Dynamics of Structural Dry Matter, Water Soluble Carbohydrates and Leaf Senescence Mediate the Response of Winter Wheat Yield to Soil Cover and Water Availability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Crop Husbandry
2.2. Treatments and Experimental Design
2.3. Sampling and Measurements
2.4. Calculations and Statistical Analyses
3. Results
3.1. Wheat Pre-Anthesis and Post-Anthesis Dry Matter, Grain Yield, and Yield Components
3.2. Structural Dry Matter, and Water Soluble Carbohydrates Accumulation and Translocation
3.3. Dynamics of the C:N of Flag Leaf after Anthesis
3.4. Associations between Traits
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, C.; Sadras, V.O.; Lu, G.; Zhang, R.; Yang, X.; Zhang, S. Root pruning enhances wheat yield, harvest index and water-use efficiency in semiarid area. Field Crops Res. 2019, 230, 62–71. [Google Scholar] [CrossRef]
- Venkateswarlu, B.; Shanker, A.K. Dryland agriculture: Bringing resilience to crop production under changing climate. In Crop Stress and Its Management: Perspectives and Strategies; Springer: Dordrecht, The Netherlands, 2012; pp. 19–44. [Google Scholar] [CrossRef]
- Unkovich, M.; Baldock, J.; Farquharson, R. Field measurements of bare soil evaporation and crop transpiration, and transpiration efficiency, for rainfed grain crops in Australia—A review. Agric. Water Manag. 2018, 205, 72–80. [Google Scholar] [CrossRef]
- Yang, W.; Liu, W.; Li, Y.; Wang, S.; Yin, L.; Deng, X. Increasing rainfed wheat yield by optimizing agronomic practices to consume more subsoil water in the Loess Plateau. Crop J. 2021, 9, 1418–1427. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.Q.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Sadras, V.; Chen, X.; Zhang, F. Water use efficiency of dryland wheat in the Loess Plateau in response to soil and crop management. Field Crops Res. 2013, 151, 9–18. [Google Scholar] [CrossRef]
- Li, X. Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China. Catena 2003, 52, 105–127. [Google Scholar] [CrossRef]
- He, G.; Wang, Z.; Ma, X.; He, H.; Cao, H.; Wang, S.; Dai, J.; Luo, L.; Huang, M.; Malhi, S.S. Wheat Yield Affected by Soil Temperature and Water under Mulching in Dryland. Agron. J. 2017, 109, 2998–3006. [Google Scholar] [CrossRef]
- Lei, T.; Luo, C.; Zhang, R.; Hu, C.; Xu, J.; Sadras, V.; Yang, X.; Zhang, S. Partial-film mulch returns the same gains in yield and water use efficiency as full-film mulch with reduced cost and lower pollution: A meta-analysis. J. Sci. Food Agric. 2021, 101, 5956–5962. [Google Scholar] [CrossRef]
- Sun, D.; Li, H.; Wang, E.; He, W.; Hao, W.; Yan, C.; Li, Y.; Mei, X.; Zhang, Y.; Sun, Z.; et al. An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. Natl. Sci. Rev. 2020, 7, 1523–1526. [Google Scholar] [CrossRef]
- Zhang, R.; Lei, T.; Wang, Y.; Xu, J.; Zhang, P.; Han, Y.; Hu, C.; Yang, X.; Sadras, V.; Zhang, S. Responses of yield and water use efficiency to the interaction between water supply and plastic film mulch in winter wheat-summer fallow system. Agric. Water Manag. 2022, 266, 107545. [Google Scholar] [CrossRef]
- Guo, D.; Huang, S.; Wang, J.; Ling, L.; Li, F.; Li, S. Effects of plastic film mulching and nitrogen fertilization on spring wheat growth progress and dry matter accumulation. J. Northwest Sci-Tech Univ. Agric. For. Nat. Sci. Ed. 2003, 31, 75–80, (In Chinese with English abstract). [Google Scholar]
- Niu, J.; Li, X.; Gai, Y.; Wang, H. Effect of Plastic Film Mulches on the Leaves Senescence of Spring Wheat. J. Triticeae Crops 2005, 25, 92–95, (In Chinese with English abstract). [Google Scholar]
- Sadras, V.O. Evolutionary and ecological perspectives on the wheat phenotype. Proc. R. Soc. B Biol. Sci. 2021, 88, 20211259. [Google Scholar] [CrossRef]
- Sadras, V.O.; Fereres, E.; Borrás, L.; Garzo, E.; Moreno, A.; Araus, J.L.; Fereres, A. Aphid Resistance: An Overlooked Ecological Dimension of Nonstructural Carbohydrates in Cereals. Front. Plant Sci. 2020, 11, 937. [Google Scholar] [CrossRef]
- Sadras, V.O.; Vázquez, C.; Garzo, E.; Moreno, A.; Medina, S.; Taylor, J.; Fereres, A. The role of plant labile carbohydrates and nitrogen on wheat-aphid relations. Sci. Rep. 2021, 11, 12529. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ji, S.; Zhang, D.; Guo, R.; Wang, H.; Lv, F. Effects of different corn /wheat year-round tillage modes on post-anthesis dry matter accumulation and transfer and grain yield of wheat in rain-fed farming area of Southern Henan Province. Chin. J. Ecol. 2011, 20, 1942–1948, (In Chinese with English abstract). [Google Scholar]
- Liu, A.; Ma, R.; Wang, D.; Wang, Y.; Yang, Y.; Zhao, G.; Chang, X. Effects of filming and supplemental nitrogen fertilizer application on plant growth and population quality of late sowing winter wheat before winter. Acta Agron. Sin. 2022, 48, 1771–1786, (In Chinese with English abstract). [Google Scholar]
- Fu, G.; Li, C.; Wang, J.; Wang, Z.; Cao, H.; Jiao, N.; Chen, M. Effects of stubble mulch and tillage managements on soil physical properties and water use efficiency of summer maize. Trans. Chin. Soc. Agric. Eng. 2005, 21, 52–56, (In Chinese with English abstract). [Google Scholar]
- Huang, M.; Wu, J.; Li, Y.; Yao, Y.; Zhang, C.; Cai, D.; Jin, K. Effects of different tillage management on production and yield of winter wheat in dryland. Trans. Chin. Soc. Agric. Eng. 2009, 25, 50–54, (In Chinese with English abstract). [Google Scholar]
- Nielsen, D.; Vigil, M.; Anderson, R.; Bowman, R.; Benjamin, J.; Halvorson, A. Cropping system influence on planting water content and yield of winter wheat. Agron. J. 2002, 94, 962–967. [Google Scholar] [CrossRef]
- Schillinger, W.F.; Schofstoll, S.E.; Alldredge, J.R. Available water and wheat grain yield relations in a Mediterranean climate. Field Crops Res. 2008, 109, 45–49. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports 2015; No. 106.; Food and Agriculture Organization (FAO): Rome, Italy, 2015. [Google Scholar]
- Guo, S.; Zhu, H.; Dang, T.; Wu, J.; Liu, W.; Hao, M.; Li, Y.; Syers, J.K. Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid Loess Plateau in China. Geoderma 2012, 189, 442–450. [Google Scholar] [CrossRef]
- Dang, J.; Yang, P.; Gao, S.; Sheng, G.; Li, Y. Studies on the techniques of fertilization of wheat on Weibei drylands based on soil water contents. Chin. Agric. Res. Arid Areas 1991, 9, 9–16, (In Chinese with English abstract). [Google Scholar]
- Bao, S. Analysis of Soil and Agricultural Chemistry; Chinese Agricultural Press: Beijing, China, 2005. [Google Scholar]
- Edreira, J.I.R.; Mayer, L.I.; Otegui, M.E. Heat stress in temperate and tropical maize hybrids: Kernel growth, water relations and assimilate availability for grain filling. Field Crops Res. 2014, 166, 162–172. [Google Scholar] [CrossRef]
- Ludbrook, J. A primer for biomedical scientists on how to execute Model II linear regression analysis. Clin. Exp. Pharmacol. Physiol. 2012, 39, 329–335. [Google Scholar] [CrossRef]
- Tatar, Ö.; Brück, H.; Asch, F. Photosynthesis and Remobilization of Dry Matter in Wheat as Affected by Progressive Drought Stress at Stem Elongation Stage. J. Agron. Crop Sci. 2016, 202, 292–299. [Google Scholar] [CrossRef]
- Allahverdiyev, T.; Huseynova, I. Influence of water deficit on photosynthetic activity, dry matter partitioning and grain yield of different durum and bread wheat genotypes. Cereal Res. Commun. 2017, 45, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Li, Z.; Li, W. Effect of different water supply regimes on growth and size hierarchy in spring wheat populations under mulched with clear plastic film. Agric. Water Manag. 2006, 79, 265–279. [Google Scholar] [CrossRef]
- Niu, J.; Gan, Y.; Zhang, J.; Yang, Q. Post-anthesis dry matter accumulation and redistribution in spring wheat mulched with plastic film. Crop Sci. 1998, 38, 1562–1568. [Google Scholar] [CrossRef]
- Li, S.X.; Wang, Z.H.; Li, S.Q.; Gao, Y.J.; Tian, X.H. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China. Agric. Water Manag. 2013, 116, 39–49. [Google Scholar] [CrossRef]
- Ren, A.; Zhou, R.; Mo, F.; Liu, S.; Li, J.; Chen, Y.; Zhao, L.; Xiong, Y. Soil water balance dynamics under plastic mulching in dryland rainfed agroecosystem across the Loess Plateau. Agric. Ecosyst. Environ. 2021, 765, 312. [Google Scholar] [CrossRef]
- Li, F.; Guo, A.; Wei, H. Effects of clear plastic film mulch on yield of spring wheat. Field Crops Res. 1999, 63, 79–86. [Google Scholar] [CrossRef]
- Zhang, H.; Turner, N.C.; Poole, M.L. Increasing the harvest index of wheat in the high rainfall zones of southern Australia. Field Crops Res. 2012, 129, 111–123. [Google Scholar] [CrossRef]
- Evens, J. Nitrogen and Photosynthesis in the Flag Leaf of Wheat (Triticum aestivum L.). Plant Physiol. 1983, 72, 297–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Dai, X.; Shi, Y.; Cao, Q.; Men, H.; He, M. Effects of leaf area index on photosynthesis and yield of winter wheat after anthesis. Plant Nutr. Fertil. Sci. 2012, 18, 27–34, (In Chinese with English abstract). [Google Scholar]
- Li, F.; Yan, X.; Wang, J.; Li, S.; Wang, T. The Mechanism of Yield Decrease of Spring Wheat Resulted from Plastic Film Mulching. Sci. Agric. Sin. 2001, 34, 330–333, (In Chinese with English abstract). [Google Scholar]
- Tong, J.; Sun, M.; Ren, A.; Lin, W.; Yu, S.; Wang, Q.; Feng, Y.; Ren, J.; Gao, Z. Relationship Between Plant Dry Matter Accumulation, Translocation, Soil Water Consumption and Yield of High-Yielding Wheat Cultivars. Sci. Agric. Sin. 2020, 53, 3467–3478, (In Chinese with English abstract). [Google Scholar]
Season | Water | Mulch | Pre-DM | Post-DM | Shoot Biomass at Maturity | Grain Yield | Harvest Index | Grain Number | Grain Weight |
---|---|---|---|---|---|---|---|---|---|
kg ha−1 | kg ha−1 | kg ha−1 | kg ha−1 | m−2 | mg | ||||
2018–2019 | wet | CK | 3013 ± 57 | 1158 ± 15 | 4117 ± 61 | 1675 ± 41 | 0.41 ± 0.004 | 4306 ± 249 | 40 ± 0.8 |
FM | 5279 ± 276 | 2276 ± 125 | 7287 ± 370 | 3130 ± 173 | 0.43 ± 0.010 | 8734 ± 151 | 43 ± 1.0 | ||
moderate | CK | 2216 ± 116 | 776 ± 51 | 2862 ± 151 | 1135 ± 67 | 0.40 ± 0.007 | 5591 ± 454 | 43 ± 1.3 | |
FM | 4373 ± 347 | 1894 ± 140 | 6336 ± 243 | 2971 ± 121 | 0.47 ± 0.007 | 7351 ± 384 | 44 ± 0.5 | ||
dry | CK | 868 ± 16 | 370 ± 115 | 906 ± 24 | 234 ± 6 | 0.26 ± 0.012 | 2855 ± 479 | 26 ± 1.0 | |
FM | 913 ± 21 | 1329 ± 158 | 2256 ± 15 | 730 ± 33 | 0.32 ± 0.015 | 3068 ± 440 | 27 ± 1.3 | ||
p | |||||||||
Water (W) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Mulch (M) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.099 | ||
W × M | <0.001 | 0.781 | 0.005 | 0.003 | 0.111 | 0.001 | 0.572 | ||
2019–2020 | wet | CK | 12,549 ± 522 | 6202 ± 364 | 17,312 ± 331 | 7768 ± 193 | 0.45 ± 0.004 | 18,252 ± 409 | 40 ± 0.2 |
FM | 12,571 ± 498 | 5975 ± 308 | 16,994 ± 743 | 7604 ± 197 | 0.43 ± 0.001 | 17,982 ± 476 | 41 ± 0.4 | ||
moderate | CK | 11,194 ± 163 | 4665 ± 70 | 13,644 ± 97 | 5983 ± 10 | 0.44 ± 0.003 | 14,495 ± 1175 | 39 ± 0.6 | |
FM | 12,401 ± 199 | 5945 ± 163 | 16,323 ± 213 | 7230 ± 170 | 0.44 ± 0.005 | 17,108 ± 1225 | 39 ± 0.2 | ||
dry | CK | 11,304 ± 1026 | 4500 ± 585 | 10,806 ± 276 | 4490 ± 147 | 0.42 ± 0.004 | 12,927 ± 1769 | 41 ± 0.7 | |
FM | 10,599 ± 591 | 4088 ± 248 | 12,951 ± 820 | 5613 ± 219 | 0.41 ± 0.004 | 11,801 ± 966 | 41 ± 0.3 | ||
p | |||||||||
Water (W) | 0.079 | 0.001 | <0.001 | <0.001 | 0.001 | 0.001 | <0.001 | ||
Mulch (M) | 0.751 | 0.503 | 0.004 | 0.001 | 0.195 | 0.702 | 0.855 | ||
W × M | 0.369 | 0.079 | 0.032 | 0.004 | 0.082 | 0.331 | 0.646 | ||
2020–2021 | wet | CK | 13,747 ± 425 | 5948 ± 446 | 16,744 ± 661 | 7665 ± 415 | 0.45 ± 0.017 | 21,640 ± 996 | 47 ± 0.4 |
FM | 14,887 ± 461 | 7012 ± 289 | 18,571 ± 561 | 8733 ± 271 | 0.47 ± 0.007 | 21,961 ± 1177 | 47 ± 0.4 | ||
moderate | CK | 12,709 ± 647 | 5159 ± 234 | 15,153 ± 694 | 7267 ± 48 | 0.47 ± 0.015 | 12,918 ± 677 | 48 ± 0.6 | |
FM | 13,494 ± 307 | 5840 ± 81 | 16,410 ± 329 | 7545 ± 185 | 0.46 ± 0.003 | 14,786 ± 1498 | 49 ± 0.2 | ||
p | |||||||||
Water (W) | 0.012 | 0.004 | 0.003 | 0.126 | 0.711 | <0.001 | 0.734 | ||
Mulch (M) | 0.041 | 0.010 | 0.012 | 0.999 | 0.750 | 0.313 | 0.833 | ||
W × M | 0.693 | 0.529 | 0.616 | 0.987 | 0.424 | 0.473 | 0.471 |
Season | Water | Mulch | SDM | WSC | |||
---|---|---|---|---|---|---|---|
Anthesis | Maturity | Translocation Amount | Translocation Ratio | ||||
kg ha−1 | kg ha−1 | kg ha−1 | kg ha−1 | % | |||
2018–2019 | wet | CK | 2282 ± 19 | 700 ± 59 | 96 ± 6 | 604 ± 55 | 86 ± 1 |
FM | 3958 ± 218 | 1236 ± 87 | 128 ± 4 | 1109 ± 85 | 90 ± 1 | ||
moderate | CK | 1686 ± 131 | 506 ± 22 | 56 ± 9 | 450 ± 24 | 89 ± 2 | |
FM | 3107 ± 118 | 1204 ± 143 | 122 ± 17 | 1082 ± 129 | 90 ± 1 | ||
dry | CK | 727 ± 22 | 129 ± 7 | 51 ± 7 | 78 ± 8 | 60 ± 5 | |
FM | 689 ± 35 | 207 ± 14 | 61 ± 9 | 146 ± 14 | 71 ± 4 | ||
p | |||||||
Water (W) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Mulch (M) | <0.001 | <0.001 | <0.001 | <0.001 | 0.067 | ||
W × M | <0.001 | 0.148 | <0.001 | 0.478 | 0.603 | ||
2019–2020 | wet | CK | 9630 ± 425 | 2773 ± 148 | 776 ± 68 | 1997 ± 131 | 72 ± 2 |
FM | 9616 ± 524 | 2736 ± 34 | 851 ± 86 | 1886 ± 83 | 69 ± 3 | ||
moderate | CK | 8149 ± 123 | 2905 ± 196 | 971 ± 86 | 1934 ± 215 | 66 ± 4 | |
FM | 8606 ± 307 | 3586 ± 96 | 921 ± 94 | 2665 ± 91 | 74 ± 2 | ||
dry | CK | 7475 ± 877 | 3727 ± 261 | 1101 ± 129 | 2626 ± 267 | 70 ± 4 | |
FM | 7119 ± 351 | 3356 ± 284 | 821 ± 85 | 2535 ± 276 | 75 ± 3 | ||
p | |||||||
Water (W) | 0.001 | 0.008 | 0.001 | 0.035 | 0.751 | ||
Mulch (M) | 0.980 | 0.548 | 0.840 | 0.349 | 0.259 | ||
W × M | 0.639 | 0.080 | 0.698 | 0.129 | 0.313 | ||
2020–2021 | wet | CK | 10,290 ± 352 | 3019 ± 99 | 648 ± 38 | 2371 ± 83 | 79 ± 1 |
FM | 11,336 ± 431 | 3289 ± 135 | 830 ± 93 | 2459 ± 154 | 75 ± 3 | ||
moderate | CK | 9305 ± 559 | 3295 ± 214 | 730 ± 91 | 2565 ± 131 | 78 ± 2 | |
FM | 9424 ± 271 | 3903 ± 74 | 869 ± 81 | 3034 ± 141 | 78 ± 2 | ||
p | |||||||
Water (W) | <0.001 | 0.002 | 0.413 | 0.005 | 0.518 | ||
Mulch (M) | 0.231 | 0.003 | 0.039 | 0.033 | 0.250 | ||
W × M | 0.380 | 0.198 | 0.767 | 0.132 | 0.368 |
Season | Water | Mulch | a | b (d−1) | R2 | N |
---|---|---|---|---|---|---|
2018–2019 | wet | CK | 10.37 | 0.040 | 0.75 | 28 |
FM | 7.87 | 0.051 | 0.86 | 28 | ||
moderate | CK | 9.72 | 0.037 | 0.46 | 28 | |
FM | 8.98 | 0.044 | 0.76 | 28 | ||
dry | CK | 10.67 | 0.036 | 0.46 | 28 | |
FM | 13.13 | 0.038 | 0.75 | 28 | ||
2019–2020 | wet | CK | 6.55 | 0.057 | 0.80 | 28 |
FM | 5.90 | 0.061 | 0.86 | 28 | ||
moderate | CK | 6.73 | 0.062 | 0.88 | 28 | |
FM | 5.83 | 0.057 | 0.88 | 28 | ||
dry | CK | 8.57 | 0.057 | 0.81 | 28 | |
FM | 8.13 | 0.053 | 0.80 | 28 | ||
2020–2021 | wet | CK | 9.77 | 0.050 | 0.87 | 40 |
FM | 10.38 | 0.046 | 0.87 | 40 | ||
moderate | CK | 13.11 | 0.051 | 0.96 | 20 | |
FM | 13.25 | 0.049 | 0.93 | 20 | ||
2018–2019 | 10.12 ± 0.73 | 0.041 ± 0.017 | ||||
2019–2020 | 6.96 ± 0.47 | 0.058 ± 0.024 | ||||
2020–2021 | 11.63 ± 0.74 | 0.049 ± 0.020 | ||||
wet | 8.47 ± 0.81 | 0.051 ± 0.021 | ||||
moderate | 9.59 ± 1.27 | 0.050 ± 0.021 | ||||
dry | 10.13 ± 0.93 | 0.046 ± 0.019 | ||||
CK | 9.44 ± 0.76 | 0.049 ± 0.017 | ||||
FM | 9.18 ± 1.02 | 0.050 ± 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Zhang, C.; Lei, T.; Xu, J.; Zhang, P.; Hu, C.; Sadras, V.; Yang, X.; Zhang, S. Dynamics of Structural Dry Matter, Water Soluble Carbohydrates and Leaf Senescence Mediate the Response of Winter Wheat Yield to Soil Cover and Water Availability. Agronomy 2023, 13, 336. https://doi.org/10.3390/agronomy13020336
Zhang R, Zhang C, Lei T, Xu J, Zhang P, Hu C, Sadras V, Yang X, Zhang S. Dynamics of Structural Dry Matter, Water Soluble Carbohydrates and Leaf Senescence Mediate the Response of Winter Wheat Yield to Soil Cover and Water Availability. Agronomy. 2023; 13(2):336. https://doi.org/10.3390/agronomy13020336
Chicago/Turabian StyleZhang, Runze, Caiyun Zhang, Tong Lei, Jiaxing Xu, Panxin Zhang, Changlu Hu, Victor Sadras, Xueyun Yang, and Shulan Zhang. 2023. "Dynamics of Structural Dry Matter, Water Soluble Carbohydrates and Leaf Senescence Mediate the Response of Winter Wheat Yield to Soil Cover and Water Availability" Agronomy 13, no. 2: 336. https://doi.org/10.3390/agronomy13020336
APA StyleZhang, R., Zhang, C., Lei, T., Xu, J., Zhang, P., Hu, C., Sadras, V., Yang, X., & Zhang, S. (2023). Dynamics of Structural Dry Matter, Water Soluble Carbohydrates and Leaf Senescence Mediate the Response of Winter Wheat Yield to Soil Cover and Water Availability. Agronomy, 13(2), 336. https://doi.org/10.3390/agronomy13020336