A Composite Index Measuring Adoption of Conservation Agriculture among Maize and Soybean Farmers in Québec
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Modelling of Partial Adoption
2.3. Weighting of Principles of Conservation Agriculture: Analytical Hierarchy Process
3. Results
3.1. Weighting Process: The AHP Results
3.2. Computing Composite Index of Adoption of CA
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Observation | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
UCIACA 2020 | 144 | 0.74 a | 0.27 | 0 | 1 |
UCIACA 2019 | 144 | 0.75 a | 0.26 | 0 | 1 |
UCIACA 2018 | 144 | 0.71 | 0.28 | 0 | 1 |
UCIACA | 144 | 0.73 | 0.25 | 0 | 1 |
Farmers | CIACA | Rank | UCIACA | Rank |
---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 |
A2 | 1 | 1 | 1 | 1 |
A3 | 1 | 1 | 1 | 1 |
A4 | 1 | 1 | 1 | 1 |
A5 | 1 | 1 | 1 | 1 |
A6 | 1 | 1 | 1 | 1 |
A7 | 1 | 1 | 1 | 1 |
A8 | 1 | 1 | 1 | 1 |
A9 | 1 | 1 | 1 | 1 |
A10 | 1 | 1 | 1 | 1 |
A11 | 1 | 1 | 1 | 1 |
A12 | 1 | 1 | 1 | 1 |
A13 | 1 | 1 | 1 | 1 |
A14 | 1 | 1 | 1 | 1 |
A15 | 1 | 1 | 1 | 1 |
A16 | 1 | 1 | 1 | 1 |
A17 | 1 | 1 | 1 | 1 |
A18 | 1 | 1 | 1 | 1 |
A19 | 1 | 1 | 1 | 1 |
A20 | 1 | 1 | 1 | 1 |
A21 | 1 | 1 | 1 | 1 |
A22 | 1 | 1 | 1 | 1 |
A23 | 1 | 1 | 1 | 1 |
A24 | 1 | 1 | 1 | 1 |
A25 | 1 | 1 | 1 | 1 |
A26 | 1 | 1 | 1 | 1 |
A27 | 1 | 1 | 1 | 1 |
A28 | 1 | 1 | 1 | 1 |
A29 | 1 | 1 | 1 | 1 |
A30 | 1 | 1 | 1 | 1 |
A31 | 1 | 1 | 1 | 1 |
A32 | 0.999 | 2 | 0.998 | 2 |
A33 | 0.998 | 3 | 0.997 | 3 |
A34 | 0.985 | 4 | 0.978 | 4 |
A35 | 0.982 | 5 | 0.978 | 4 |
A36 | 0.977 | 6 | 0.967 | 5 |
A37 | 0.977 | 6 | 0.967 | 5 |
A38 | 0.977 | 6 | 0.967 | 5 |
A39 | 0.966 | 7 | 0.959 | 6 |
A40 | 0.963 | 8 | 0.956 | 7 |
A41 | 0.961 | 9 | 0.945 | 9 |
A42 | 0.958 | 10 | 0.95 | 8 |
A43 | 0.958 | 10 | 0.95 | 8 |
A44 | 0.953 | 11 | 0.934 | 10 |
A45 | 0.953 | 11 | 0.934 | 10 |
A46 | 0.951 | 12 | 0.934 | 10 |
A47 | 0.941 | 13 | 0.917 | 12 |
A48 | 0.93 | 14 | 0.917 | 12 |
A49 | 0.93 | 14 | 0.917 | 12 |
A50 | 0.922 | 15 | 0.923 | 11 |
A51 | 0.921 | 16 | 0.889 | 15 |
A52 | 0.919 | 17 | 0.887 | 16 |
A53 | 0.906 | 18 | 0.912 | 13 |
A54 | 0.9 | 19 | 0.9 | 14 |
A55 | 0.898 | 20 | 0.885 | 17 |
A56 | 0.889 | 21 | 0.867 | 18 |
A57 | 0.884 | 22 | 0.838 | 22 |
A58 | 0.883 | 23 | 0.85 | 20 |
A59 | 0.881 | 24 | 0.834 | 23 |
A60 | 0.881 | 24 | 0.834 | 23 |
A61 | 0.877 | 25 | 0.867 | 18 |
A62 | 0.865 | 26 | 0.812 | 25 |
A63 | 0.863 | 27 | 0.856 | 19 |
A64 | 0.862 | 28 | 0.867 | 18 |
A65 | 0.86 | 29 | 0.867 | 18 |
A66 | 0.854 | 30 | 0.834 | 23 |
A67 | 0.851 | 31 | 0.823 | 24 |
A68 | 0.849 | 32 | 0.789 | 27 |
A69 | 0.843 | 33 | 0.795 | 26 |
A70 | 0.841 | 34 | 0.834 | 23 |
A71 | 0.829 | 35 | 0.784 | 29 |
A72 | 0.817 | 36 | 0.823 | 24 |
A73 | 0.814 | 37 | 0.778 | 30 |
A74 | 0.813 | 38 | 0.777 | 31 |
A75 | 0.81 | 39 | 0.789 | 27 |
A76 | 0.789 | 40 | 0.728 | 36 |
A77 | 0.788 | 41 | 0.839 | 21 |
A78 | 0.775 | 42 | 0.789 | 28 |
A79 | 0.769 | 43 | 0.695 | 40 |
A80 | 0.761 | 44 | 0.778 | 30 |
A81 | 0.76 | 45 | 0.834 | 23 |
A82 | 0.756 | 46 | 0.767 | 33 |
A83 | 0.75 | 47 | 0.773 | 32 |
A84 | 0.744 | 48 | 0.823 | 24 |
A85 | 0.708 | 49 | 0.684 | 42 |
A86 | 0.704 | 50 | 0.727 | 37 |
A87 | 0.701 | 51 | 0.712 | 39 |
A88 | 0.699 | 52 | 0.745 | 35 |
A89 | 0.695 | 53 | 0.756 | 34 |
A90 | 0.694 | 54 | 0.684 | 42 |
A91 | 0.689 | 55 | 0.684 | 42 |
A92 | 0.689 | 55 | 0.6 | 49 |
A93 | 0.685 | 56 | 0.639 | 45 |
A94 | 0.681 | 57 | 0.723 | 38 |
A95 | 0.673 | 58 | 0.689 | 41 |
A96 | 0.664 | 59 | 0.617 | 47 |
A97 | 0.661 | 60 | 0.6 | 50 |
A98 | 0.648 | 61 | 0.667 | 43 |
A99 | 0.645 | 62 | 0.65 | 44 |
A100 | 0.641 | 63 | 0.667 | 43 |
A101 | 0.628 | 64 | 0.599 | 51 |
A102 | 0.603 | 65 | 0.557 | 55 |
A103 | 0.577 | 66 | 0.623 | 46 |
A104 | 0.566 | 67 | 0.567 | 53 |
A105 | 0.565 | 68 | 0.562 | 54 |
A106 | 0.565 | 68 | 0.562 | 54 |
A107 | 0.561 | 69 | 0.556 | 56 |
A108 | 0.537 | 70 | 0.512 | 58 |
A109 | 0.521 | 71 | 0.5 | 60 |
A110 | 0.52 | 72 | 0.667 | 43 |
A111 | 0.504 | 73 | 0.612 | 48 |
A112 | 0.5 | 74 | 0.5 | 60 |
A113 | 0.478 | 75 | 0.524 | 57 |
A114 | 0.475 | 76 | 0.35 | 71 |
A115 | 0.473 | 77 | 0.506 | 59 |
A116 | 0.461 | 78 | 0.445 | 63 |
A117 | 0.457 | 79 | 0.456 | 61 |
A118 | 0.45 | 80 | 0.584 | 52 |
A119 | 0.449 | 81 | 0.45 | 62 |
A120 | 0.427 | 82 | 0.445 | 63 |
A121 | 0.427 | 82 | 0.434 | 64 |
A122 | 0.401 | 83 | 0.5 | 60 |
A123 | 0.383 | 84 | 0.367 | 69 |
A124 | 0.372 | 85 | 0.395 | 66 |
A125 | 0.361 | 86 | 0.389 | 67 |
A126 | 0.361 | 86 | 0.423 | 65 |
A127 | 0.36 | 87 | 0.334 | 73 |
A128 | 0.334 | 88 | 0.334 | 73 |
A129 | 0.333 | 89 | 0.289 | 75 |
A130 | 0.331 | 90 | 0.334 | 73 |
A131 | 0.313 | 91 | 0.356 | 70 |
A132 | 0.307 | 92 | 0.384 | 68 |
A133 | 0.293 | 93 | 0.35 | 71 |
A134 | 0.281 | 94 | 0.334 | 73 |
A135 | 0.281 | 94 | 0.334 | 73 |
A136 | 0.281 | 94 | 0.334 | 73 |
A137 | 0.266 | 95 | 0.339 | 72 |
A138 | 0.257 | 96 | 0.317 | 74 |
A139 | 0.186 | 97 | 0.22 | 77 |
A140 | 0.18 | 98 | 0.25 | 76 |
A141 | 0.141 | 99 | 0.167 | 78 |
A142 | 0.094 | 100 | 0.112 | 79 |
A143 | 0 | 101 | 0 | 80 |
A144 | 0 | 101 | 0 | 80 |
References
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of Conservation Agriculture. Int. J. Environ. Stud. 2018, 76, 29–51. [Google Scholar] [CrossRef]
- Sharma, P.; Abrol, V.; Sharma, R.K. Impact of tillage and mulch management on economics, energy requirement and crop performance in maize–wheat rotation in rainfed subhumid inceptisols, India. Eur. J. Agron. 2011, 34, 46–51. [Google Scholar] [CrossRef]
- Pratibha, G.; Srinivas, I.; Rao, K.V.; Raju, B.M.K.; Thyagaraj, C.R.; Korwar, G.R.; Venkateswarlu, B.; Shanker, A.K.; Choudhary, D.K.; Rao, K.S.; et al. Impact of conservation agriculture practices on energy use efficiency and global warming potential in rainfed pigeonpea–castor systems. Eur. J. Agron. 2015, 66, 30–40. [Google Scholar] [CrossRef]
- Mango, N.; Siziba, S.; Makate, C. The impact of adoption of conservation agriculture on smallholder farmers’ food security in semi-arid zones of southern Africa. Agric. Food Secur. 2017, 6, 32. [Google Scholar] [CrossRef]
- Khonje, M.G.; Manda, J.; Mkandawire, P.; Tufa, A.H.; Alene, A.D. Adoption and welfare impacts of multiple agricultural technologies: Evidence from eastern Zambia. Agric. Econ. 2018, 49, 599–609. [Google Scholar] [CrossRef]
- Tambo, J.A.; Mockshell, J. Differential Impacts of Conservation Agriculture Technology Options on Household Income in Sub-Saharan Africa. Ecol. Econ. 2018, 151, 95–105. [Google Scholar] [CrossRef]
- Michler, J.D.; Baylis, K.; Arends-Kuenning, M.; Mazvimavi, K. Conservation agriculture and climate resilience. J. Environ. Econ. Manag. 2019, 93, 148–169. [Google Scholar] [CrossRef]
- Fisher, M.; Holden, S.T.; Thierfelder, C.; Katengeza, S.P. Awareness and adoption of conservation agriculture in Malawi: What difference can farmer-to-farmer extension make? Int. J. Agric. Sustain. 2018, 16, 310–325. [Google Scholar] [CrossRef]
- Ward, P.S.; Bell, A.R.; Droppelmann, K.; Benton, T.G. Early adoption of conservation agriculture practices: Understanding partial compliance in programs with multiple adoption decisions. Land Use Pol. 2018, 70, 27–37. [Google Scholar] [CrossRef]
- Grabowski, P.P.; Kerr, J.M. Resource constraints and partial adoption of conservation agriculture by hand-hoe farmers in Mozambique. Int. J. Agric. Sustain. 2013, 12, 37–53. [Google Scholar] [CrossRef]
- Llewellyn, R.S.; D’Emden, F.H.; Kuehne, G. Extensive use of no-tillage in grain growing regions of Australia. Field Crop. Res. 2012, 132, 204–212. [Google Scholar] [CrossRef]
- Higgins, V.; Love, C.; Dunn, T. Flexible adoption of conservation agriculture principles: Practices of care and the management of crop residue in Australian mixed farming systems. Int. J. Agric. Sustain. 2018, 17, 49–59. [Google Scholar] [CrossRef]
- Kirkegaard, J.A.; Conyers, M.K.; Hunt, J.R.; Kirkby, C.A.; Watt, M.; Rebetzke, G. Sense and nonsense in conservation agriculture: Principles, pragmatism and productivity in Australian mixed farming systems. Agric. Ecosyst. Environ. 2014, 187, 133–145. [Google Scholar] [CrossRef]
- Conyers, M.; van der Rijt, V.; Oates, A.; Poile, G.; Kirkegaard, J.; Kirkby, C. The strategic use of minimum tillage within conservation agriculture in southern New South Wales, Australia. Soil Tillage Res. 2019, 193, 17–26. [Google Scholar] [CrossRef]
- Pannell, D.J.; Marshall, G.R.; Barr, N.; Curtis, A.; Vanclay, F.; Wilkinson, R. Understanding and promoting adoption of conservation practices by rural landholders. Aust. J. Exp. Agric. 2006, 46, 1407–1424. [Google Scholar] [CrossRef]
- Dupras, J.; Laurent-Lucchetti, J.; Revéret, J.-P.; DaSilva, L. Using contingent valuation and choice experiment to value the impacts of agri-environmental practices on landscapes aesthetics. Landsc. Res. 2018, 43, 679–695. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Gómez-Limón, J.A.; Sanchez-Fernandez, G. Empirical evaluation of agricultural sustainability using composite indicators. Ecol. Econ. 2010, 69, 1062–1075. [Google Scholar] [CrossRef]
- Fallah-Alipour, S.; Boshrabadi, H.M.; Mehrjerdi, M.R.Z.; Hayati, D. A Framework for Empirical Assessment of Agricultural Sustainability: The Case of Iran. Sustainability 2018, 10, 4823. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of Conservation Agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2011, 7, 292–320. [Google Scholar] [CrossRef]
- Singh, A.S.; Eanes, F.R.; Prokopy, L.S. Assessing Conservation Adoption Decision Criteria Using the Analytic Hierarchy Process: Case Studies from Three Midwestern Watersheds. Soc. Nat. Resour. 2018, 31, 503–507. [Google Scholar] [CrossRef]
- Pashaei Kamali, F.; Borges, J.A.R.; Meuwissen, M.P.M.; de Boer, I.J.M.; Oude Lansink, A.G.J.M. Sustainability assessment of agricultural systems: The validity of expert opinion and robustness of a multi-criteria analysis. Agric. Syst. 2017, 157, 118–128. [Google Scholar] [CrossRef]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Interfaces 1994, 24, 19–43. [Google Scholar] [CrossRef]
- Gomez-Limon, J.A.; Riesgo, L. Alternative approaches to the construction of a composite indicator of agricultural sustainability: An application to irrigated agriculture in the Duero basin in Spain. J. Environ. Manag. 2009, 90, 3345–3362. [Google Scholar] [CrossRef]
- Forman, E.; Peniwati, K. Aggregating individual judgments and priorities with the Analytic Hierarchy Process. Eur. J. Oper. Res. 1998, 108, 5. [Google Scholar] [CrossRef]
- Murungu, F.S.; Chiduza, C.; Muchaonyerwa, P.; Mnkeni, P.N.S. Mulch effects on soil moisture and nitrogen, weed growth and irrigated maize productivity in a warm-temperate climate of South Africa. Soil Tillage Res. 2011, 112, 58–65. [Google Scholar] [CrossRef]
- Ranaivoson, L.; Naudin, K.; Ripoche, A.; Affholder, F.; Rabeharisoa, L.; Corbeels, M. Agro-ecological functions of crop residues under conservation agriculture. A review. Agron. Sustain. Dev. 2017, 37, 26. [Google Scholar] [CrossRef]
- Karlen, D.L.; Hurley, E.G.; Andrews, S.S.; Cambardella, C.A.; Meek, D.W.; Duffy, M.D.; Mallarino, A.P. Crop Rotation Effects on Soil Quality at Three Northern Corn/Soybean Belt Locations. Agron. J. 2006, 98, 484–495. [Google Scholar] [CrossRef]
- Venter, Z.S.; Jacobs, K.; Hawkins, H.-J. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia 2016, 59, 215–223. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Zhang, K.; Jeong, J.; Zeng, Z.; Zang, H. Does crop rotation yield more in China? A meta-analysis. Field Crops Res. 2020, 245, 107659. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Wendt, J.; Giller, K.E.; Corbeels, M.; Gerard, B.; Nolte, C. A fourth principle is required to define Conservation Agriculture in sub-Saharan Africa: The appropriate use of fertilizer to enhance crop productivity. Field Crop. Res. 2014, 155, 10–13. [Google Scholar] [CrossRef]
- Wade, T.; Claassen, R. Modeling No-Till Adoption by Corn and Soybean Producers: Insights into Sustained Adoption. J. Agric. Appl. Econ. 2017, 49, 186–210. [Google Scholar] [CrossRef]
- Takam-Fongang, G.M.; Kamdem, C.B.; Kane, G.Q. Adoption and impact of improved maize varieties on maize yields: Evidence from central Cameroon. Rev. Dev. Econ. 2019, 23, 172–188. [Google Scholar] [CrossRef]
- Vecchio, Y.; Di Pasquale, J.; Del Giudice, T.; Pauselli, G.; Masi, M.; Adinolfi, F. Precision farming: What do Italian farmers really think? An application of the Q methodology. Agric. Syst. 2022, 201, 103466. [Google Scholar] [CrossRef]
Variables | Observation | Mean | Std Dev | Min | Max |
---|---|---|---|---|---|
Proportion of maize and soybean farm under no or minimum mechanical soil disturbance in 2020 | 144 | 72.44 | 36.34 | 0 | 100 |
Proportion of maize and soybean farm under no or minimum mechanical soil disturbance in 2019 | 144 | 72.04 | 36.19 | 0 | 100 |
Proportion of maize and soybean farm under no or minimum mechanical soil disturbance in 2018 | 144 | 68.85 | 37.50 | 0 | 100 |
Proportion of maize and soybean farm under permanent mulch soil cover in 2020 | 144 | 68.49 | 39.18 | 0 | 100 |
Proportion of maize and soybean farm under permanent mulch soil cover in 2019 | 144 | 69.15 | 37.08 | 0 | 100 |
Proportion of maize and soybean farm under permanent mulch soil cover in 2018 | 144 | 64.76 | 38.66 | 0 | 100 |
Proportion of maize and soybean farm under crop rotation in 2020 | 144 | 82.38 | 28.90 | 0 | 100 |
Proportion of maize and soybean farm under crop rotation in 2019 | 144 | 82.46 | 28.30 | 0 | 100 |
Proportion of maize and soybean farm under crop rotation in 2018 | 144 | 80.54 | 30.60 | 0 | 100 |
Definitions | Principles of CA | |
---|---|---|
1 if the farmer has used direct seeding or minimum tillage on the parcel and 0 otherwise. | 1—No or minimum mechanical soil disturbance. | |
1 if the farmer has left crop residues or has planted cover crops on the parcel and 0 otherwise. | 2—Permanent mulch soil cover/cover crop. | |
1 if the farmer has applied crop rotation on the parcel and 0 otherwise | 3—Crop rotation. |
Principles | Extreme Importance | Very Strong Importance | Strong Importance | Moderate Importance | Equal Importance | Moderate Importance | Strong Importance | Very Strong Importance | Extreme Importance | Principles | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No or minimum mechanical soil disturbance | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Permanent mulch soil cover/cover crop |
No or minimum mechanical soil disturbance | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Crop rotation |
Permanent mulch soil cover/cover crop | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Crop rotation |
Expert | Weight | Inconsistency Ratio | ||
---|---|---|---|---|
No or Minimum Mechanical Soil Disturbance | Permanent Mulch Soil Cover | Crop Rotation | ||
Expert 1 | 71.72 | 8.81 | 19.47 | 0.09 |
Expert 2 | 76.62 | 7.59 | 15.79 | 0.13 |
Expert 3 | 21.85 | 71.47 | 6.68 | 0.17 |
Expert 4 | 33.33 | 33.33 | 33.33 | 0.00 |
Expert 5 | 66.67 | 16.67 | 16.67 | 0.00 |
G-mean * | 48.44 | 19.27 | 16.27 | |
G-mean ** | 44.63 | 22.24 | 26.06 | |
Normalised * weight | 57.68 | 22.95 | 19.37 | |
Normalised ** weight | 48.03 | 23.93 | 28.04 |
Variable | Observation | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
CIACA2020 | 144 | 0.74 a | 0.28 | 0 | 1 |
CIACA2019 | 144 | 0.74 a | 0.27 | 0 | 1 |
CIACA2018 | 144 | 0.71 | 0.29 | 0 | 1 |
CIACA | 144 | 0.73 | 0.27 | 0 | 1 |
Type | Relative Frequencies | Definitions |
---|---|---|
Trend 1 | 8.33 | Increasing trend |
Trend 2 | 10.42 | Broken line trend |
Trend 3 | 4.17 | Broken line trend |
Trend 4 | 6.25 | Decreasing trend |
Trend 5 | 46.53 | Constant trend |
Trend 6 | 6.94 | Semi-increasing trend |
Trend 7 | 4.17 | Semi-decreasing trend |
Trend 8 | 7.64 | Semi-increasing trend |
Trend 9 | 5.56 | Semi-decreasing trend |
Total | 100 |
Category | Number of Farmers | Relative Frequencies |
---|---|---|
Full adopters of CA | 31 | 21.53 |
Non-adopters of CA | 2 | 1.39 |
Partial adopters of CA | 111 | 77.08 |
Total | 144 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takam Fongang, G.M.; Guay, J.-F.; Séguin, C. A Composite Index Measuring Adoption of Conservation Agriculture among Maize and Soybean Farmers in Québec. Agronomy 2023, 13, 777. https://doi.org/10.3390/agronomy13030777
Takam Fongang GM, Guay J-F, Séguin C. A Composite Index Measuring Adoption of Conservation Agriculture among Maize and Soybean Farmers in Québec. Agronomy. 2023; 13(3):777. https://doi.org/10.3390/agronomy13030777
Chicago/Turabian StyleTakam Fongang, Guy Martial, Jean-François Guay, and Charles Séguin. 2023. "A Composite Index Measuring Adoption of Conservation Agriculture among Maize and Soybean Farmers in Québec" Agronomy 13, no. 3: 777. https://doi.org/10.3390/agronomy13030777
APA StyleTakam Fongang, G. M., Guay, J.-F., & Séguin, C. (2023). A Composite Index Measuring Adoption of Conservation Agriculture among Maize and Soybean Farmers in Québec. Agronomy, 13(3), 777. https://doi.org/10.3390/agronomy13030777