Pest Rodents’ Responses to Rice Farming in Northern Peninsular Malaysia
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Rodent Sampling
2.3. Assessment of Stand-Level Habitat Quality Characteristics
2.4. Measurement of Landscape Metrics
2.5. Statistical Analysis
3. Results
3.1. Outcomes from the Small Mammal Trapping Effort
3.2. Influence of Environmental Variables on Rodent Populations at Stand- and Landscape-Level
4. Discussion
4.1. Management Implications
4.2. Limitations of the Present Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singleton, G.R.; Sudarmaji, J.J.; Krebs, C.J. Integrated management to reduce rodent damage to low land rice crops in Indonesia. Agric. Ecosyst. Environ. 2004, 107, 75–82. [Google Scholar] [CrossRef]
- Htwe, N.M.; Sarathchandra, S.R.; Sluydts, V.; Nugaliyadde, L.; Singleton, G.R.; Jacob, J. Small mammal communities, associated damage to rice and damage prevention in smallholder rice storage facilities in Sri Lanka. Crop Prot. 2021, 145, 105638. [Google Scholar] [CrossRef]
- Muthayya, S.; Sugimoto, J.D.; Motgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.R.; Douangboupha, B.; Htwe, N.M.; Jacob, J.; Mulungu, L.; Nguyen, T.M.P.; Singleton, G.R.; Stuart, A.M.; Sudarmaji. Control of rodent pests in rice cultivation. In Achieving Sustainable Rice Cultivation; Sasaki, T., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2017; pp. 1–34. [Google Scholar] [CrossRef]
- Timmer, C.P. The Changing Role of Rice in Asia’s Food Security; No15, ADB Sustainable Development Working Paper Series; Asian Development Bank: Mandaluyong, Philippines, 2010; Volume 15, pp. 1–16. [Google Scholar]
- Thitipramote, N.; Suwanjarat, J.; Breed, W.G. Reproductive biology of the greater bandicoot rat Bandicota indica (Rodentia: Muridae) in the rice fields of southern Thailand. Curr. Zool. 2009, 55, 48–55. [Google Scholar] [CrossRef]
- Bari, I.N.; Herawati, N.; Medina Suherman, B.; Subakti Putri, S.N. Effect of Plumeria rubra (Apocynaceae) leaf extracts, a repellent of rice-field rats (Rattus argentiventer), on its metabolism and daily activity. Rev. Biol. Trop. 2020, 68, 1357–1370. [Google Scholar] [CrossRef]
- Bari, I.N.; Herawati, N.; Putri, S.N.S. Effects of Oleander leaves (Nerium oleander) against metabolism, activity pattern and the leaves potency as rice-field rat repellent (Rattus argentiventer). Biol. Life Sci. Forum. 2021, 4, 08868. [Google Scholar] [CrossRef]
- Lim, B.L. The field rats and field mouse in Malaysia and Southeast Asia. UTAR Agric. Sci. J. 2005, 1, 35–42. [Google Scholar]
- Gait, F.C. Two incidences of rat damages in Sabah and importance of rat control in immature oil palm. Planter 2018, 94, 799–811. [Google Scholar]
- Aplin, K.P.; Brown, P.R.; Jacob, J.; Krebs, C.J.; Singleton, G.R. Fields methods for rodent studies in Asia and the Indo-Pacific: ACIAR Canberra Aust. Monogr. No. 2003, 100, 223. [Google Scholar]
- Saarani, M.A.R.; Leonard, J.A.; Md Zain, B.M.; Omar, H. Greater Bandicoot Rats (Bandicta indica) are not native to Sundaland based on deoxyribonucleic acid (DNA) analyses. J. Mamm. Evol. 2021, 28, 1–10. [Google Scholar] [CrossRef]
- Yong, H.S.; Eamsobhana, P.; Lim, P.E. Sex chromosome constitution and supernumerary chromosome in the large bandicoot rat Bandicota indica (Rodentia, Muridae) from Peninsular Malaysia. J. Sci. Technol. Trop. 2012, 8, 21–27. [Google Scholar]
- Musser, G.G.; Brothers, E.M. Identification of bandicoot rats from Thailand. (Bandicota, Muridae, Rodentia). Am. Mus. Novit. 1994, 3110, 1–56. [Google Scholar]
- Pachero, V. A capture of a lesser bandicoot rat Bandicota bengalensis at Callao Port, Peru: Anecdotal record of potential invasive alien species? Rev. Peru. Biol. 2019, 26, 525–528. [Google Scholar] [CrossRef] [Green Version]
- Mehmood, A.; Ansari, M.; Hussain, T.; Akhter, S.; Khan, S.A.; Hassan, S.; Khan, A.A.; Rakha, B.A. Bandicoot rat (Bandicota bengalensis): A novel reservoir of pathogenic bacteria at poultry farms, Rawalpindi/Islamabad, Pakistan. Pak. J. Zool. 2011, 43, 201–202. [Google Scholar]
- Lam, Y.M. Some aspects of the reproduction, growth, and development of Bandicota indica in captivity. MARDI Res. Bull. 1985, 3, 207–217. [Google Scholar]
- Krairojananan, P.; Thaipadungpanit, J.; Leepitakrat, S.; Monkanna, T.; Wanja, E.W.; Schuster, A.L.; Costa, F.; Poole-Smith, B.K.; McCardle, P.W. Low prevalence of Leptospira carriage in rodents in leptospirosis-endemic Northeastern Thailand. Trop. Med. Infect. 2020, 5, 154. [Google Scholar] [CrossRef]
- Böge, I.; Pfeffer, M.; Htwe, N.M.; Maw, P.P.; Sarathchandra, S.R.; Sluydts, V.; Piscitelli, A.P.; Jacob, J.; Obiegala, A. First Detection of Bartonella spp. in small mammals from rice storage and processing facilities in Myanmar and Sri Lanka. Microorganisms 2021, 9, 658. [Google Scholar] [CrossRef]
- Phukon, M.; Borah, R.K. Burrowing architecture and food hoparding behavior of field in rice-vegetable cropping system at Upper Brahmaputra valley zone, Assam. J. Entomol. Zool. Stud. 2019, 7, 1111–1118. [Google Scholar]
- Poche, R.M.; Main, M.Y.; Haque, M.E.; Sultana, P. Rodent damage and burrowing characteristics in Bangladesh wheat fields. J. Wildl. Manage. 1982, 46, 139–147. [Google Scholar] [CrossRef]
- Singleton, G.R.; Leirs, H.; Hinds, L.A.; Zhang, Z. Ecologically-based management of rodent pests reevaluating our approach to an old problem. In Ecologically-Based Management of Rodent Pests; Singleton, G.R., Hinds, L.A., Leirs, H., Zhang, Z., Eds.; Australian Centre for International Agricultural Research: Canberra, Australia, 1999; pp. 17–29, 494. [Google Scholar]
- Singleton, G.R.; Lorica, R.P.; Htwe, N.M.; Stuart, A.M. Rodent management and cereal production in Asia: Balancing food security and conservation. Pest Manag. Sci. 2021, 77, 4249–4261. [Google Scholar] [CrossRef]
- Khalequzzaman, M.; Hossain, M.A. Toxicity of rodenticide brodifacoum against the field captured lesser bandicoot rat. J. Asiat. Soc. Bangladesh Sci. 2001, 27, 133–135. [Google Scholar]
- Garg, N.; Singla, N.; Jindal, V.; Babbar, B.K. Studies ion bromadiolone resistance in Rattus rattus populations from Punjab, India. Pestic. Biochem. Psysiology 2017, 139, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Meheretu, Y.; Welegerima, K.; Sluydts, V.; Bauer, H.; Gebrehiwot, K.; Deckers, J.; Makundi, R.; Leirs, H. Reproduction and survival of rodents in crop fields: The effects of rainfall, crop stage and stone-bund density. Wildl. Res. 2015, 42, 158–164. [Google Scholar] [CrossRef]
- Jacob, J. Response of small rodents to manipulations of vegetation height in agro ecosystem. Integr. Zool. 2008, 3, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Assefa, A.; Chelkmala, S. Comparison of rodent community between natural and modified habitats in Kafta-Sheraro National Park and its adjoining villages, Ethiopia: Implication for conservation. J. Basic Appl. Zool. 2019, 80, 59. [Google Scholar] [CrossRef] [Green Version]
- Habtamu, T.; Bekele, A. Habitat association of insectivores and rodents of Alatish National Park, northwestern Ethiopia. Trop. Ecol. 2008, 49, 1–11. [Google Scholar]
- Rupasinghe, R.; Chomel, B.B.; Martinez-Lopez, B. Climate change and zoonoses: A review of the current status, knowledge gaps and future trends. Acta Trop. 2022, 226, 106225. [Google Scholar] [CrossRef]
- Capizzi, D.; Bertolino, S.; Mortelliti, A. Rating the rat: Global patterns and research priorities in impacts and management of rodent pests. Mamm. Rev. 2014, 44, 148–168. [Google Scholar] [CrossRef]
- Burhanuddin, M.; Hafidzi, M.N. Preliminary Study of The Greater Bandicoot Rat in The Rice Field, Jitra, Kedah. Int. J. Agric. For. Plant. 2018, 8, 70–74. [Google Scholar]
- Maqbool, S.; Khan, A.A.; Awan, M.S. Burrowing characteristics and food hoarding behaviour of Bandicota bengalensis wardi Wroughton in Wheat Fields, Muzaffarabad, Azad Jammu & Kashmir, Pakistan. Pak. J. Zool. 2011, 43, 987–992. [Google Scholar]
- Maw, P.P.; Naing, H.H.; Htwe, N.M.; Oo, T.T. The relationship between a population index of the lesser bandicoot rat (Bandicota bengalensis) and their damage to the rice crop. J. Agric. Res. 2018, 5, 58–64. [Google Scholar]
- Weihong, J.; Veitch, C.R.; Craig, J.L. An evaluation of the efficiency of rodent trapping methods: The effect of trap arrangement, cover type, and bait. N. Z. J. Ecol. 1999, 23, 45–51. [Google Scholar]
- Sikes, R. Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 2016, 97, gyw078. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carr’e, G.; Münkemüller, T. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Jamhuri, J.; Samantha, L.D.; Tee, S.L.; Kamaruddin, N.; Ashton-Butt, A.; Zubaid, A.; Lechner, A.M.; Azhar, B. Selective logging causes the decline of large sized mammals including those in unlogged patches surrounded by logged and agricultural areas. Biol. Conserv. 2018, 227, 40–47. [Google Scholar] [CrossRef]
- Razak, S.A.; Saadun, N.; Azhar, B.; Lindenmayer, D.B. Smallhodings with high oil palm yield also support bird species richness and diverse feeding guilds. Environ. Res. Lett. 2020, 15, 094031. [Google Scholar] [CrossRef]
- Lagesse, J.V.; Thondhlana, G. The effect of land use on small mammal diversity inside and outside the great fish river nature reserve eastern cape south Africa. J. Arid. Environ. 2016, 130, 76–83. [Google Scholar] [CrossRef]
- Andreassen, H.P.; Sundell, J.; Ecke, F.; Halle, S.; Haapakosko, M.; Henttonen, H.; Huitu, O.; Jacob, J.; Johnsen, K.; Koskela, E. Population cycles and outbreaks of small rodnets: Ten essential questions we still need to solve. Oecologia 2020, 195, 601–622. [Google Scholar] [CrossRef]
- Fillieux, C.; Chea, S.; Ramassamy, J.-L.; Hul, V.; Olson, S.; Fine, A.; Dussart, P.; Phimpraphi, W.; Horwood, P.F.; Pruvot, M. Assessment of rodent communities in two provinces of Cambodia. Cambodian J. Nat. Hist. 2017, 2017, 147–152. [Google Scholar]
- Hussain, I.; Qureshi, N.A.; Anwar, M.; Mushtaq, M. Burrow characteristics of lesser bandicoot rat (Bandicota bengalensis) in the agro-ecosystem of Pothwar Plateau, Pakistan. Pak. J. Zool. 2016, 48, 631–638. [Google Scholar]
- Harrison, J.L. Data on the reproduction of some Malayan mammals. Zool. Soc. Lond. Proc. 1955, 125, 445–460. [Google Scholar] [CrossRef]
- Vickery, W.L.; Bider, J.L. The influence of weather on rodent activity. J. Mammal. 1981, 62, 140–145. [Google Scholar] [CrossRef]
- Uria, I.T.; Mahiques, J.M.; Gras, L.M. Temporal distribution and weather correlates of norway rat (Rattus norvengicus) infestations in the city of Madrid, Spain. EcoHealth 2013, 10, 137–144. [Google Scholar] [CrossRef]
- Datiko, D.; Bekele, A. Habitat association and distribution of rodents and insectivores in Chebera-Churchura National Park, Ethiopia. Trop. Ecol. 2014, 55, 221–229. [Google Scholar]
- Soe, N.; Shwe, S.S. Dietary study on Rattus rattus complex in Dayaebo Village in Hlegu Township, Yangon Region. Hinthada Univ. Res. J. 2010, 2, 44–51. [Google Scholar]
- Wells, K.; Lakim, M.B.; Pfeiffer, M. Nest sites of rodents and tree shrews in Borneo. Ecotropica 2006, 12, 141–149. [Google Scholar]
- FAO. Complex Rice System, Indonesia; TECA-Technologies and Practices for Small Agricultural Producers, Universiti of Brawijaya: Malang, Indonesia, 2022; Available online: https://www.fao.org/teca/en/technologies/10104#:~:text=Intensive%20monoculture%20rice%20production%20systems,least%2050%20cm%20in%20width (accessed on 29 July 2022).
- IRRI. How to Construct Bunds. In Step-by-Step Production. 2022. Available online: http://www.knowledgebank.irri.org/step-by-step-production/pre-planting/land-preparation/how-to-construct-bunds (accessed on 29 July 2022).
- Davis, S.; Leirs, H.; Pech, R.; Zhang, Z.; Stenseth, N.C. On the economic benefit of predicting rodent outbreaks in agricultural systems. Crop Prot. 2004, 23, 305–314. [Google Scholar] [CrossRef]
- Stenseth, N.C.; Mysterud, A.; Ottersen, G.; Hurrell, J.W.; Chan, K.S.; Lima, M. Ecological effects of climate fluctuations. Science 2002, 297, 1292–1296. [Google Scholar] [CrossRef]
- Yadav, M.; Prasad, R.; Kumari, P.; Madhu, M.; Kumari, A.; Pandey, C.; Saueabh, A.; Prasad, K.; Singh, A.K.; Prasad, D.; et al. Potential and prospect of natural enemies in rice ecosystem in Jharkhand. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 3389–33996. [Google Scholar]
- Kross, S.; Bourbour, R.; Martinico, B. Agricultural land use, barn owl diet, and vertebrate pest control implications. Agric. Ecosyst. Environ. 2016, 223, 167–174. [Google Scholar] [CrossRef]
- Castaneda, X.; Huysman, A.E.; Johnson, M.E. Barn owls select uncultivated habitats for hunting in a wine grape growing region of California. Ornothological Appl. 2021, 123, 1–15. [Google Scholar]
- Ramli, R.; Fauzi, A. Nesting biology of black-shouldered kite (Elanus caeruleus) in oil palm landscape in Carey Island, Peninsular Malaysia. Saudi J. Biol. Sci. 2016, 25, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Amira, N.; Rinalfi, T.; Azhar, B. Effects of intensive rice production practices on avian biodiversity in Southeast Asian managed wetlands. Wetl. Ecol. Manag. 2018, 26, 865–877. [Google Scholar] [CrossRef]
- Ali, M.P.; Bari, M.N.; Haque, S.S.; Kabir, M.M.M.; Afrin, S.; Nowrin, F.; Islam, M.S.; Landis, D.A. Establishing next generation pest control services in rice fields: Agriculture. Nature 2019, 9, 10180. [Google Scholar] [CrossRef]
Vegetative | Reproductive | Maturative | ||||
---|---|---|---|---|---|---|
IRRI | - | 1 | 2 | 3 | 4 | 5 |
BBCH (days) | - | 1–19 | 21–41 | 43–53 | 54–77 | 83–99 |
Our study | Land preparation | Vegetative | Tillering | Booting | Harvesting |
Environmental Variables | Mean ± SD | Median | Min–Max |
---|---|---|---|
Stand-level habitat characteristics | |||
Burrow count | 1.661 ± 2.170 | 1 | 0–17 |
Bund height (cm) | 21.28 ± 8.447 | 19.51 | 7.18–66.42 |
Bund width (m) | 1.47 ± 1.1618. | 0.853 | 0.35–8.8 |
Undergrowth coverage (%) | 1.176 ± 2.24 | 0.508 | 0.01–15.32 |
Undergrowth height (cm) | 23.81 ± 9.766 | 26.44 | 1.30–46.85 |
Landscape metrics | |||
Distance to shrubs (m) | 29.15 ± 71.66 | 6.86 | 0.8–493 |
Distance to residential area (m) | 351.2 ± 253 | 358.9 | 0–882.7 |
Distance to rice field (m) | 18.34 ± 81.34 | 1.75 | 0.1–914 |
Distance to water source (m) | 92.64 ± 120.70 | 26.61 | 0.0–616.2 |
Variables | Mean ± SD | Median | Min–Max |
---|---|---|---|
Relative abundance | 1.92 ± 2.269 | 1 | 0–18 |
Rodent | |||
Greater bandicoot rat (B. indica) | 0.181 ± 0.457 | 0 | 0–5 |
Rice field rat (R. argentiventer) | 0.0157 ± 0.124 | 0 | 0–1 |
Black rat (Rattus rattus) | 0.0143 ± 0.119 | 0 | 0–1 |
Insectivores | |||
Asian House Shrew (Suncus murinus) | 0.0443 ± 0.206 | 0 | 0–1 |
Total capture | 0.256 ± 0.544 | 0 | 0–5 |
Model | Explanatory Variable | DF | Mallows CP | Adjusted R2 |
---|---|---|---|---|
1 | Bund width | 2 | 580.52 | 12.73 |
2 | Bund width + Rice growing stage | 6 | 541.79 | 15.44 |
3 | Bund width + Rice growing stage + Rice planting season | 7 | 526.58 | 16.51 |
4 * | Bund height + Bund width + Rice growing stage + Rice planting season | 8 | 526.30 | 16.54 |
5 | Bund height + Bund width + Undergrowth height + Rice growing stage + Rice planting season | 9 | 526.56 | 16.54 |
6 | Bund height + Bund width + Undergrowth coverage + Undergrowth height + Rice growing stage + Month | 10 | 528.27 | 16.44 |
Explanatory Variable | Slope | Back Transformed Means (Relative Abundance) |
---|---|---|
Stand-level variables | ||
Bund Height | 0.001195 | 4.646 |
Bund Width | 0.1233 | 3.187 |
Rice growing stages | ||
Land preparation | 0.6189 | 2.719 |
Vegetation stage | 0.3797 | 2.141 |
Tillering | 0.3377 | 2.053 |
Booting | 0.000 | 1.464 |
Harvesting | −0.4231 | 0.959 |
Dry | 0.0000 | 2.255 |
Wet | −0.498 | 1.37 |
Distance to residential area | −0.0003606 | |
Dry | 0.0000 | 1.41 |
Wet | 0.06593 | 1.506 |
Model | Explanatory Variable | DF | Mallows CP | Adjusted R2 |
---|---|---|---|---|
1 | Distance to residential area | 2 | 706.94 | 4.09 |
2 * | Distance to residential area + Rice planting season | 3 | 706.87 | 4.10 |
3 | Distance to residential area + Distance to water source + Rice planting season | 4 | 708.66 | 3.97 |
4 | Distance to shrub + Distance to residential area + Distance to water source + Rice planting season | 5 | 710.42 | 3.85 |
5 | Distance to shrub + Distance to rice field + Distance to residential area + Distance to water source + Rice planting season | 6 | 712.35 | 3.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor, H.M.; Burhanuddin, M.; Salim, H.; Asrif, N.A.; Jamian, S.; Azhar, B. Pest Rodents’ Responses to Rice Farming in Northern Peninsular Malaysia. Agronomy 2023, 13, 85. https://doi.org/10.3390/agronomy13010085
Noor HM, Burhanuddin M, Salim H, Asrif NA, Jamian S, Azhar B. Pest Rodents’ Responses to Rice Farming in Northern Peninsular Malaysia. Agronomy. 2023; 13(1):85. https://doi.org/10.3390/agronomy13010085
Chicago/Turabian StyleNoor, Hafidzi Mohd, Maisarah Burhanuddin, Hasber Salim, Nur Athirah Asrif, Syari Jamian, and Badrul Azhar. 2023. "Pest Rodents’ Responses to Rice Farming in Northern Peninsular Malaysia" Agronomy 13, no. 1: 85. https://doi.org/10.3390/agronomy13010085
APA StyleNoor, H. M., Burhanuddin, M., Salim, H., Asrif, N. A., Jamian, S., & Azhar, B. (2023). Pest Rodents’ Responses to Rice Farming in Northern Peninsular Malaysia. Agronomy, 13(1), 85. https://doi.org/10.3390/agronomy13010085