The Inorganic Carbon Fixation Improved by Long-Term Manure Fertilization in Kastanozems under Rotation System of North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Soil Sampling
2.3. Measurements of Soil Basic Chemical Properties
2.4. Soil Fractionation and Analysis
2.5. Statistical Analyses
3. Results
3.1. Soil Basic Properties
3.2. Aggregate Distribution and Stability
3.3. Soil Carbon Content
3.4. Soil Carbon Content in Aggregate Soils
3.5. Exchangeable Calcium and Magnesium in Aggregate Soils
3.6. RDA Analysis of Aggregate Distribution and Soil Properties
3.7. Correlation and RF Analysis of SIC Content in Aggregates and Soil Properties
4. Discussion
4.1. Effect of Long-Term Fertilization on SIC and SOC Content in Bulk Soil
4.2. Effect of Long-Term Fertilization on SIC and SOC Content in Aggregate
4.3. Effect of Long-Term Fertilization on Aggregate Distribution and Stability
4.4. Factor Analysis of Aggregate Distribution and Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | Nutrient (kg ha−1) | CK | NPK | M | NPKM |
---|---|---|---|---|---|
2004–2005 | N | 0 | 45 | 37.5 | 82.5 |
P2O5 | 0 | 30 | 15 | 45 | |
K2O | 0 | 30 | 55.5 | 85.5 | |
2006–2013 | N | 0 | 60 | 37.5 | 97.5 |
P2O5 | 0 | 45 | 15 | 60 | |
K2O | 0 | 30 | 55.5 | 85.5 | |
2014–2015 | N | 0 | 150 | 71.25 | 221.25 |
P2O5 | 0 | 45 | 38.25 | 83.25 | |
K2O | 0 | 75 | 146.25 | 221.25 | |
2016–2019 | N | 0 | 150 | 142.5 | 292.5 |
P2O5 | 0 | 45 | 76.5 | 121.5 | |
K2O | 0 | 75 | 292.5 | 367.5 |
References
- Chen, H.; Li, D.; Gurmesa, G.; Yu, G.; Li, L.; Zhang, W.; Fang, H.; Mo, J. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis. Environ. Pollut. 2015, 206, 352–360. [Google Scholar] [CrossRef]
- Lal, R.; Monger, C.; Nave, L.; Smith, P. The role of soil in regulation of climate. Philos. Trans. R. Soc. B 2021, 376, 20210084. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, J.; Ji, C.; Ma, W.; Mohammat, A.; Wang, S.; Wang, S.; Datta, A.; David, R.; Smith, P. Widespread decreases in topsoil inorganic carbon stocks across China’s grasslands during 1980s–2000s. Glob. Chang. Biol. 2012, 18, 3672–3680. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Monger, H.; Kraimer, R.; Khresat, S.; Cole, D.; Wang, X.; Wang, J. Sequestration of inorganic carbon in soil and groundwater. Geology 2015, 43, 375–378. [Google Scholar] [CrossRef]
- Raheb, A.; Heidari, A.; Mahmoodi, S. Organic and inorganic carbon storage in soils along an arid to dry sub-humid climosequence in northwest of Iran. Catena 2017, 153, 66–74. [Google Scholar] [CrossRef]
- You, M.; Han, X.; Hu, N.; Du, S.; Doane, T.; Li, L. Profile storage and vertical distribution (0–150cm) of soil inorganic carbon in croplands in northeast China. Catena 2020, 185, 104302. [Google Scholar] [CrossRef]
- Kim, J.; Jobbágy, E.; Richter, D.; Trumbore, S.; Jackson, R. Agricultural acceleration of soil carbonate weathering. Glob. Chang. Biol. 2020, 26, 5988–6002. [Google Scholar] [CrossRef] [PubMed]
- Cardinael, R.; Chevallier, T.; Guenet, B.; Girardin, C.; Cozzi, T.; Pouteau, V.; Chenu, C. Organic carbon decomposition rates with depth and contribution of inorganic carbon to CO2 emissions under a Mediterranean agroforestry system. Eur. J. Soil Sci. 2020, 71, 5. [Google Scholar] [CrossRef]
- Song, X.; Yang, F.; Wu, H.; Zhang, J.; Li, D.; Liu, F.; Zhao, Y.; Yang, J.; Ju, B.; Cai, C.; et al. Significant loss of soil inorganic carbon at the continental scale. Natl. Sci. Rev. 2021, 9, nwab120. [Google Scholar] [CrossRef] [PubMed]
- Bughio, M.; Wang, P.; Meng, F.; Qing, C.; Kuzyakov, Y.; Wang, X.; Junejo, S. Neoformation of pedogenic carbonates by irrigation and fertilization and their contribution to carbon sequestration in soil. Geoderma 2016, 262, 12–19. [Google Scholar] [CrossRef]
- Raza, S.; Miao, N.; Wang, P.; Ju, X.; Chen, Z.; Zhou, J.; Kuzyakov, Y. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Glob. Chang. Biol. 2020, 26, 3738–3751. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhao, C.; Wang, J.; Stahr, K.; Kuzyakov, Y. CaCO3 recrystallization in saline and alkaline soils. Geoderma 2016, 282, 1–8. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, R.; Cao, H.; Tan, W. Factor contribution to soil organic and inorganic carbon accumulation in the Loess Plateau: Structural equation modeling. Geoderma 2019, 352, 116–125. [Google Scholar] [CrossRef]
- Azeem, M.; Raza, S.; Li, G.; Smith, P.; Zhu, Y. Soil inorganic carbon sequestration through alkalinity regeneration using biologically induced weathering of rock powder and biochar. Soil Ecol. Lett. 2022, 4, 293–306. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, C.; Stahr, K.; Kuzyakov, Y.; Wei, X. The effect of microorganisms on soil carbonate recrystallization and abiotic CO2 uptake of soil. Catena 2020, 192, 104592. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Zhang, Q.; Hu, N.; Li, Z.; Lou, Y.; Li, Y.; Xue, D.; Chen, Y.; Wu, C.; et al. Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil. Sci. Total Environ. 2017, 624, 1131–1139. [Google Scholar] [CrossRef]
- Xie, J.; Hou, M.; Zhou, Y.; Wang, R.; Zhang, S.; Yang, X.; Sun, B. Carbon sequestration and mineralization of aggregate-associated carbon in an intensively cultivated Anthrosol in north China as affected by long term fertilization. Geoderma 2017, 296, 1–9. [Google Scholar] [CrossRef]
- Martí-Roura, M.; Hagedorn, F.; Rovira, P.; Romanyà, J. Effect of land use and carbonates on organic matter stabilization and microbial communities in Mediterranean soils. Geoderma 2019, 351, 103–115. [Google Scholar] [CrossRef]
- Abrar, M.; Xu, M.; Shah, S.; Aslam, M.; Aziz, T.; Mustafa, A.; Ashraf, M.; Zhou, B.; Ma, X. Variations in the profile distribution and protection mechanisms of organic carbon under long-term fertilization in a Chinese Mollisol. Sci. Total Environ. 2020, 723, 138181. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Álvaro-Fuentes, J.; Cantero-Martínez, C. Identifying soil organic carbon fractions sensitive to agricultural management practices. Soil Tillage Res. 2014, 139, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Xu, M.; Wang, X.; Bhattacharyya, R.; Zhang, W.; Cong, R. Long-term fertilization effects on organic carbon fractions in a red soil of China. Catena 2014, 113, 251–259. [Google Scholar] [CrossRef]
- Asgari, H.; Jafari, S. The study of particle size distribution of calcium carbonate and its effects on some soil properties in khuzestan province. Iran Agric. Res. 2017, 36, 71–80. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Zhang, Y.; Zhang, L.; Wu, W.; Meng, F. Impact of Land Use and Fertilization Measures on Soil C Stock in Farming grazing Interlacing Zone of Inner Mongolia, China. Acta Pedol. Sin. 2016, 53, 930–941. (In Chinese) [Google Scholar] [CrossRef]
- Li, P.; Bai, H.; Guo, S.; Yang, J. Spatial distribution features of CaCO3 content in chestnut soil. Acta Pedol. Sin. 2014, 51, 5. (In Chinese) [Google Scholar] [CrossRef]
- Lu, R. Soil and Agro-Chemistry Analytical Method; China Agricultural Science and Technology Press: Beijing, China, 1999. (In Chinese) [Google Scholar]
- Hong, M.; Zheng, H.; Wei, X.; Li, Y.; Mi, F. Determination of exchangeable calcium and magnesium in calcareous soil. Acta Pedol. Sin. 2014, 51, 82–89. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Q.; Ren, Y.; Meng, L.; Li, H.; Fu, H.; Wang, H. Simultaneous determination of total nitrogen and organic carbon in soil with an elemental analyzer. Chin. J. Anal. Lab. 2013, 32, 41–45. (In Chinese) [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Q.; Gao, W.; Luo, Y.; Wu, L.; Rui, Y.; Huang, Y.; Xiao, Q.; Li, X.; Zhang, W. Organic amendments facilitate soil carbon sequestration via organic carbon accumulation and mitigation of inorganic carbon loss. Land Degrad. Dev. 2022, 33, 1423–1433. [Google Scholar] [CrossRef]
- Ren, F.; Misselbrook, T.; Sun, N.; Zhang, X.; Zhang, S.; Jiao, J.; Xu, M.; Wu, L. Spatial changes and driving variables of topsoil organic carbon stocks in Chinese croplands under different fertilization strategies. Sci Total Environ. 2021, 767, 144350. [Google Scholar] [CrossRef]
- Waqas, M.; Li, Y.; Smith, P.; Wang, X.; Ashraf, M.; Noor, M.; Amou, M.; Shi, S.; Zhu, Y.; Li, J.; et al. The influence of nutrient management on soil organic carbon storage, crop production, and yield stability varies under different climates. J. Clean. Prod. 2020, 268, 121922. [Google Scholar] [CrossRef]
- Lin, Y.; Ye, G.; Kuzyakov, Y.; Liu, D.; Fan, J.; Ding, W. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Sci Total Environ. 2019, 134, 187–196. [Google Scholar] [CrossRef]
- Elliott, E. Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Jastrow, J. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem. 1996, 28, 665–676. [Google Scholar] [CrossRef]
- Eusterhues, K.; Rumpel, C.; Kleber, M.; Kögel-Knabner, I. Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org. Geochem. 2003, 34, 1591–1600. [Google Scholar] [CrossRef]
- Flessa, H.; Amelung, W.; Helfrich, M.; Wiesenberg, G.; Gleixner, G.; Brodowski, S.; Rethemeyer, J.; Kramer, C.; Grootes, P. Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: A synthesis-Review Article. J. Plant Nutr. Soil Sci. 2008, 171, 36–51. [Google Scholar] [CrossRef] [Green Version]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Ghafoor, A.; Poeplau, C.; Kätterer, T. Fate of straw- and root-derived carbon in a Swedish agricultural soil. Biol. Fertil. Soils 2017, 53, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Doetterl, S.; Berhe, A.; Nadeu, E.; Wang, Z.; Sommer, M.; Fiener, P. Erosion, deposition and soil carbon: A review of process-level CKs. experimental tools and models to address C cycling in dynamic landscapes. Earth-Sci. Rev. 2016, 154, 102–122. [Google Scholar] [CrossRef]
- Mustafa, A.; Xu, M.; Atizaz, S.; Abrar, M.; Sun, N.; Baoren, W.; Zejiang, C.; Saeed, Q.; Naveed, M.; Mehmood, K.; et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 2020, 270, 110894. [Google Scholar] [CrossRef]
- Xie, W.; Chen, Q.; Wu, L.; Yang, H.; Xu, J.; Zhang, Y. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: A 4-year field study. Soil Tillage Res. 2020, 198, 104535. [Google Scholar] [CrossRef]
- Atere, C.; Gunina, A.; Zhu, Z.; Xiao, M.; Liu, S.; Kuzyakov, Y.; Chen, L.; Deng, Y.; Wu, J.; Ge, T. Organic matter stabilization in aggregates and density fractions in paddy soil depending on long-term fertilization: Tracing of pathways by 13C natural abundance. Soil Biol. Biochem. 2020, 149, 107931. [Google Scholar] [CrossRef]
- Yu, H.; Ding, W.; Luo, J.; Geng, R.; Cai, Z. Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil Tillage Res. 2012, 124, 170–177. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhattacharyya, R.; Meena, M.; Dwivedi, B.; Singh, G.; Agnihotri, R. Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil Tillage Res. 2018, 177, 134–144. [Google Scholar] [CrossRef]
- Tao, J.; Raza, S.; Zhao, M.; Cui, J.; Wang, P.; Sui, Y.; Zamanian, K.; Kuzyakov, Y.; Xu, M.; Chen, Z.; et al. Vulnerability and driving factors of soil inorganic carbon stocks in Chinese croplands. Sci. Total Environ. 2022, 825, 154087. [Google Scholar] [CrossRef]
- Liang, F.; Li, J.; Zhang, S.; Gao, H.; Wang, B.; Shi, X.; Huang, S.; Xu, M. Two-decade long fertilization induced changes in subsurface soil organic carbon stock vary with indigenous site characteristics. Geoderma 2019, 337, 853–862. [Google Scholar] [CrossRef]
- Luo, R.; Kuzyakov, Y.; Liu, D.; Fan, J.; Luo, J.; Lindsey, S.; He, J.; Ding, W. Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: Disentangling microbial and physical controls. Soil Biol. Biochem. 2020, 144, 107764. [Google Scholar] [CrossRef]
- Mengel, K. Dynamics and availability of major nutrients in soils. Adv. Soil Sci. 1985, 2, 65–131. [Google Scholar] [CrossRef]
- Cookson, W.; Abaye, D.; Marschner, P.; Murphy, D.; Stockdale, E.; Goulding, K. The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biol. Biochem. 2005, 37, 1726–1737. [Google Scholar] [CrossRef]
- Zhang, M.; He, Z.; Zhao, A. Water-Extractable Organic Carbon and Nitrogen Affected by Crop Rotation and Fertilizer Management; He, H., Wu, F., Eds.; Labile Organic Matter—Chemical Composition, Functions, and Significance in Soil and the Environment. SSSA Special Publication 62; Soil Science Society of America: Madison, WI, USA, 2015; pp. 119–136. [Google Scholar] [CrossRef]
- Poeplau, C.; Kätterer, T.; Leblans, N.; Sigurdsson, B. Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland. Glob. Chang. Biol. 2017, 23, 1316–1327. [Google Scholar] [CrossRef]
- Rabbi, S.; Daniel, H.; Lockwood, P.; Macdonald, C.; Pereg, L.; Tighe, M.; Wilson, B.; Young, I. Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity. Sci. Rep. 2016, 6, 2045–2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.; Singh, B.; Li, G.; Lin, Q.; Zhao, X. Biochar increased field soil inorganic carbon content five years after application. Soil Tillage Res. 2019, 186, 36–41. [Google Scholar] [CrossRef]
Treatments | CK | NPK | M | NPKM |
---|---|---|---|---|
TN (g kg−1) | 0.94 b | 0.98 b | 1.45 a | 1.50 a |
SOC (g kg−1) | 7.93 b | 8.18 b | 11.60 a | 12.75 a |
pH (1:2.5) | 8.26 a | 8.27 ab | 8.27 a | 8.04 b |
DOC (g kg−1) | 60.03 c | 61.32 c | 131.46 b | 169.02 a |
DON (g kg−1) | 16.83 c | 28.02 bc | 39.62 b | 66.40 a |
SMBC (g kg−1) | 165.15 c | 226.46 b | 361.94 a | 319.14 a |
SMBN (g kg−1) | 36.57 b | 50.20 b | 82.51 a | 67.17 a |
TK (g kg−1) | 22.61 ab | 19.54 b | 24.31 a | 22.69 ab |
AK (g kg−1) | 87.3 c | 109.7 c | 206.7 b | 328.0 a |
TP (g kg−1) | 0.38 b | 0.35 b | 0.53 a | 0.37 b |
AP (g kg−1) | 2.63 c | 8.90 b | 12.07 b | 33.00 a |
Treatments | >0.25 mm | 0.053–0.25 mm | <0.053 mm | MOM | |||
---|---|---|---|---|---|---|---|
cfPOM | 0.053–0.25 mm | ffPOM | iPOM | iMOM | oMOM | ||
CK | 34.47 b | 41.18 a | 0.29 c | 12.45 a | 28.44 b | 24.35 a | 52.78 a |
NPK | 34.24 b | 42.64 a | 0.46 bc | 12.56 a | 29.61 ab | 23.12 a | 52.73 a |
M | 36.53 ab | 44.94 a | 0.74 a | 11.84 a | 32.35 a | 18.53 b | 50.89 ab |
NPKM | 38.26 a | 44.39 a | 0.68 ab | 13.50 a | 30.21 ab | 17.36 b | 47.57 b |
Treatments | cfPOM | iPOM | iMOM | oMOM | MOM |
---|---|---|---|---|---|
SOC | 0.604 * | 0.003 | 0.594 * | 0.106 | 0.597 * |
Ca2+ | 0.018 | 0.005 | 0.042 | 0.068 | 0.031 |
Mg2+ | 0.699 ** | 0.208 | 0.465 | 0.001 | 0.511 |
DOC | 0.601 * | 0.091 | 0.413 | 0.080 | 0.515 |
DON | 0.335 | 0.209 | 0.208 | 0.024 | 0.297 |
SMBC | 0.830 ** | 0.324 | 0.433 | 0.001 | 0.634 * |
SMBN | 0.727 ** | 0.029 | 0.532 | 0.311 | 0.680 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Ren, F.; Li, Y.; Duan, Y.; Sun, N.; Zhao, P.; Li, Y.; Xu, M. The Inorganic Carbon Fixation Improved by Long-Term Manure Fertilization in Kastanozems under Rotation System of North China. Agronomy 2023, 13, 641. https://doi.org/10.3390/agronomy13030641
Tang L, Ren F, Li Y, Duan Y, Sun N, Zhao P, Li Y, Xu M. The Inorganic Carbon Fixation Improved by Long-Term Manure Fertilization in Kastanozems under Rotation System of North China. Agronomy. 2023; 13(3):641. https://doi.org/10.3390/agronomy13030641
Chicago/Turabian StyleTang, Lingyun, Fengling Ren, Yalin Li, Yu Duan, Nan Sun, Peiyi Zhao, Yuejin Li, and Minggang Xu. 2023. "The Inorganic Carbon Fixation Improved by Long-Term Manure Fertilization in Kastanozems under Rotation System of North China" Agronomy 13, no. 3: 641. https://doi.org/10.3390/agronomy13030641
APA StyleTang, L., Ren, F., Li, Y., Duan, Y., Sun, N., Zhao, P., Li, Y., & Xu, M. (2023). The Inorganic Carbon Fixation Improved by Long-Term Manure Fertilization in Kastanozems under Rotation System of North China. Agronomy, 13(3), 641. https://doi.org/10.3390/agronomy13030641