The Responses of Stem and Leaf Functional Traits of Medicago sativa and Bromus inermis to Different Mixed Planting Patterns
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Experimental Design
2.3. Sample Collection
2.3.1. Sample Collection
2.3.2. Determination Indices and Methods
2.4. Data Analysis
2.4.1. Principal Component and Gray Correlation Analyses
2.4.2. ANOVA and LSD Methods
3. Results
3.1. Effects of Cutting Times and Sowing Patterns on Stem and Leaf Characteristics and Production Characteristics
3.2. Effects of Different Sowing Patterns and Stubble on Stem and Leaf Traits of Alfalfa and Awnless Brome
3.2.1. Effect of Different Sowing Patterns and Stubble on Leaf Traits of Alfalfa and Awnless Brome
3.2.2. Effects of Different Sowing Patterns and Stubble on Stem Traits of Alfalfa and Awnless Brome
3.2.3. Effect of Different Sowing Patterns and Stubble on the Stem-to-Leaf Ratio of Alfalfa and Awnless Brome
3.3. Effects of Different Sowing Patterns and Stubble on Yield Traits of Alfalfa and Awnless Brome
3.4. Correlation Coefficients of Alfalfa and Awnless Brome Stem and Leaf Traits with Their Dry Matter Yields under Different Treatments
4. Discussion
4.1. Effect of Different Sowing Patterns on Forage Stem and Leaf Traits
4.2. Effects of Different Sowing Patterns on the Quantitative Traits of Forage Grasses
4.3. Effects of Different Stem and Leaf Traits on Forage Yield Traits
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Tahir, M.; Li, C.; Chen, C.; Xin, Y.; Zhang, G.; Cheng, M.; Yan, Y. Mixture of Alfalfa, Orchardgrass, and Tall Fescue Produces Greater Biomass Yield in Southwest China. Agronomy 2022, 12, 2425. [Google Scholar] [CrossRef]
- Zhu, L.; Li, X.; He, J.; Zhou, X.; Wang, F.; Zhao, Y.; Liang, X.; Nan, X.; Li, Y.; Qin, K.; et al. Development of Lycium barbarum–Forage Intercropping Patterns. Agronomy 2023, 13, 1365. [Google Scholar] [CrossRef]
- Zheng, E.; Zhu, Y.; Qin, M.; Chen, P.; Liu, M.; Qi, Z. Effects of Organic Fertilizer Replacement Nitrogen Fertilizer on Nitrogen Utilization and Growth of Mung Bean: Evidence from 15N-Tracing Technology. Agronomy 2023, 13, 235. [Google Scholar] [CrossRef]
- Suter, M.; Huguenin-Elie, O.; Lüscher, A. Multispecies for multifunctions: Combining four complementary species enhances multifunctionality of sown grassland. Sci. Rep. 2021, 11, 3835. [Google Scholar] [CrossRef]
- Li, Y.; Moinet, G.Y.K.; Clough, T.J.; Whitehead, D. Organic matter contributions to nitrous oxide emissions following nitrate addition are not proportional to substrate-induced soil carbon priming. Sci. Total Environ. 2022, 851, 158274. [Google Scholar] [CrossRef]
- Fan, F.; Yang, Q.; Li, Z.; Wei, D.; Cui, X.; Liang, Y. Impacts of organic and inorganic fertilizers on nitrification in a cold climate soil are linked to the bacterial ammonia oxidizer community. Microb. Ecol. 2011, 62, 982–990. [Google Scholar] [CrossRef]
- Sun, R.; Guo, X.; Wang, D.; Chu, H. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl. Soil Ecol. 2015, 95, 171–178. [Google Scholar] [CrossRef]
- Ghani, M.U.; Kamran, M.; Ahmad, I.; Arshad, A.; Zhang, C.; Zhu, W.; Lou, S.; Hou, F. Alfalfa-grass mixtures reduce greenhouse gas emissions and net global warming potential while maintaining yield advantages over monocultures. Sci. Total Environ. 2022, 849, 157765. [Google Scholar] [CrossRef]
- Meza, K.; Vanek, S.J.; Sueldo, Y.; Olivera, E.; Ccanto, R.; Scurrah, M.; Fonte, S.J. Grass—Legume Mixtures Show Potential to Increase Above- and Belowground Biomass Production for Andean Forage-Based Fallows. Agronomy 2022, 12, 142. [Google Scholar] [CrossRef]
- Finn, J.A.; Kirwan, L.; Connolly, J.; Sebastià, M.T.; Helgadottir, A.; Baadshaug, O.H.; Bélanger, G.; Black, A.; Brophy, C.; Collins, R.P.; et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. J. Appl. Ecol. 2013, 50, 365–375. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Boddey, R.M.; Gresshoff, P.M.; Hauggaard-Nielsen, H.; Alves, B.J.R.; Morrison, M.J.J.A.f.S.D. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron. Sustain. Dev. 2012, 32, 329–364. [Google Scholar] [CrossRef]
- Pappa, V.A.; Rees, R.M.; Walker, R.L.; Baddeley, J.A.; Watson, C.A. Nitrous oxide emissions and nitrate leaching in an arable rotation resulting from the presence of an intercrop. Agric. Ecosyst. Environ. 2011, 141, 153–161. [Google Scholar] [CrossRef]
- Kumar, S. Biotechnological advancements in alfalfa improvement. J. Appl. Genet. 2011, 52, 111–124. [Google Scholar] [CrossRef]
- Singer, S.D.; Hannoufa, A.; Acharya, S. Molecular improvement of alfalfa for enhanced productivity and adaptability in a changing environment. Plant Cell Environ. 2018, 41, 1955–1971. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Singh, J.B.; Singh, R.; Kantwa, S.R.; Jha, P.K.; Ahamad, S.; Singh, A.; Ghosh, A.; Prasad, M.; Singh, S.; et al. Understanding Soil Carbon and Phosphorus Dynamics under Grass-Legume Intercropping in a Semi-Arid Region. Agronomy 2023, 13, 1692. [Google Scholar] [CrossRef]
- Salama, H.S.A.; Nawar, A.I.; Khalil, H.E. Intercropping Pattern and N Fertilizer Schedule Affect the Performance of Additively Intercropped Maize and Forage Cowpea in the Mediterranean Region. Agronomy 2022, 12, 107. [Google Scholar] [CrossRef]
- Tahir, M.; Wei, X.; Liu, H.; Li, J.; Zhou, J.; Kang, B.; Jiang, D.; Yan, Y. Mixed legume-grass seeding and nitrogen fertilizer input enhance forage yield and nutritional quality by improving the soil enzyme activities in Sichuan, China. Front. Plant Sci. 2023, 14, 1176150. [Google Scholar] [CrossRef]
- Pan, J.; Miao, Q.; Zhang, W.; Wang, H.; Wang, W.; Xue, Y.; Qi, S.; Cui, Z. Increasing Soil Organic Carbon for Higher Wheat Yield and Nitrogen Productivity. Agronomy 2023, 13, 198. [Google Scholar] [CrossRef]
- Pampana, S.; Arduini, I.; Andreuccetti, V.; Mariotti, M. Fine-Tuning N Fertilization for Forage and Grain Production of Barley–Field Bean Intercropping in Mediterranean Environments. Agronomy 2022, 12, 418. [Google Scholar] [CrossRef]
- Hau, F.C.; Campbell, C.L.; Beute, M.K. Inoculum distribution and sampling methods for Cylindrocladium crotalariae in a peanut field. Plant Dis. 1982, 66, 568–571. [Google Scholar] [CrossRef]
- Lin, C.S.; Poushinsky, G.; Mauer, M. An Examination of Five Sampling Methods under Random and Clustered Disease Distributions Using Simulation. Can. J. Plant Sci. 1979, 59, 121–130. [Google Scholar] [CrossRef]
- Miller, C.M.F.; Fadel, J.G.; Heguy, J.M.; Karle, B.M.; Price, P.L.; Meyer, D. Optimizing accuracy of protocols for measuring dry matter and nutrient yield of forage crops. Sci. Total Environ. 2018, 624, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, S.; Liu, C.; Hou, D. Nutrient reallocation between stem and leaf drives grazed grassland degradation in inner Mongolia, China. BMC Plant Biol. 2022, 22, 505. [Google Scholar] [CrossRef] [PubMed]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Hahn, P.G.; Maron, J.L. A Framework for Predicting Intraspecific Variation in Plant Defense. Trends Ecol. Evol. 2016, 31, 646–656. [Google Scholar] [CrossRef]
- Li, X.-L.; Liu, Z.-Y.; Ren, W.-B.; Ding, Y.; Ji, L.; Guo, F.-H.; Hou, X.-Y. Linking nutrient strategies with plant size along a grazing gradient: Evidence from Leymus chinensis in a natural pasture. J. Integr. Agric. 2016, 15, 1132–1144. [Google Scholar] [CrossRef]
- Faligowska, A.; Kalembasa, S.; Kalembasa, D.; Panasiewicz, K.; Szymańska, G.; Ratajczak, K.; Skrzypczak, G. The Nitrogen Fixation and Yielding of Pea in Different Soil Tillage Systems. Agronomy 2022, 12, 352. [Google Scholar] [CrossRef]
- Emam, M.A.; Abd El-Mageed, A.M.; Niedbała, G.; Sabrey, S.A.; Fouad, A.S.; Kapiel, T.; Piekutowska, M.; Mahmoud, S.A. Genetic Characterization and Agronomic Evaluation of Drought Tolerance in Ten Egyptian Wheat (Triticum aestivum L.) Cultivars. Agronomy 2022, 12, 1217. [Google Scholar] [CrossRef]
- Dong, S.; Wang, G.; Li, X.; Kang, Y. A Trade-Off between the Growing Performance and Sowing Density of Sunflower (Helianthus annuus L.) under Fertigation in an Arid Saline Area. Agronomy 2023, 13, 179. [Google Scholar] [CrossRef]
- Chen, S.; Yang, P.; Zhang, Y.; Dong, W.; Hu, C.; Oenema, O. Responses of Cereal Yields and Soil Carbon Sequestration to Four Long-Term Tillage Practices in the North China Plain. Agronomy 2022, 12, 176. [Google Scholar] [CrossRef]
- Chen, K.; Ma, T.; Ding, J.; Yu, S.E.; Dai, Y.; He, P.; Ma, T. Effects of Straw Return with Nitrogen Fertilizer Reduction on Rice (Oryza sativa L.) Morphology, Photosynthetic Capacity, Yield and Water–Nitrogen Use Efficiency Traits under Different Water Regimes. Agronomy 2022, 13, 133. [Google Scholar] [CrossRef]
- Chen, G.; Fan, W.; Yin, W.; Fan, Z.; Wan, S.; Zhai, Y.; Zhang, X. Soil Aggregates Are Governed by Spacing Configurations in Alfalfa-Jujube Tree Intercropping Systems. Agronomy 2023, 13, 264. [Google Scholar] [CrossRef]
- Centurión, N.; Mariscal-Sancho, I.; Navas, M.; Gabriel, J.L.; Ulcuango, K.; Ibáñez, M.Á.; Moliner, A.; Hontoria, C. Increasing Legume Input through Interseeding Cover Crops: Soil and Crop Response as Affected by Tillage System. Agronomy 2023, 13, 1388. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, W.; Song, M.; Zhao, Y.; Wen, S.; Cui, Y.; Li, X.; Xu, X. Effects of grass-legume mixture on plant production and inorganic nitrogen acquisition. Rhizosphere 2021, 20, 100447. [Google Scholar] [CrossRef]
- Wang, B.; Yang, Y.-J.; Dong, X.; Li, M.-Y.; Shen, X.-T.; Cao, L.-J.; Lan, J. Effects of Reseeding Grass on Production Performance and Forage Quality of Degraded Alfalfa Grassland. Acta Agrestia Sin. 2021, 29, 618–624. [Google Scholar] [CrossRef]
- Zhang, H.-H.; Shi, S.-L.; Wu, B.; Li, Z.-L.; Li, X.-L. A study of yield interactions in mixed sowings of alfalfa and three perennial grasses. Acta Prataculturae Sin. 2022, 31, 159–170. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Firn, J.; McGree, J.M.; Harvey, E.; Flores-Moreno, H.; Schütz, M.; Buckley, Y.M.; Borer, E.T.; Seabloom, E.W.; La Pierre, K.J.; MacDougall, A.M.; et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nat. Ecol. Evol. 2019, 3, 400–406. [Google Scholar] [CrossRef]
- Mitchell, R.B.; Redfearn, D.; Moore, K.J. Growth and Development. Forages 2020, 2, 127–148. [Google Scholar]
- Putnam, D.H. Factors Influencing Yield and Quality in Alfalfa. In The Alfalfa Genome; Yu, L.-X., Kole, C., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 13–27. [Google Scholar]
- Moreno, L.S.B.; Boote, K.J.; Sollenberger, L.E.; Dubeux, J.C.B.; Kohmann, M.M.; Pequeno, D.N.L. Shade and nitrogen fertilization affect forage accumulation and nutritive value of C4 grasses differing in growth habit. Crop. Sci. 2022, 62, 512–523. [Google Scholar] [CrossRef]
- Angadi, S.V.; Umesh, M.R.; Begna, S.; Gowda, P. Light interception, agronomic performance, and nutritive quality of annual forage legumes as affected by shade. Field Crop. Res. 2022, 275, 108358. [Google Scholar] [CrossRef]
- Norton, B.; Wilson, J.; Shelton, H.; Hill, K. The Effect of Shade on Forage Quality; ACIAR: Canberra, Australia, 1991. [Google Scholar]
Index | pH | Total N (g·kg−1) | Available N (mg·kg−1) | Total P (g·kg−1) | Available P (mg·kg−1) | Available K (mg·kg−1) | Organic M (g·kg−1) | Organic C (g·kg−1) |
---|---|---|---|---|---|---|---|---|
Data | 7.14 | 0.88 | 526.71 | 0.45 | 27.43 | 114.29 | 17.04 | 9.88 |
Index | Probability of Significance | ||
---|---|---|---|
Cutting Times | Mixture Model | Cutting Times × Mixture Model | |
Leaf length | <0.001 | <0.001 | <0.001 |
Leaf width | <0.001 | <0.001 | <0.001 |
Leaf thickness | <0.001 | <0.001 | <0.001 |
Leaf area | <0.001 | 0.024 | <0.001 |
Stem length | <0.001 | <0.001 | 0.036 |
Stem diameter | <0.001 | <0.001 | <0.001 |
Leaf fresh weight | 0.011 | 0.127 | 0.392 |
Stem fresh weight | 0.053 | 0.111 | 0.386 |
Amount of protein | <0.001 | <0.001 | 0.012 |
Dry matter mass | 0.001 | <0.001 | 0.021 |
Fresh matter mass | 0.011 | <0.001 | 0.142 |
Cut | Seeding Method | Leaf Length (mm) | Leaf Width (mm) | Leaf Thickness (mm) | Leaf Area (cm2) |
---|---|---|---|---|---|
First cut | P | 17.89 ± 4.09 Aa | 9.28 ± 2.62 Aa | 0.19 ± 0.04 Aa | 1.16 ± 0.60 Aa |
H | 16.88 ± 3.77 Ab | 8.34 ± 2.42 Ab | 0.18 ± 0.05 Ab | 1.17 ± 0.64 Aa | |
M | 17.14 ± 3.74 Ab | 8.02 ± 2.32 Ab | 0.16 ± 0.05 Ab | 0.95 ± 0.48 Ab | |
Second cut | P | 14.72 ± 3.73 Bb | 6.79 ± 2.25 Bb | 0.12 ± 0.03 Ba | 0.61 ± 0.39 Bab |
H | 16.65 ± 5.66 Aa | 8.20 ± 3.49 Aa | 0.13 ± 0.03 Ba | 1.02 ± 0.91 Aa | |
M | 16.03 ± 3.73 Bab | 8.34 ± 2.68 Aa | 0.12 ± 0.03 Cb | 0.89 ± 0.41 Ab |
Cut | Seeding Method | Leaf Length (mm) | Leaf Width (mm) | Leaf Thickness (mm) | Leaf Area (cm2) |
---|---|---|---|---|---|
First cut | P | 18.83 ± 4.04 Bab | 9.10 ± 1.83 Abc | 0.14 ± 0.04 Ab | 1.39 ± 0.66 Babc |
H | 20.15 ± 2.60 Ba | 8.75 ± 1.94 Abc | 0.15 ± 0.03 Bb | 1.21 ± 0.38 Bbc | |
M | 17.57 ± 3.43 Bb | 8.30 ± 2.71 Ac | 0.18 ± 0.05 Aa | 1.07 ± 0.44 Bc | |
Second cut | P | 24.87 ± 4.07 Aa | 9.47 ± 2.69 Aa | 0.18 ± 0.04 Ab | 1.77 ± 0.67 Aa |
H | 24.67 ± 3.94 Aa | 9.03 ± 1.85 Aab | 0.20 ± 0.03 Aa | 1.69 ± 0.45 Aa | |
M | 21.67 ± 4.05 Ac | 8.43 ± 1.92 Aab | 0.19 ± 0.04 Aab | 1.33 ± 0.43 Abc |
Species | Cut | Seeding Model | Stem Length (cm) | Stem Diameter (mm) | Stem Weight (g) |
---|---|---|---|---|---|
Medicago sativa First year | First cut | P | 31.61 ± 19.73 Aa | 2.53 ± 0.72 Aa | 13.13 ± 4.82 Aa |
H | 30.04 ± 15.87 Aa | 2.00 ± 0.76 Ba | 10.97 ± 2.07 Ab | ||
M | 36.32 ± 20.41 Aa | 2.49 ± 0.82 Aa | 12.28 ± 5.14 Aa | ||
Second cut | P | 38.91 ± 18.00 Aa | 2.08 ± 0.64 Ab | 12.18 ± 6.21 Aa | |
H | 35.92 ± 14.02 Aa | 2.05 ± 0.62 Aa | 15.52 ± 3.62 Aa | ||
M | 34.14 ± 9.21 Aa | 1.77 ± 0.58 Ab | 8.93 ± 1.53 Aa | ||
Medicago sativa Second year | First cut | P | 78.68 + 13.10 Aa | 3.00 + 0.61 Aa | 0.62 + 0.12 Aa |
D | 71.34 + 8.46 Aa | 3.21 + 0.52 Aa | 1.40 + 0.80 Aa | ||
M | 58.86 + 7.50 Ab | 2.64 + 0.43 Ab | 0.71 + 0.02 Aa | ||
Second cut | P | 73.36 + 12.67 Aa | 3.06 + 0.53 Aa | 0.34 + 0.11 Aa | |
H | 77.21 + 12.55 Aa | 3.24 + 0.56 Aa | 0.37 + 0.04 Aa | ||
M | 70.29 + 7.77 Aa | 3.13 + 0.42 Aa | 0.34 + 0.03 Aa | ||
Bromus inermis First year | First cut | P | 6.86 ± 1.78 Aa | 1.89 ± 1.94 Aa | 8.59 ± 0.67 Aa |
H | 6.45 ± 2.28 Aa | 1.81 ± 0.57 Aa | 8.07 ± 1.55 Aa | ||
M | 5.30 ± 1.65 Bb | 1.92 ± 0.62 Aa | 9.15 ± 1.01 Aa | ||
Second cut | P | 6.76 ± 2.97 Aa | 1.40 ± 0.30 Abb | 7.13 ± 0.56 Aa | |
H | 7.12 ± 2.91 Aa | 1.35 ± 0.27 Bb | 7.10 ± 0.26 Aa | ||
M | 6.43 ± 2.67 Aa | 1.56 ± 0.42 Ab | 7.78 ± 1.07 Aa | ||
Bromus inermis Second year | First cut | P | 53.16 + 16.00 Aa | 2.84 + 0.48 Aa | 0.56 + 0.18 Aa |
H | 62.60 + 12.79 Aa | 2.96 + 0.39 Aa | 0.71 + 0.33 Aa | ||
M | 45.82 + 12.29 Aa | 2.87 + 0.34 Aa | 0.46 + 0.07 Aa | ||
Second cut | P | 11.23 + 4.87 Aa | 1.93 + 0.52 Aa | 0.23 + 0.04 Aa | |
H | 12.95 + 5.52 Aa | 1.47 + 0.34 Aa | 0.29 + 0.04 Aa | ||
M | 8.20 + 3.57 Ab | 1.89 + 0.73 aA | 0.25 + 0.05 Aa |
Species | Cut | Seeding Model | Leaf Aspect Ratio | Stem L/D Ratio | Stem/Leaf Weight Ratio |
---|---|---|---|---|---|
Medicago sativa | First cut | P | 2.24 ± 4.46 aA | 11.51 ± 5.71 bB | 1.39 ± 0.19 aA |
H | 2.09 ± 0.41 aA | 16.71 ± 11.52 aA | 1.33 ± 0.13 aA | ||
M | 2.21 ± 0.45 aA | 13.75 ± 5.71 bAB | 1.47 ± 0.36 aA | ||
Second cut | P | 2.24 ± 0.42 aA | 18.84 ± 5.16 aA | 1.35 ± 0.42 aA | |
H | 2.10 ± 0.35 aB | 17.94 ± 5.59 aA | 1.45 ± 0.01 aA | ||
M | 2.00 ± 0.40 bB | 19.91 ± 4.01 aA | 1.13 ± 0.15 bA | ||
Bromus inermis | First cut | P | 32.52 ± 12.61 aA | 4.13 ± 1.12 bA | 0.65 ± 0.05 aAB |
H | 32.03 ± 13.77 aA | 3.71 ± 1.13 bB | 0.73 ± 0.10 aA | ||
M | 27.32 ± 13.44 bB | 2.93 ± 1.14 bC | 0.62 ± 0.05 aB | ||
Second cut | P | 34.28 ± 14.10 aA | 4.80 ± 1.71 aAB | 0.93 ± 0.37 aA | |
H | 35.51 ± 13.50 aA | 5.42 ± 2.39 aA | 0.74 ± 0.05 aA | ||
M | 39.46 ± 26.13 aA | 4.17 ± 1.49 aB | 0.70 ± 0.03 aA |
Species | Cut | Speeding Model | Crude Protein Yield (t/ha) | Dry Matter Yield (t/ha) | Fresh Forage Yield (t/ha) |
---|---|---|---|---|---|
Medicago sativa First Year | First cut | P | 0.34 ± 0.09 aB | 2.05 ± 0.52 aB | 7.13 ± 1.73 aB |
D | 0.81 ± 0.25 aA | 4.51 ± 1.39 aA | 14.72 ± 4.28 aA | ||
M | 0.41 ± 0.09 aB | 2.55 ± 0.55 aB | 8.49 ± 1.69 aB | ||
Second cut | P | 1.05 ± 0.67 aAB | 5.17 ± 3.31 aAB | 13.48 ± 8.17 aA | |
D | 1.19 ± 0.37 aA | 5.57 ± 1.75 aA | 17.67 ± 5.35 aA | ||
M | 0.63 ± 0.26 aB | 2.98 ± 1.24 aB | 9.40 ± 4.38 aA | ||
Medicago sativa Second Year | First cut | P | 1.32 ± 0.21 Bbc | 8.09 ± 0.86 Bb | 26.33 ± 3.33 Ab |
D | 1.82 ± 0.46 Aab | 10.25 ± 1.14 Ab | 44.92 ± 7.25 Aa | ||
M | 0.97 ± 0.18 Ac | 5.75 ± 0.62 Ac | 21.87 ± 1.31 Ab | ||
Second cut | P | 2.99 ± 0.42 Aa | 14.81 ± 2.05 Aa | 18.07 ± 2.50 Bb | |
D | 1.37 ± 0.16 Abc | 6.48 ± 0.49 Bbc | 21.13 ± 0.88 Bb | ||
M | 1.05 ± 0.28 Ac | 5.23 ± 1.44 Ac | 12.97 ± 4.38 Bb | ||
Bromus inermis First Year | First cut | P | 0.12 ± 0.097 aB | 0.52 ± 0.42 aB | 1.06 ± 0.58 aB |
D | 0.34 ± 0.11 aA | 1.42 ± 0.48 aA | 4.35 ± 1.76 aA | ||
M | 0.28 ± 0.08 aA | 1.25 ± 0.36 aA | 3.88 ± 1.67 aA | ||
Second cut | P | 0.13 ± 0.036 aB | 0.57 ± 0.16 aB | 1.75 ± 0.64 aB | |
D | 0.40 ± 0.14 aB | 1.44 ± 0.51 aB | 4.48 ± 1.21 aB | ||
M | 1.20 ± 0.96 aA | 4.92 ± 3.93 aA | 11.90 ± 6.09 aA | ||
Bromus inermis Second Year | irst cut | P | 0.29 ± 0.10 b | 2.83 ± 0.52 b | 8.73 ± 1.57 b |
D | 0.46 ± 0.22 a | 2.94 ± 1.46 b | 11.89 ± 5.48 b | ||
M | 0.86 ± 0.43 a | 4.95 ± 1.92 ab | 16.70 ± 7.17 ab | ||
Second cut | P | 0.14 ± 0.04 b | 1.03 ± 0.32 b | 2.77 ± 0.50 a | |
D | 0.46 ± 0.24 a | 3.14 ± 1.70 a | 9.28 ± 5.72 a | ||
M | 0.18 ± 0.09 ab | 1.05 ± 0.49 b | 3.15 ± 1.48 a |
Cut–Treatment | Leaf Length | Leaf Width | Leaf Area | Leaf Thickness | Stem Length | Stem Diameter |
---|---|---|---|---|---|---|
First cut of P | 0.45 | 0.42 | 0.37 | 0.38 | 0.55 | 0.40 |
Second cut of P | 0.81 | 0.72 | 0.68 | 0.54 | 0.81 | 0.96 |
First cut of H | 0.63 | 0.63 | 0.89 | 0.67 | 0.50 | 0.55 |
Second cut of H | 0.41 | 0.41 | 0.36 | 0.46 | 0.43 | 0.39 |
First cut of M | 0.57 | 0.62 | 0.55 | 0.59 | 0.56 | 0.49 |
Second cut of M | 0.79 | 0.71 | 0.96 | 0.83 | 0.76 | 1.01 |
Cut–Treatment | Leaf Length | Leaf Width | Leaf Area | Leaf Thickness | Stem Length | Stem Diameter |
---|---|---|---|---|---|---|
First cut of P | 0.51 | 0.51 | 0.51 | 0.57 | 0.48 | 0.45 |
Second cut of P | 0.49 | 0.51 | 0.51 | 0.55 | 0.50 | 0.59 |
First cut of H | 0.85 | 0.88 | 0.90 | 0.77 | 0.87 | 0.99 |
Second cut of H | 1.00 | 0.90 | 0.97 | 0.77 | 1.00 | 0.68 |
First cut of M | 0.88 | 0.86 | 0.99 | 0.86 | 0.81 | 0.75 |
Second cut of M | 0.37 | 0.35 | 0.35 | 0.37 | 0.37 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, F.; Yu, X.; Tang, X.; Liu, X.; Tang, W.; Zhao, Y.; Yang, C.; Xu, Y.; Yang, G.; Sun, J. The Responses of Stem and Leaf Functional Traits of Medicago sativa and Bromus inermis to Different Mixed Planting Patterns. Agronomy 2023, 13, 2733. https://doi.org/10.3390/agronomy13112733
Miao F, Yu X, Tang X, Liu X, Tang W, Zhao Y, Yang C, Xu Y, Yang G, Sun J. The Responses of Stem and Leaf Functional Traits of Medicago sativa and Bromus inermis to Different Mixed Planting Patterns. Agronomy. 2023; 13(11):2733. https://doi.org/10.3390/agronomy13112733
Chicago/Turabian StyleMiao, Fuhong, Xiaoxu Yu, Xinkai Tang, Xindi Liu, Wei Tang, Yanhua Zhao, Chao Yang, Yufang Xu, Guofeng Yang, and Juan Sun. 2023. "The Responses of Stem and Leaf Functional Traits of Medicago sativa and Bromus inermis to Different Mixed Planting Patterns" Agronomy 13, no. 11: 2733. https://doi.org/10.3390/agronomy13112733
APA StyleMiao, F., Yu, X., Tang, X., Liu, X., Tang, W., Zhao, Y., Yang, C., Xu, Y., Yang, G., & Sun, J. (2023). The Responses of Stem and Leaf Functional Traits of Medicago sativa and Bromus inermis to Different Mixed Planting Patterns. Agronomy, 13(11), 2733. https://doi.org/10.3390/agronomy13112733