Annual Ryegrass (Lolium multiflorum Lam.) Growth Response to Nitrogen in a Sandy Soil Amended with Acidified Manure and Municipal Sludge after “Quick Wash” Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quick Wash Treatment of Manure and Municipal Sludge
2.2. Experimental Soil, Treatments and Design
2.3. Harvesting and Plant Analysis
2.4. Post-Harvest Leachate Collection, Soil Sampling and Analysis
2.5. Statistical Analysis
3. Results
3.1. Soil Amendments pH, Nutrient Content and Application Rates
3.2. Ryegrass Biomass Yield and N Uptake
3.3. Soil Leachate NH4+-N and NO3−-N and Residual Soil Inorganic N
4. Discussion
4.1. N and P Content of Organic Acidified QW By-Products
4.2. Effect of Organic Acidified QW By-Products on Crop Production
4.3. NH4+-N and NO3−-N in Soil Leachate and Residual Inorganic N
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milbrandt, A.; Seiple, T.; Heimiller, D.; Skaggs, R.; Coleman, A. Wet waste-to-energy resources in the United States. Resour. Conserv. Recycl. 2018, 137, 32–47. [Google Scholar] [CrossRef]
- Pagliari, P.; He, Z.; Waldrip, H.M. Animal Manure: Production, Characteristics, Environmental Concerns, and Management; Wiley: Hoboken, NJ, USA, 2020; ISBN 9780891180135. [Google Scholar]
- Arlo, L.; Beretta, A.; Szogi, A.; del Pino, A. Biomass production, metal and nutrient content in sorghum plants grown on soils amended with sewage sludge. Heliyon 2022, 8, e08658. [Google Scholar] [CrossRef]
- U.S. EPA. A Guide to the Biosolids Risk Assessments for the EPA Part 503 Rule; Tech. Rep. EPA/832-B-93-005; Office of Wastewater Management: Washington, DC, USA, 1995. [Google Scholar]
- Szogi, A.A.; Vanotti, M.B.; Ro, K.S. Methods for Treatment of Animal Manures to Reduce Nutrient Pollution Prior to Soil Application. Curr. Pollut. Rep. 2015, 1, 47–56. [Google Scholar] [CrossRef]
- Shepherd, M.A.; Withers, P.J. Phosphorus leaching from liquid digested sewage sludge applied to sandy soils. J. Agric. Sci. 2001, 136, 433–441. [Google Scholar] [CrossRef]
- Lory, J.A. Managing Manure Phosphorus to Protect Water Quality; M.U. Extension; University of Missouri: Columbia, MO, USA, 2018; Volume G, p. 9182. [Google Scholar]
- Lu, Q.; He, Z.L.; Stoffella, P.J. Land Application of Biosolids in the USA: A Review. Appl. Environ. Soil Sci. 2012, 2012, 201462. [Google Scholar] [CrossRef]
- Sajeev, E.P.M.; Winiwarter, W.; Amon, B. Greenhouse Gas and Ammonia Emissions from Different Stages of Liquid Manure Management Chains: Abatement Options and Emission Interactions. J. Environ. Qual. 2018, 47, 30–41. [Google Scholar] [CrossRef]
- Vanotti, M.B.; García-González, M.C.; Szögi, A.A.; Harrison, J.H.; Smith, W.B.; Moral, R. Removing and recovering nitrogen and phosphorus from animal manure. In Animal Manure; Waldrip, H.M., Pagliari, P.H., He, Z., Eds.; American Society of Agronomy: Madison, WI, USA, 2020. [Google Scholar] [CrossRef]
- Li, Y.; Li, W. Nitrogen transformations and losses during composting of sewage sludge with acidified sawdust in a laboratory reactor. Waste Manag. Res. J. Sustain. Circ. Econ. 2015, 33, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Fangueiro, D.; Hjorth, M.; Gioelli, F. Acidification of animal slurry—A review. J. Environ. Manag. 2015, 149, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Jatana, B.S.; Gami, S.K.; Ketterings, Q.M. Assessing the Impact of Mixing Acid Whey with Dairy Manure On pH and Nitrogen Dynamics During Manure Handling. J. Soil Sci. Plant Nutr. 2023, 23, 2878–2890. [Google Scholar] [CrossRef]
- Sica, P.; Kopp, C.; Müller-Stöver, D.; Magid, J. Acidification and alkalinization pretreatments of biowastes and their effect on P solubility and dynamics when placed in soil. J. Environ. Manag. 2023, 333, 117447. [Google Scholar] [CrossRef]
- Roboredo, M.; Fangueiro, D.; Lage, S.; Coutinho, J. Phosphorus dynamics in soils amended with acidified pig slurry and derived solid fraction. Geoderma 2012, 189–190, 328–333. [Google Scholar] [CrossRef]
- Rosemarin, A.; Ekane, N.; Andersson, K. Phosphorus Flows, Surpluses, and N/P Agronomic Balancing When Using Manure from Pig and Poultry Farms. Agronomy 2021, 11, 2228. [Google Scholar] [CrossRef]
- Szogi, A.A.; Vanotti, M.B.; Hunt, P.G. Process for Removing and Recovering Phosphorus from Animal Waste. U.S. Patent No. 8,673,046, 18 March 2014. [Google Scholar]
- Szögi, A.A.; Vanotti, M.B. Phosphorus recovery prior to land application of biosolids using the “Quick Wash” process developed by USDA (Ta-P-27). In Proceedings of the RAMIRAN 16th International Conference 2015: Rural-Urban Symbiosis, Hamburg, Germany, 8–10 September 2015. [Google Scholar]
- Szogi, A.A.; Shumaker, P.D.; Ro, K.S.; Sigua, G.C. Nitrogen Mineralization in a Sandy Soil Amended with Treated Low-Phosphorus Broiler Litter. Environments 2019, 6, 96. [Google Scholar] [CrossRef]
- Hollas, C.E.; Rodrigues, H.C.; Oyadomari, V.M.A.; Bolsan, A.C.; Venturin, B.; Bonassa, G.; Tápparo, D.C.; Abilhôa, H.C.Z.; da Silva, J.F.F.; Michelon, W.; et al. The potential of animal manure management pathways toward a circular economy: A bibliometric analysis. Environ. Sci. Pollut. Res. 2022, 29, 73599–73621. [Google Scholar] [CrossRef] [PubMed]
- Szögi, A.A.; Vanotti, M.B.; Hunt, P.G. Phosphorus Recovery from Poultry Litter. Trans. ASABE 2008, 51, 1727–1734. [Google Scholar] [CrossRef]
- Peters, J.; Combs, S.M.; Hoskins, B.; Jarman, J.; Kovar, J.L.; Watson, M.E.; Wolf, A.M.; Wolf, N. Recommended Methods of Manure Analysis; University of Wisconsin Cooperative Extension Publishing: Madison, WI, USA, 2003; p. A3769. [Google Scholar]
- Szogi, A.A.; Bauer, P.J.; Vanotti, M.B. Vertical distribution of phosphorus in a sandy soil fertilized with recovered manure phosphates. J. Soils Sediments 2012, 12, 334–340. [Google Scholar] [CrossRef]
- Sims, G.K.; Ellsworth, T.R.; Mulvaney, R.L. Microscale determination of organic nitrogen in water and soil extracts. Commun. Soil. Sci. Plant Anal. 1995, 26, 303–316. [Google Scholar] [CrossRef]
- Chastain, J.P.; Camberato, J.J.; Albrechat, J.E.; Adams, J., III. Chapter 3a. Swine manure production and nutrient contents. In Confined Animal Manure Managers Certification Program Manual B Swine Version 3; Clemson University Cooperative Extension Service: Beaufort, SC, USA, 2001. [Google Scholar]
- Pettygrove, G.S.; Heinrich, A.L.; Eagle, A.J. Dairy Manure Nutrient Content and Forms; Cooperative Extension Manure Technical Bulletin Series; University of California: San Diego, CA, USA, 2009; Available online: http://manuremanagement.ucdavis.edu (accessed on 5 May 2023).
- Sharpley, A.N.; Heron, S.; Daniel, T. Overcoming the challenges of phosphorus-based management challenges in poultry farming. J. Soil Water Conserv. 2007, 62, 375–389. [Google Scholar]
- Silveira, M.L.; O’Connor, G.A.; Vendramini, J.M.B. Utilization of Biosolids in Forage Production Systems in Florida; University of Florida Extension Publication: Gainesville, FL, USA, 2017; p. SL444. [Google Scholar] [CrossRef]
- USDA-NRCS. Conservation Practice Standard. Nutrient Management. Code 590. Available online: https://www.nrcs.usda.gov/sites/default/files/2022/Nutrient_Management_590_NHCP_CPS_2017.pdf (accessed on 5 October 2023).
- Newton, G.; Bernard, J.; Hubbard, R.; Allison, J.; Lowrance, R.; Gascho, G.; Gates, R.N.; Vellidis, G. Managing Manure Nutrients Through Multi-crop Forage Production. J. Dairy Sci. 2003, 86, 2243–2252. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, M.R.; Sistani, K.R.; Fairbrother, T.E.; Rowe, D.E. Overseeding Common Bermudagrass with Cool-Season Annuals to Increase Yield and Nitrogen and Phosphorus Uptake in a Hay Field Fertilized with Swine Effluent. Agron. J. 2005, 97, 487–493. [Google Scholar] [CrossRef]
- Doydora, S.; Gatiboni, L.; Grieger, K.; Hesterberg, D.; Jones, J.L.; McLamore, E.S.; Peters, R.; Sozzani, R.; Broeck, L.V.D.; Duckworth, O.W. Accessing Legacy Phosphorus in Soils. Soil Syst. 2020, 4, 74. [Google Scholar] [CrossRef]
- Lemming, C.; Oberson, A.; Magid, J.; Bruun, S.; Scheutz, C.; Frossard, E.; Jensen, L.S. Residual phosphorus availability after long-term soil application of organic waste. Agric. Ecosyst. Environ. 2019, 270–271, 65–75. [Google Scholar] [CrossRef]
- Powell, J.M.; Jokela, W.E.; Misselbrook, T.H. Dairy Slurry Application Method Impacts Ammonia Emission and Nitrate Leaching in No-Till Corn Silage. J. Environ. Qual. 2011, 40, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Thangarajan, R.; Bolan, N.S.; Tian, G.; Naidu, R.; Kunhikrishnan, A. Role of organic amendment application on greenhouse gas emission from soil. Sci. Total Environ. 2013, 465, 72–96. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Cavagnaro, T.R.; Ngo, H.T.T.; Marschner, P. Soil respiration, microbial biomass and nutrient availability in soil amended with high and low C/N residue—Influence of interval between residue additions. Soil Biol. Biochem. 2016, 95, 189–197. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, B.R.; Cho, W.M.; Kim, T.H. Comparative nitrogen use efficiency of urea and pig slurry for regrowth yield and nutritive value in perennial ryegrass sward. Asian-Australas. J. Anim. Sci. 2016, 30, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-L.; Li, S.-T. Nitrogen Mineralization from Animal Manures and Its Relation to Organic N Fractions. J. Integr. Agric. 2014, 13, 2024–2040. [Google Scholar] [CrossRef]
- Cavalli, D.; Cabassi, G.; Borrelli, L.; Fuccella, R.; Degano, L.; Bechini, L.; Marino, P. Nitrogen fertiliser value of digested dairy cow slurry, its liquid and solid fractions, and of dairy cow slurry. Ital. J. Agron. 2014, 9, 567. [Google Scholar] [CrossRef]
- Cavalli, D.; Cabassi, G.; Borrelli, L.; Geromel, G.; Bechini, L.; Degano, L.; Gallina, P.M. Nitrogen fertilizer replacement value of undigested liquid cattle manure and digestates. Eur. J. Agron. 2016, 73, 34–41. [Google Scholar] [CrossRef]
- Nevens, F.; Reheul, D. Agronomical and environmental evaluation of a long-term experiment with cattle slurry and supplemental inorganic N applications in silage maize. Eur. J. Agron. 2005, 22, 349–361. [Google Scholar] [CrossRef]
- Peters, K.; Jensen, L.S. Biochemical characteristics of solid fractions from animal slurry separation and their effects on C and N mineralisation in soil. Biol. Fertil. Soils 2011, 47, 447–455. [Google Scholar] [CrossRef]
- Macedo, S.; Vasconcelos, E.; Semitela, S.; Coutinho, J.; Fangueiro, D. Effects of soil application techniques and cattle slurry pre-treatment on NH3 emissions and soil solution composition—A pot experiment. In Proceedings of the 2013, 15th RAMIRAN Conference, Versailles, France, 3–5 June 2013. [Google Scholar]
- Semitela, S.; Martins, F.; Coutinho, J.; Cabral, F.; Fangueiro, D. Ammonia emissions and potential nitrate leaching in soil amended with cattle slurry: Effect of slurry pre-treatment by acidification and/or soil application method. In Proceedings of the 2013, 15th RAMIRAN Conference, Versailles, France, 3–5 June 2013. [Google Scholar]
Source | pH | C | N | P | C:N | N:P |
---|---|---|---|---|---|---|
% | % | % | Ratio | Ratio | ||
CHL | 7.1 | 32.9 | 3.7 | 1.3 | 8.9 | 2.8 |
DM | 8.5 | 44.9 | 3.5 | 0.5 | 12.8 | 7.0 |
MS | 6.4 | 31.2 | 5.0 | 2.8 | 6.3 | 1.8 |
SM | 7.2 | 43.4 | 3.1 | 0.9 | 14.0 | 3.4 |
WCHL | 5.9 | 37.6 | 3.3 | 0.7 | 11.4 | 4.7 |
WDM | 5.4 | 45.9 | 3.9 | 0.3 | 11.8 | 13.0 |
WMS | 6.0 | 33.1 | 5.1 | 2.1 | 6.5 | 2.4 |
WSM | 6.7 | 43.2 | 3.7 | 0.5 | 11.6 | 7.4 |
AMS | - | - | 21.2 | - | - | - |
Source | Targeted N | Material Applied | P Applied at Targeted N |
---|---|---|---|
(kg ha−1) | |||
100 | 2703 | 35 | |
CHL | 200 | 5405 | 71 |
400 | 10,811 | 141 | |
100 | 3021 | 22 | |
WCHL | 200 | 6042 | 44 |
400 | 12,085 | 88 | |
100 | 2849 | 15 | |
DM | 200 | 5698 | 31 |
400 | 11,396 | 62 | |
100 | 2597 | 7.3 | |
WDM | 200 | 5195 | 15 |
400 | 10,390 | 29 | |
100 | 2012 | 56 | |
MS | 200 | 4024 | 111 |
400 | 8048 | 223 | |
100 | 1961 | 42 | |
WMS | 200 | 3922 | 84 |
400 | 7843 | 167 | |
100 | 3226 | 28 | |
SM | 200 | 6452 | 55 |
400 | 12,903 | 111 | |
WSM | 100 | 3155 | 14 |
200 | 6309 | 28 | |
400 | 12,618 | 57 | |
100 | 472 | - | |
AMS | 200 | 944 | - |
400 | 1887 | - |
SV | DF | Biomass Yield | N-Uptake | NH4+-N in Leachate | NO3−-N in Leachate | Soil Inorganic N | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | ||
N source (S) | 9 | 48.2 | <0.0001 | 220.5 | <0.0001 | 2490.2 | <0.0001 | 4.7 | <0.0001 | 133.9 | <0.0001 |
Rate (R) | 2 | 55.9 | <0.0001 | 71.7 | <0.0001 | 488.9 | <0.0001 | 1.6 | 0.2151 | 26.3 | <0.0001 |
S × R | 18 | 4.3 | <0.0001 | 20.7 | <0.0001 | 1185.9 | <0.0001 | 1.76 | 0.0312 | 56.2 | <0.0001 |
N Source | N Rate (kg ha−1) | |||||
---|---|---|---|---|---|---|
100 | 200 | 400 | 100 | 200 | 400 | |
Biomass Yield (g pot−1) | N Uptake (mg pot−1) | |||||
Control | 1.87 ± 0.03 b † | 1.87 ± 0.03 c | 1.87 ± 0.03 c | 37.6 ± 1.43 b | 37.6 ± 1.43 b | 37.6 ± 1.43 c |
CHL | 2.02 ± 0.07 abB | 2.23 ± 0.14 bB | 2.69 ± 0.26 bA | 43.3 ± 4.21 bB | 45.5 ± 4.90 bB | 60.2 ± 8.50 bA |
WCHL | 2.30 ± 0.11 aB | 2.39 ± 0.10 abB | 2.79 ± 0.13 bA | 45.5 ± 4.10 bB | 49.7 ± 5.25 bB | 63.5 ± 7.93 bA |
DM | 1.93 ± 0.13 bA | 1.99 ± 0.17 bA | 2.23 ± 0.07 bA | 39.5 ± 4.08 b | 38.0 ± 2.81 b | 46.8 ± 2.80 bc |
WDM | 1.93 ± 0.19 bB | 2.01 ± 0.13 bB | 2.35 ± 0.11 bA | 39.3 ± 1.54 bB | 43.5 ± 4.77 bB | 52.7 ± 5.60 bA |
MS | 1.96 ± 0.11 bB | 2.10 ± 0.10 bcB | 2.45 ± 0.12 bA | 44.1 ± 4.53 bB | 51.7 ± 5.10 bB | 66.1 ± 5.33 bA |
WMS | 1.99 ± 0.08 abB | 2.17 ± 0.12 bAB | 2.34 ± 0.10 bA | 42.7 ± 4.02 bAB | 47.3 ± 4.15 bcB | 57.8 ± 5.97 bA |
SM | 1.98 ± 0.13 abB | 2.24 ± 0.15 bAB | 2.47 ± 0.20 bA | 38.9 ± 2.05 bB | 44.2 ± 3.74 bAB | 49.8 ± 5.06 bA |
WSM | 1.69 ± 0.11 bB | 1.98 ± 0.15 bcAB | 2.18 ± 0.12 bcA | 32.9 ± 3.27 b | 37.7 ± 3.97 b | 41.4 ± 0.86 bc |
AMS | 2.29 ± 0.04 aC | 2.66 ± 0.07 aB | 3.17 ± 0.03 aA | 64.9 ± 0.17 aC | 94.8 ± 1.49 aB | 129 ± 1.02 aA |
N Source | N Rate (kg ha−1) | |||||
---|---|---|---|---|---|---|
100 | 200 | 400 | 100 | 200 | 400 | |
NH4+-N in Soil Leachate (mg pot−1) | NO3−-N in Soil Leachate (mg pot−1) | |||||
Control | 0.39 ± 0.03 b † | 0.39 ± 0.03 b | 0.39 ± 0.03 b | 0.21 ± 0.04 b | 0.21 ± 0.04 b | 0.21 ± 0.04 b |
CHL | 0.41 ± 0.08 b | 0.74 ± 0.13 b | 1.18 ± 0.23 b | 0.22 ± 0.06 b | 0.35 ± 0.15 ab | 0.31 ± 0.06 b |
WCHL | 0.30 ± 0.08 b | 0.57 ± 0.20 b | 0.78 ± 0.22 b | 0.14 ± 0.02 b | 0.21 ± 0.06 b | 0.16 ± 0.03 b |
DM | 0.44 ± 0.11 b | 0.47 ± 0.08 b | 0.64 ± 0.14 b | 0.21 ± 0.11 b | 0.27 ± 0.09 ab | 0.34 ± 0.11 b |
WDM | 0.42 ± 0.08 b | 0.55 ± 0.13 b | 1.04 ± 0.27 b | 0.46 ± 0.16 ab | 0.20 ± 0.05 b | 0.22 ± 0.08 b |
MS | 0.45 ± 0.14 b | 0.58 ± 0.18 b | 1.24 ± 0.15 b | 0.26 ± 0.11 abB | 0.26 ± 0.11 abB | 1.66 ± 1.33 aA |
WMS | 0.43 ± 0.09 b | 0.43 ± 0.12 b | 0.85 ± 0.22 b | 0.24 ± 0.09 b | 0.30 ± 0.19ab | 0.52 ± 0.29 ab |
SM | 0.35 ± 0.04 b | 0.37 ± 0.08 b | 0.60 ± 0.13 b | 0.19 ± 0.07 b | 0.11 ± 0.02 b | 0.13 ± 0.03 b |
WSM | 0.23 ± 0.06 b | 0.30 ± 0.04 b | 0.40 ± 0.06 b | 0.12 ± 0.02 b | 0.12 ± 0.00 b | 0.11 ± 0.04 b |
AMS | 3.34 ± 0.16 aC | 11.0 ± 0.42 aB | 51.0 ± 0.57 aA | 0.74 ± 0.08 a | 0.70 ± 0.11 a | 0.49 ± 0.05 b |
N Rate (kg ha−1) | |||
---|---|---|---|
100 | 200 | 400 | |
Soil Inorganic N (mg pot−1) | |||
Control | 1.54 ± 0.17 b † | 1.54 ± 0.17 b | 1.54 ± 0.17 b |
CHL | 2.16 ± 0.75 b | 1.97 ± 0.59 b | 2.37 ± 0.63 b |
WCHL | 1.25 ± 0.27 b | 2.53 ± 0.83 b | 1.55 ± 0.25 b |
DM | 1.28 ± 0.40 b | 1.83 ± 0.89 b | 2.81 ± 0.89 b |
WDM | 2.46 ± 1.02 b | 3.46 ± 1.00 b | 3.68 ± 1.29 b |
MS | 2.10 ± 0.84 b | 2.32 ± 0.82 b | 3.49 ± 1.18 b |
WMS | 1.20 ± 0.28 b | 1.91 ± 0.79 b | 4.58 ± 3.36 b |
SM | 1.38 ± 0.49 b | 3.33 ± 1.23 b | 2.06 ± 0.52 b |
WSM | 0.88 ± 0.38 b | 1.49 ± 0.41 b | 2.59 ± 0.67 b |
AMS | 6.32 ± 0.45 aC | 18.3 ± 2.04 aB | 67.88 ± 3.62 aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paye, W.S.; Szogi, A.A.; Shumaker, P.D.; Billman, E.D. Annual Ryegrass (Lolium multiflorum Lam.) Growth Response to Nitrogen in a Sandy Soil Amended with Acidified Manure and Municipal Sludge after “Quick Wash” Treatment. Agronomy 2023, 13, 2655. https://doi.org/10.3390/agronomy13102655
Paye WS, Szogi AA, Shumaker PD, Billman ED. Annual Ryegrass (Lolium multiflorum Lam.) Growth Response to Nitrogen in a Sandy Soil Amended with Acidified Manure and Municipal Sludge after “Quick Wash” Treatment. Agronomy. 2023; 13(10):2655. https://doi.org/10.3390/agronomy13102655
Chicago/Turabian StylePaye, Wooiklee S., Ariel A. Szogi, Paul D. Shumaker, and Eric D. Billman. 2023. "Annual Ryegrass (Lolium multiflorum Lam.) Growth Response to Nitrogen in a Sandy Soil Amended with Acidified Manure and Municipal Sludge after “Quick Wash” Treatment" Agronomy 13, no. 10: 2655. https://doi.org/10.3390/agronomy13102655
APA StylePaye, W. S., Szogi, A. A., Shumaker, P. D., & Billman, E. D. (2023). Annual Ryegrass (Lolium multiflorum Lam.) Growth Response to Nitrogen in a Sandy Soil Amended with Acidified Manure and Municipal Sludge after “Quick Wash” Treatment. Agronomy, 13(10), 2655. https://doi.org/10.3390/agronomy13102655