maize grains grown in organic and conventional agriculture. Food Control 2015, 52, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Tarazona, A.; Gómez, J.V.; Mateo, F.; Jiménez, M.; Romera, D.; Mateo, E.M. Study on mycotoxin contamination of maize kernels in Spain. Food Control 2020, 118, 107370. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Sup 7; IARC: Lyon, France, 1993; Volume 56, Available online: https://publications.iarc.fr/74 (accessed on 30 January 2023).
- Golge, O.; Kabak, B. Occurrence of deoxynivalenol and zearalenone in cereals and cereal products from Turkey. Food Control 2020, 110, 106982. [Google Scholar] [CrossRef]
- Kirinčič, S.; Škrjanc, B.; Kos, N.; Kozolc, B.; Pirnat, N.; Tavčar-Kalcher, G. Mycotoxins in cereals and cereal products in Slovenia—Official control of foods in the years 2008–2012. Food Control 2015, 50, 157–165. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Aflatoxins. IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans; IARC: Lyon, France, 2012; Volume 100F, Available online: https://publications.iarc.fr/123 (accessed on 30 January 2023).
- Probst, C.; Bandyopadhyay, R.; Cotty, P.J. Diversity of aflatoxin-producing fungi and their impact on food safety in sub-Saharan Africa. Int. J. Food Microbiol. 2014, 174, 113–122. [Google Scholar] [CrossRef]
- Mielniczuk, E.; Skwaryło-Bednarz, B. Fusarium head blight, mycotoxins and strategies for their reduction. Agronomy 2020, 10, 509. [Google Scholar] [CrossRef] [Green Version]
- Degraeve, S.; Madege, R.R.; Audenaert, K.; Kamala, A.; Ortiz, J.; Kimanya, M.; Tiisekwa, B.; De Meulenaer, B.; Haesaert, G. Impact of local pre-harvest management practices in maize on the occurrence of Fusarium species and associated mycotoxins in two agro-ecosystems in Tanzania. Food Control 2016, 59, 225–233. [Google Scholar] [CrossRef]
- Ariño, A.; Herrera, M.; Juan, T.; Estopañán, G.; Carramiñana, J.; Rota, C.; Herrera, A. Influence of agricultural practices on the contamination of maize by fumonisin mycotoxins. J. Food Prot. 2009, 72, 898–902. [Google Scholar] [CrossRef]
- Bocianowski, J.; Szulc, P.; Waśkiewicz, A.; Cyplik, A. The effect of agrotechnical factors on Fusarium mycotoxins level in maize. Agriculture 2020, 10, 528. [Google Scholar] [CrossRef]
- Eli, K.; Schaafsma, A.W.; Hooker, D.C. Impact of agronomic practices on Fusarium mycotoxin accumulation in maize grain. World Mycotoxin J. 2022, 15, 343–360. [Google Scholar] [CrossRef]
- Kamle, M.; Mahato, D.K.; Devi, S.; Lee, K.E.; Kang, S.G.; Kumar, P. Fumonisins: Impact on Agriculture, Food, and Human Health and their Management Strategies. Toxins 2019, 11, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nada, S.; Nikola, T.; Bozidar, U.; Ilija, D.; Andreja, R. Prevention and practical strategies to control mycotoxins in the wheat and maize chain. Food Control 2022, 136, 108855. [Google Scholar] [CrossRef]
- Marín, P.; Magan, N.; Vázquez, C.; González-Jaén, M.T. Differential effect of environmental conditions on the growth and regulation of the fumonisin biosynthetic gene FUM1 in the maize pathogens and fumonisin producers Fusarium verticillioides and Fusarium proliferatum. FEMS Microbiol. Ecol. 2010, 73, 303–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munkvold, G.P. Crop management practices to minimize the risk of mycotoxins contamination in temperate-zone maize. In Mycotoxin Reduction in Grain Chains; Leslie, J.F., Logrieco, A., Eds.; John Wiley & Sons, Inc.: Ames, IA, USA, 2014; pp. 59–77. [Google Scholar]
- Torelli, E.; Firrao, G.; Bianchi, G.; Saccardoa, F.; Loccia, R. The influence of local factors on the prediction of fumonisin contamination in maize. J. Sci. Food Agric. 2012, 92, 1808–1814. [Google Scholar] [CrossRef]
- Tran, M.T.; Ameye, M.; Phan, L.T.-K.; Devlieghere, F.; De Saeger, S.; Eeckhout, M.; Audenaert, K. Impact of ethnic pre-harvest practices on the occurrence of Fusarium verticillioides and fumonisin B1 in maize fields from Vietnam. Food Control 2021, 120, 107567. [Google Scholar] [CrossRef]
- Cavero, J.; Medina, E.T.; Puig, M.; Martínez-Cob, A. Sprinkler irrigation changes maize canopy microclimate and crop water status, transpiration, and temperature. Agron. J. 2009, 101, 854–864. [Google Scholar] [CrossRef]
- Cavero, J.; Medina, E.T.; Montoya, F. Sprinkler irrigation frequency affects maize yield depending on irrigation time. Agron. J. 2018, 110, 1862–1873. [Google Scholar] [CrossRef] [Green Version]
- Franco-Luesma, S.; Álvaro-Fuentes, J.; Plaza-Bonilla, D.; Arrué, J.L.; Cantero-Martínez, C.; Cavero, J. Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions. Agric. Water Manag. 2019, 221, 303–311. [Google Scholar] [CrossRef]
- Franco-Luesma, S.; Cavero, J.; Plaza-Bonilla, D.; Cantero-Martínez, C.; Tortosa, G.; Bedmar, E.J.; Álvaro-Fuentes, J. Irrigation and tillage effects on soil nitrous emissions in maize monoculture. Agron. J. 2020, 112, 56–71. [Google Scholar] [CrossRef]
- AMS-USDA (Agricultural Marketing Service-United Stated Department of Agriculture). FGSIS Performance Verified Mycotoxin Test Kits. 2023. Available online: https://www.ams.usda.gov/sites/default/files/media/FGISApprovedMycotoxinRapidTestKits.pdf (accessed on 30 January 2023).
- Commission Regulation (EC) No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. OJ 2006, L 70, 12–34.
- Logrieco, A.; Bottalico, A.; Mulé, G.; Moretti, A.; Perrone, G. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur. J. Plant Pathol. 2003, 109, 645–667. [Google Scholar] [CrossRef]
- Battilani, P.; Camardo Leggieri, M.; Rossi, V.; Giorni, P. AFLA-maize, a mechanistic model for Aspergillus flavus infection and aflatoxin B1 contamination in maize. Comput. Electron. Agric. 2013, 94, 38–46. [Google Scholar] [CrossRef]
- Manouras, A.; Malissiova, E. Occurrence of aflatoxins in compound feeds and feed materials for dairy livestock in Central Greece. J. Hell. Vet. Med. Soc. 2018, 66, 169–176. [Google Scholar] [CrossRef]
- Battilani, P.; Toscano, P.; Van der Fels-Klerx, H.; Moretti, A.; Leggieri, M.C.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, R.; Gonçalves, A.; Gkrillas, A.; Logrieco, A.; Dorne, J.L.; Dall’Asta, C.; Venâncio, A.; Battilani, P. Mycotoxins in maize: Mitigation actions, with a chain management approach. Phytopathol. Mediterr. 2020, 59, 5–28. [Google Scholar] [CrossRef]
- Herrera, M.; Conchello, P.; Juan, T.; Estopañán, G.; Herrera, A.; Ariño, A. Fumonisins concentrations in maize as affected by physico-chemical, environmental and agronomical conditions. Maydica 2010, 55, 121–126. [Google Scholar]
- Kothari, K.; Ale, S.; Marek, G.W.; Munster, C.L.; Singh, V.P.; Chen, Y.; Marek, T.H.; Xue, Q. Simulating the climate change impacts and evaluating potential adaptation strategies for irrigated corn production in Northern High Plains of Texas. Clim. Risk Manag. 2022, 37, 100446. [Google Scholar] [CrossRef]
- Abbas, H.K.; Mascagni, H.J., Jr.; Bruns, H.A.; Shier, W.T. Effect of planting density, irrigation regimes, and maize hybrids with varying ear size on yield, and aflatoxin and fumonisin contamination levels. Am. J. Plant Sci. 2012, 3, 1341. [Google Scholar] [CrossRef] [Green Version]
- Alvarado-Carrillo, M.; Díaz-Franco, A.; Delgado-Aguirre, E.; Montes-García, N. Impact of corn agronomic management on aflatoxin (Aspergillus flavus) contamination and charcoal stalk rot (Macrophomina phaseolina) incidence. Trop. Subtrop. Agroecosystems 2010, 12, 575–582. [Google Scholar]
- Blandino, M.; Haidukowski, M.; Pascale, M.; Plizzari, L.; Scudellari, D.; Reyneri, A. Integrated strategies for the control of Fusarium head blight and deoxynivalenol contamination in winter wheat. Field Crops Res. 2012, 133, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Marocco, A.; Gavazzi, C.; Pietri, A.; Tabaglio, V. On fumonisin incidence in monoculture maize under no-till, conventional tillage and two nitrogen fertilization levels. J. Sci. Food Agric. 2008, 88, 1217–1221. [Google Scholar] [CrossRef]
- Rossi, V.; Scandolara, A.; Battilani, P. Effect of environmental conditions on spore production by Fusarium verticillioides, the causal agent of maize ear rot. Eur. J. Plant Pathol. 2009, 123, 159–169. [Google Scholar] [CrossRef]
- Battisti, M.; Zavattaro, L.; Capo, L.; Blandino, M. Maize response to localized mineral or organic NP starter fertilization under different soil tillage methods. Eur. J. Agron. 2022, 138, 126534. [Google Scholar] [CrossRef]
- Krnjaja, V.; Mandić, V.; Stanković, S.; Obradović, A.; Vasić, T.; Lukić, M.; Bijelić, Z. Influence of plant density on toxigenic fungal and mycotoxin contamination of maize grains. Crop Prot. 2019, 116, 126–131. [Google Scholar] [CrossRef]
- Commission Recommendation 2006/583/EC of 17 August 2006 on the prevention and reduction of Fusarium toxins in cereals and cereal products. OJ 2006, L 234, 35–40.
Irrigation Time (IT) | ||
---|---|---|
Irrigation Frequency (IF) | Daytime: starting at 10:00 h Greenwich Mean Time (GMT) | Nighttime: starting at 22:00 h GMT |
Low frequency: two irrigation events per week | F1: daytime & low frequency | F2: nighttime & low frequency |
High frequency: daily irrigation | F3: daytime & high frequency | F4: nighttime & high frequency |
Irrigation System (IS) | ||
---|---|---|
Tillage Practices (TP) | Sprinkler irrigation | Flood irrigation |
Conventional tillage (CT) | S1: sprinkler & CT | S2: flood & CT |
No tillage without crop stover (NT) | S3: sprinkler & NT | S4: flood & NT |
No tillage with crop stover (NTr) | S5: sprinkler & NTr | S6: flood & NTr |
Effect | DON (mg kg−1) | FUM (mg kg−1) | Yield (Mg ha−1) |
---|---|---|---|
Irrigation time (IT) | |||
Day | 0.38 ± 0.64 a1 | 0.45 ± 0.90 a | 14.7 ± 1.3 a |
Night | 0.54 ± 0.87 b | 1.21 ± 1.33 b | 16.3 ± 1.2 b |
p = 0.0302 | p = 0.0165 | p = 0.0143 | |
Irrigation frequency (IF) | |||
Low | 0.61 ± 1.00 a | 1.09 ± 1.21 a | 15.5 ± 1.2 |
High | 0.30 ± 0.36 b | 0.57 ± 1.14 b | 15.5 ± 1.8 |
p = 0.0002 | p = 0.0461 | p = 0.6285 | |
IT x IF | |||
Day × Low | 0.52 ± 0.88 | 0.80 ± 1.21 | 15.0 ± 1.1 |
Day × High | 0.23 ± 0.23 | 0.10 ± 0.00 | 14.3 ± 1.5 |
Night × Low | 0.70 ± 1.16 | 1.38 ± 1.21 | 16.0 ± 1.2 |
Night × High | 0.37 ± 0.45 | 1.04 ± 1.50 | 16.6 ± 1.2 |
p = 0.5743 | p = 0.1230 | p = 0.0838 |
Effect | DON (mg kg−1) | FUM (mg kg−1) | Yield (Mg ha−1) |
---|---|---|---|
Irrigation system (IS) | |||
Sprinkler (S) | 0.53 ± 0.49 a1 | 5.94 ± 3.26 | 15.3 ± 1.9 |
Flood (F) | 0.19 ± 0.18 b | 5.52 ± 2.89 | 13.6 ± 1.9 |
p = 0.0244 | p = 0.6082 | p = 0.1273 | |
Soil tillage (ST) | |||
Conventional tillage (CT) | 0.36 ± 0.35 | 5.09 ± 3.17 | 15.1 ± 1.7 |
No tillage without crop stover (NT) | 0.39 ± 0.52 | 5.84 ± 3.09 | 13.9 ± 1.8 |
No tillage with crop stover (NTr) | 0.33 ± 0.32 | 6.25 ± 2.97 | 14.2 ± 2.6 |
p = 0.6443 | p = 0.4415 | p = 0.4353 | |
IS x ST | |||
CT × S | 0.53 ± 0.42 | 5.74 ± 4.14 | 15.5 ± 1.6 |
NT × S | 0.55 ± 0.68 | 5.00 ± 2.83 | 14.7 ± 1.9 |
NTr × S | 0.51 ± 0.37 | 7.07 ± 2.62 | 15.6 ± 2.3 |
CT × F | 0.19 ± 0.14 | 4.44 ± 1.80 | 14.7 ± 1.7 |
NT × F | 0.23 ± 0.26 | 6.68 ± 3.26 | 13.2 ± 1.3 |
NTr × F | 0.14 ± 0.09 | 5.44 ± 3.22 | 12.8 ± 2.2 |
p = 0.4758 | p = 0.1506 | p = 0.1209 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, M.; Cavero, J.; Franco-Luesma, S.; Álvaro-Fuentes, J.; Ariño, A.; Lorán, S. Mycotoxins and Crop Yield in Maize as Affected by Irrigation Management and Tillage Practices. Agronomy 2023, 13, 798. https://doi.org/10.3390/agronomy13030798
Herrera M, Cavero J, Franco-Luesma S, Álvaro-Fuentes J, Ariño A, Lorán S. Mycotoxins and Crop Yield in Maize as Affected by Irrigation Management and Tillage Practices. Agronomy. 2023; 13(3):798. https://doi.org/10.3390/agronomy13030798
Chicago/Turabian StyleHerrera, Marta, José Cavero, Samuel Franco-Luesma, Jorge Álvaro-Fuentes, Agustín Ariño, and Susana Lorán. 2023. "Mycotoxins and Crop Yield in Maize as Affected by Irrigation Management and Tillage Practices" Agronomy 13, no. 3: 798. https://doi.org/10.3390/agronomy13030798
APA StyleHerrera, M., Cavero, J., Franco-Luesma, S., Álvaro-Fuentes, J., Ariño, A., & Lorán, S. (2023). Mycotoxins and Crop Yield in Maize as Affected by Irrigation Management and Tillage Practices. Agronomy, 13(3), 798. https://doi.org/10.3390/agronomy13030798