Genome-Wide Identification of WRKY Transcription Factor Family and Its Expression Patterns in Dalbergia odorifera T. Chen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of WRKY Genes in D. odorifera
2.2. Phylogenetic Analysis and Classification of D. odorifera WRKY Gene Family
2.3. Protein Properties and Sequence Analysis
2.4. Chromosomal Distribution and Gene Duplication
2.5. Expression Pattern Analysis of WRKY Genes in D. odorifera
3. Results
3.1. Identification and Analysis of Physicochemical Properties of the WRKY Genes in D. odorifera
3.2. Characterization and Phylogenetic Study of WRKY Genes in D. odorifera
3.3. D. odorifera’s WRKY Gene Duplication and Chromosomal Location
3.4. DoWRKY Genes’ Structure and Conserved Motifs
3.5. Expression Patterns of DoWRKY Proteins Based on Transcriptome Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Sampson, A.; Page, T. History of Use and Trade of Agarwood. Econ. Bot. 2018, 72, 107–129. [Google Scholar] [CrossRef]
- Kang, T.H.; Tian, Y.-H.; Kim, Y.-C. Isoliquiritigenin: A Competitive Tyrosinase Inhibitor from the Heartwood of Dalbergia odorifera. Biomol. Ther. 2005, 13, 32–34. [Google Scholar]
- Lianhe, Z.; Xing, H.; Li, W.; Zhengxing, C. Physicochemical Properties, Chemical Composition and Antioxidant Activity of Dalbergia odorifera T. Chen Seed Oil. J. Am. Oil Chem. Soc. 2012, 89, 883–890. [Google Scholar] [CrossRef]
- Riechmann, J.L.; Heard, J.; Martin, G.; Reuber, L.; Jiang, C.-Z.; Keddie, J.; Adam, L.; Pineda, O.; Ratcliffe, O.J.; Samaha, R.R.; et al. Arabidopsis Transcription Factors: Genome-Wide Comparative Analysis Among Eukaryotes. Science 2000, 290, 2105–2110. [Google Scholar] [CrossRef]
- Ülker, B.; Somssich, I.E. WRKY Transcription Factors: From DNA Binding towards Biological Function. Curr. Opin. Plant Biol. 2004, 7, 491–498. [Google Scholar] [CrossRef]
- Yang, P.; Chen, Z. A Family of Dispersed Repetitive DNA Sequences in Tobacco Contain Clusters of W-Box Elements Recognized by Pathogen-Induced WRKY DNA-Binding Proteins. Plant Sci. 2001, 161, 655–664. [Google Scholar] [CrossRef]
- Yamasaki, K.; Kigawa, T.; Watanabe, S.; Inoue, M.; Yamasaki, T.; Seki, M.; Shinozaki, K.; Yokoyama, S. Structural Basis for Sequence-Specific DNA Recognition by an Arabidopsis WRKY Transcription Factor. J. Biol. Chem. 2012, 287, 7683–7691. [Google Scholar] [CrossRef] [PubMed]
- Eulgem, T.; Rushton, P.J.; Robatzek, S.; Somssich, I.E. The WRKY Superfamily of Plant Transcription Factors. Trends Plant Sci. 2000, 5, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Rushton, P.J.; Somssich, I.E.; Ringler, P.; Shen, Q.J. WRKY Transcription Factors. Trends Plant Sci. 2010, 15, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xu, Y.; Ding, Y.; Yu, W.; Wang, J.; Lai, H.; Zhou, Y. Identification and Expression Analysis of WRKY Gene Family in Response to Abiotic Stress in Dendrobium catenatum. Front. Genet. 2022, 13, 800019. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Zhou, X.; Liu, S.; Zhuang, Y. Identification of WRKY Gene Family and Characterization of Cold Stress-Responsive WRKY Genes in Eggplant. Peerj 2020, 8, e8777. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Islam, F.; Huang, Q.; Wang, J.; Zhou, W.; Xu, L.; Yang, C. Genome-Wide Characterization of WRKY Gene Family in Helianthus annuus L. and Their Expression Profiles under Biotic and Abiotic Stresses. PLoS ONE 2020, 15, e0241965. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Zhang, Z.-L.; Zou, X.; Yang, G.; Komatsu, S.; Shen, Q.J. Interactions of Two Abscisic-Acid Induced WRKY Genes in Repressing Gibberellin Signaling in Aleurone Cells. Plant J. Cell Mol. Biol. 2006, 46, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Robatzek, S.; Somssich, I.E. Targets of AtWRKY6 Regulation during Plant Senescence and Pathogen Defense. Genes Dev. 2002, 16, 1139–1149. [Google Scholar] [CrossRef]
- Lagacé, M.; Matton, D.P. Characterization of a WRKY Transcription Factor Expressed in Late Torpedo-Stage Embryos of Solanum chacoense. Planta 2004, 219, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, W.; Xu, Z.; Chen, M.; Yu, D. Functions of WRKYs in Plant Growth and Development. Trends Plant Sci. 2023, 28, 630–645. [Google Scholar] [CrossRef]
- Baillo, E.H.; Kimotho, R.N.; Zhang, Z.; Xu, P. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement. Genes 2019, 10, 771. [Google Scholar] [CrossRef]
- Gu, L.; Dou, L.; Guo, Y.; Wang, H.; Li, L.; Wang, C.; Ma, L.; Wei, H.; Yu, S. The WRKY Transcription Factor GhWRKY27 Coordinates the Senescence Regulatory Pathway in Upland Cotton (Gossypium hirsutum L.). BMC Plant Biol. 2019, 19, 116. [Google Scholar] [CrossRef]
- Zhou, C.; Lin, Q.; Lan, J.; Zhang, T.; Liu, X.; Miao, R.; Mou, C.; Nguyen, T.; Wang, J.; Zhang, X.; et al. WRKY Transcription Factor OsWRKY29 Represses Seed Dormancy in Rice by Weakening Abscisic Acid Response. Front. Plant Sci. 2020, 11, 691. [Google Scholar] [CrossRef]
- Niu, C.-F.; Wei, W.; Zhou, Q.-Y.; Tian, A.-G.; Hao, Y.-J.; Zhang, W.-K.; Ma, B.; Lin, Q.; Zhang, Z.-B.; Zhang, J.-S.; et al. Wheat WRKY Genes TaWRKY2 and TaWRKY19 Regulate Abiotic Stress Tolerance in Transgenic Arabidopsis Plants. Plant Cell Environ. 2012, 35, 1156–1170. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, J.; Li, Y.; Rong, X.; Sun, J.; Sun, T.; Li, M.; Wang, L.; Feng, Y.; Chai, R.; et al. Expression of TaWRKY44, a Wheat WRKY Gene, in Transgenic Tobacco Confers Multiple Abiotic Stress Tolerances. Front. Plant Sci. 2015, 6, 615. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chi, X.; Guo, F.; Jin, X.; Luo, H.; Hawar, A.; Chen, Y.; Feng, K.; Wang, B.; Qi, J.; et al. SbWRKY30 Enhances the Drought Tolerance of Plants and Regulates a Drought Stress-Responsive Gene, SbRD19, in Sorghum. J. Plant Physiol. 2020, 246–247, 153142. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Hou, X.; Tang, J.; Wang, Z.; Wang, S.; Jiang, F.; Li, Y. A Novel Cold-Inducible Gene from Pak-Choi (Brassica campestris Ssp. chinensis), BcWRKY46, Enhances the Cold, Salt and Dehydration Stress Tolerance in Transgenic Tobacco. Mol. Biol. Rep. 2012, 39, 4553–4564. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.; Vinod, K.; Zheng, Z.; Fan, B.; Chen, Z. Roles of ArabidopsisWRKY3 and WRKY4 Transcription Factors in Plant Responses to Pathogens. BMC Plant Biol. 2008, 8, 68. [Google Scholar] [CrossRef]
- Abbruscato, P.; Nepusz, T.; Mizzi, L.; Del Corvo, M.; Morandini, P.; Fumasoni, I.; Michel, C.; Paccanaro, A.; Guiderdoni, E.; Schaffrath, U. OsWRKY22, a Monocot WRKY Gene, Plays a Role in the Resistance Response to Blast. Mol. Plant Pathol. 2012, 13, 828–841. [Google Scholar] [CrossRef]
- Chen, W.; Provart, N.J.; Glazebrook, J.; Katagiri, F.; Chang, H.S.; Eulgem, T.; Mauch, F.; Luan, S.; Zou, G.; Whitham, S.A.; et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 2002, 14, 559–574. [Google Scholar] [CrossRef]
- Srivastava, S.; Pandey, S.P.; Singh, P.; Pradhan, L.; Pande, V.; Sane, A.P. Early wound-responsive cues regulate the expression of WRKY family genes in chickpea differently under wounded and unwounded conditions. Physiol. Mol. Biol. Plants 2022, 28, 719–735. [Google Scholar] [CrossRef]
- Sun, P.W.; Xu, Y.H.; Yu, C.C.; Lv, F.F.; Tang, X.L.; Gao, Z.H.; Zhang, Z.; Wang, H.; Liu, Y.; Wei, J.H. WRKY44 represses expression of the wound-induced sesquiterpene biosynthetic gene ASS1 in Aquilaria sinensis. J. Exp. Bot. 2020, 71, 1128–1138. [Google Scholar] [CrossRef]
- Wang, X.; Yan, Y.; Li, Y.; Chu, X.; Wu, C.; Guo, X. GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to Ralstonia solanacearum infection in transgenic Nicotiana benthamiana. PLoS ONE 2014, 9, e93577. [Google Scholar] [CrossRef]
- Hong, Z.; Li, J.; Liu, X.; Lian, J.; Zhang, N.; Yang, Z.; Niu, Y.; Cui, Z.; Xu, D. The Chromosome-Level Draft Genome of Dalbergia odorifera. GigaScience 2020, 9, giaa084. [Google Scholar] [CrossRef]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER Web Server: Interactive Sequence Similarity Searching. Nucleic Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree2-Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The Proteomics Server for in-Depth Protein Knowledge and Analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for Motif Discovery and Searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Carocha, V.; Soler, M.; Hefer, C.; Cassan-Wang, H.; Fevereiro, P.; Myburg, A.A.; Paiva, J.A.P.; Grima-Pettenati, J. Genome-Wide Analysis of the Lignin Toolbox of Eucalyptus Grandis. New Phytol. 2015, 206, 1297–1313. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Zhang, Z.; Zhu, J.; Yu, J. KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies. Genom. Proteom. Bioinform. 2010, 8, 77–80. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, M.; Kang, S.; Yang, C.; Meng, H.; Yang, Y.; Zhao, X.; Gao, Z.; Xu, Y.; Jin, Y.; et al. Molecular Mechanism Underlying Mechanical Wounding-Induced Flavonoid Accumulation in Dalbergia odorifera T. Chen, an Endangered Tree That Produces Chinese Rosewood. Genes 2020, 11, 478. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie Enables Improved Reconstruction of a Transcriptome from RNA-Seq Reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Hurst, L.D. The Ka/Ks Ratio: Diagnosing the Form of Sequence Evolution. Trends Genet. 2002, 18, 486. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Mei, C.; He, X.-H.; Sun, X.-B. Advance in studies on chemical constitutions, pharmacological mechanism and pharmacokinetic profile of dalbergiae odoriferae lignum. Chin. J. Chin. Mat. Med. 2013, 38, 1679–1683. [Google Scholar]
- Lee, D.-S.; Kim, K.-S.; Ko, W.; Li, B.; Keo, S.; Jeong, G.-S.; Oh, H.; Kim, Y.-C. The Neoflavonoid Latifolin Isolated from MeOH Extract of Dalbergia odorifera Attenuates Inflammatory Responses by Inhibiting NF-ΚB Activation via Nrf2-Mediated Heme Oxygenase-1 Expression. Phytother. Res. PTR 2014, 28, 1216–1223. [Google Scholar] [CrossRef]
- Wang, W.; Gao, T.; Chen, J.; Yang, J.; Huang, H.; Yu, Y. The Late Embryogenesis Abundant Gene Family in Tea Plant (Camellia Sinensis): Genome-Wide Characterization and Expression Analysis in Response to Cold and Dehydration Stress. Plant Physiol. Biochem. 2019, 135, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Jaimes-Miranda, F.; Chávez Montes, R.A. The Plant MBF1 Protein Family: A Bridge between Stress and Transcription. J. Exp. Bot. 2020, 71, 1782–1791. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.D.G.; Castro, J.A.; Silva, R.J.S.; Micheli, F. HVA22 from Citrus: A Small Gene Family Whose Some Members Are Involved in Plant Response to Abiotic Stress. Plant Physiol. Biochem. 2019, 142, 395–404. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Z.; Xu, Y.; Ma, B.; Chen, X. Genome-wide identification of SUN gene family in Fragaria vesca and stresses-response analysis. Chin. J. Biotechnol. 2023, 39, 724–740. [Google Scholar] [CrossRef]
- Ma, Z.; Li, W.; Wang, H.; Yu, D. WRKY Transcription Factors WRKY12 and WRKY13 Interact with SPL10 to Modulate Age-Mediated Flowering. J. Integr. Plant Biol. 2020, 62, 1659–1673. [Google Scholar] [CrossRef]
- Chen, X.; Chen, R.; Wang, Y.; Wu, C.; Huang, J. Genome-Wide Identification of WRKY Transcription Factors in Chinese Jujube (Ziziphus Jujuba Mill.) and Their Involvement in Fruit Developing, Ripening, and Abiotic Stress. Genes 2019, 10, 360. [Google Scholar] [CrossRef]
- Xu, H.; Watanabe, K.A.; Zhang, L.; Shen, Q.J. WRKY Transcription Factor Genes in Wild Rice Oryza nivara. DNA Res. 2016, 23, 311–323. [Google Scholar] [CrossRef]
- Ciolkowski, I.; Wanke, D.; Birkenbihl, R.P.; Somssich, I.E. Studies on DNA-Binding Selectivity of WRKY Transcription Factors Lend Structural Clues into WRKY-Domain Function. Plant Mol. Biol. 2008, 68, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Van Verk, M.C.; Pappaioannou, D.; Neeleman, L.; Bol, J.F.; Linthorst, H.J.M. A Novel WRKY Transcription Factor Is Required for Induction of PR-1a Gene Expression by Salicylic Acid and Bacterial Elicitors. Plant Physiol. 2008, 146, 1983–1995. [Google Scholar] [CrossRef]
- Xie, T.; Chen, C.; Li, C.; Liu, J.; Liu, C.; He, Y. Genome-Wide Investigation of WRKY Gene Family in Pineapple: Evolution and Expression Profiles during Development and Stress. BMC Genom. 2018, 19, 490. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Sun, W.; Yang, G.; Sun, J. WRKY Transcription Factors in Legumes. BMC Plant Biol. 2018, 18, 243. [Google Scholar] [CrossRef]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The Roles of Segmental and Tandem Gene Duplication in the Evolution of Large Gene Families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Ju, Z.; Jia, Z.; Liang, G.; Ma, X.; Liu, W. Genome-Wide Identification and Characterization of the Oat (Avena sativa L.) WRKY Transcription Factor Family. Genes 2022, 13, 1918. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Yang, Y.; Gao, Z.; Wei, J. Selection and Validation of Reference Genes for Gene Expression Studies by RT-PCR in Dalbergia odorifera. Sci. Rep. 2019, 9, 3341. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, P.; Li, C.H.; Zang, F.; Zheng, Y. Characterization of the complete chloroplast genome of Dalbergia cultrata (Leguminosae). Mitochondrial DNA Part B Resour. 2019, 4, 2369–2370. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.; Liao, X.; Ye, Y.; Zhang, N.; Yang, Z.; Zhu, W.; Gao, W.; Sharbrough, J.; Tembrock, L.; Xu, D.; et al. A complete mitochondrial genome for fragrant Chinese rosewood (Dalbergia odorifera, Fabaceae) with comparative analyses of genome structure and intergenomic sequence transfers. BMC Genom. 2021, 22, 672. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Luo, J.; Wang, W.; Song, T.; Fu, Y. Function of the R2R3-MYB Transcription Factors in Dalbergia odorifera and Their Relationship with Heartwood Formation. Int. J. Mol. Sci. 2023, 24, 12430. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Zhao, W.; Li, J.; Chen, J. Genome-wide identification, characterization, and genetic diversity of CCR gene family in Dalbergia odorifera. Front. Plant Sci. 2022, 13, 1064262. [Google Scholar] [CrossRef]
Duplicated Gene Pairs | Non-Synonymous (Ka) | Synonymous (Ks) | Ka/Ks | Duplicated Type |
---|---|---|---|---|
DoWRKY97&DoWRKY30 | 0.14 | 1.04 | 0.13 | segmental |
DoWRKY97&DoWRKY31 | 0.00 | 0.02 | 0.16 | segmental |
DoWRKY15&DoWRKY18 | 0.50 | 2.17 | 0.23 | segmental |
DoWRKY02&DoWRKY22 | 0.17 | 0.66 | 0.25 | segmental |
DoWRKY02&DoWRKY34 | 0.32 | 1.98 | 0.16 | segmental |
DoWRKY05&DoWRKY42 | 0.52 | 2.02 | 0.26 | segmental |
DoWRKY13&DoWRKY51 | 0.43 | - | - | segmental |
DoWRKY13&DoWRKY54 | 0.16 | 0.59 | 0.27 | segmental |
DoWRKY01&DoWRKY56 | 0.11 | 0.69 | 0.16 | segmental |
DoWRKY10&DoWRKY57 | 0.08 | 0.54 | 0.15 | segmental |
DoWRKY15&DoWRKY61 | 0.19 | 0.44 | 0.44 | segmental |
DoWRKY04&DoWRKY60 | 0.21 | 1.11 | 0.19 | segmental |
DoWRKY05&DoWRKY59 | 0.23 | 0.88 | 0.26 | segmental |
DoWRKY06&DoWRKY62 | 0.32 | 0.88 | 0.37 | segmental |
DoWRKY07&DoWRKY68 | 0.34 | 1.64 | 0.21 | segmental |
DoWRKY09&DoWRKY82 | 0.37 | - | - | segmental |
DoWRKY19&DoWRKY23 | 0.56 | 1.68 | 0.33 | segmental |
DoWRKY20&DoWRKY22 | 0.35 | 2.55 | 0.14 | segmental |
DoWRKY19&DoWRKY33 | 0.25 | 0.58 | 0.43 | segmental |
DoWRKY20&DoWRKY34 | 0.18 | 0.71 | 0.25 | segmental |
DoWRKY21&DoWRKY35 | 0.29 | 0.78 | 0.37 | segmental |
DoWRKY17&DoWRKY42 | 0.29 | 0.75 | 0.38 | segmental |
DoWRKY18&DoWRKY43 | 0.23 | 0.51 | 0.45 | segmental |
DoWRKY19&DoWRKY47 | 0.53 | 1.88 | 0.28 | segmental |
DoWRKY23&DoWRKY57 | 0.47 | 2.45 | 0.19 | segmental |
DoWRKY25&DoWRKY53 | 0.36 | 1.00 | 0.36 | segmental |
DoWRKY25&DoWRKY59 | 0.65 | - | - | segmental |
DoWRKY16&DoWRKY81 | 0.36 | - | - | segmental |
DoWRKY19&DoWRKY83 | 0.48 | 1.28 | 0.38 | segmental |
DoWRKY23&DoWRKY83 | 0.48 | 2.48 | 0.19 | segmental |
DoWRKY27&DoWRKY32 | 0.37 | 2.28 | 0.16 | segmental |
DoWRKY26&DoWRKY36 | 0.21 | 0.70 | 0.29 | segmental |
DoWRKY28&DoWRKY37 | 0.24 | 0.70 | 0.34 | segmental |
DoWRKY27&DoWRKY52 | 0.16 | 0.75 | 0.21 | segmental |
DoWRKY30&DoWRKY49 | 0.14 | 1.06 | 0.13 | segmental |
DoWRKY31&DoWRKY50 | 0.23 | 0.55 | 0.42 | segmental |
DoWRKY32&DoWRKY95 | 0.20 | 0.71 | 0.28 | segmental |
DoWRKY27&DoWRKY95 | 0.32 | 3.01 | 0.11 | segmental |
DoWRKY77&DoWRKY75 | 0.01 | 0.02 | 0.43 | tandem |
DoWRKY78&DoWRKY76 | 0.01 | 0.03 | 0.34 | tandem |
DoWRKY70&DoWRKY71 | 0.15 | 0.32 | 0.47 | tandem |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Chen, F.; Hu, X.; Zheng, H.; Liu, Y.; Fu, C.; Xie, S.; Li, D.; Tang, M. Genome-Wide Identification of WRKY Transcription Factor Family and Its Expression Patterns in Dalbergia odorifera T. Chen. Agronomy 2023, 13, 2591. https://doi.org/10.3390/agronomy13102591
Zhu Q, Chen F, Hu X, Zheng H, Liu Y, Fu C, Xie S, Li D, Tang M. Genome-Wide Identification of WRKY Transcription Factor Family and Its Expression Patterns in Dalbergia odorifera T. Chen. Agronomy. 2023; 13(10):2591. https://doi.org/10.3390/agronomy13102591
Chicago/Turabian StyleZhu, Qing, Feifei Chen, Xu Hu, Haoyue Zheng, Yi Liu, Chunchan Fu, Shangqian Xie, Dunxi Li, and Minqiang Tang. 2023. "Genome-Wide Identification of WRKY Transcription Factor Family and Its Expression Patterns in Dalbergia odorifera T. Chen" Agronomy 13, no. 10: 2591. https://doi.org/10.3390/agronomy13102591
APA StyleZhu, Q., Chen, F., Hu, X., Zheng, H., Liu, Y., Fu, C., Xie, S., Li, D., & Tang, M. (2023). Genome-Wide Identification of WRKY Transcription Factor Family and Its Expression Patterns in Dalbergia odorifera T. Chen. Agronomy, 13(10), 2591. https://doi.org/10.3390/agronomy13102591