Potential Assessment of Selenium for Improving Nitrogen Metabolism, Yield and Nitrogen Use Efficiency in Wheat
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Site
2.2. Experimental Treatments and Design
2.3. Measurement Items and Methods
2.3.1. Collection of Wheat Samples
2.3.2. Enzymatic Activities Assay
2.3.3. Nitrogen Use Efficiency (NUE)
2.3.4. Photosynthetic Capacity
2.3.5. Oxidative Stress
2.4. Statistical Analyses
3. Results
3.1. Yield and Yield Composition
3.2. Nitrogen Metabolism
3.3. Nitrogen Use Efficiency
3.4. Leaf Area Index and Net Photosynthetic Rate
3.5. MDA Content and Antioxidant Enzyme Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.-L.; Li, Q.; Zeng, X.-P.; Liu, Y.; Li, Y.-R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef]
- Ju, C.; Buresh, R.J.; Wang, Z.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crop. Res. 2015, 175, 47–55. [Google Scholar] [CrossRef]
- Li, P.; Lu, J.; Wang, Y.; Wang, S.; Hussain, S.; Ren, T.; Cong, R.; Li, X. Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea. Agric. Ecosyst. Environ. 2018, 251, 78–87. [Google Scholar] [CrossRef]
- Schomburg, L. The other view: The trace element selenium as a micronutrient in thyroid disease, diabetes, and beyond. Hormones 2020, 19, 15–24. [Google Scholar] [CrossRef]
- Saleh, S.A.; Adly, H.M.; Abdelkhaliq, A.A.; Nassir, A.M. Serum Levels of Selenium, Zinc, Copper, Manganese, and Iron in Prostate Cancer Patients. Curr. Urol. 2020, 14, 44–49. [Google Scholar] [CrossRef]
- Ye, Y.; Qu, J.; Pu, Y.; Rao, S.; Xu, F.; Wu, C. Selenium Biofortification of Crop Food by Beneficial Microorganisms. J. Fungi 2020, 6, 59. [Google Scholar] [CrossRef]
- Xu, Y.; Hao, Z.; Li, Y.; Li, H.; Wang, L.; Zang, Z.; Liao, X.; Zhang, R. Distribution of selenium and zinc in soil-crop system and their relationship with environmental factors. Chemosphere 2019, 242, 125289. [Google Scholar] [CrossRef]
- Hajiboland, R.; Sadeghzade, N. Effect of selenium on CO2 and NO3- assimilation under low and adequate nitrogen supply in wheat (Triticum aestivum L.). Photosynthetica 2014, 52, 501–510. [Google Scholar] [CrossRef]
- Shahid, M.A.; Balal, R.M.; Khan, N.; Zotarelli, L.; Liu, G.D.; Sarkhosh, A.; Fernández-Zapata, J.C.; Nicolás, J.J.M.; Garcia-Sanchez, F. Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism. Ecotoxicol. Environ. Saf. 2019, 180, 588–599. [Google Scholar] [CrossRef]
- Rios, J.J.; Blasco, B.; A Rosales, M.; Sanchez-Rodriguez, E.; Leyva, R.; Cervilla, L.M.; Romero, L.; Ruiz, J.M. Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. J. Sci. Food Agric. 2010, 90, 1914–1919. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Hu, C.; Tan, Q.; Xu, S.; Sun, X. Nitric Oxide Mediates Molybdenum-Induced Antioxidant Defense in Wheat under Drought Stress. Front. Plant Sci. 2017, 8, 1085. [Google Scholar] [CrossRef] [Green Version]
- Rao, L.; Rajasekhar, V.K.; Sopory, S.K.; Sipra, G.M. Phytochrome regulation of nitrite reductase-a chloroplast enzyme-in etiolated maize leaves. Plant Cell Physiol. 1981, 3, 577–582. [Google Scholar] [CrossRef]
- Imran, M.; Sun, X.; Hussain, S.; Ali, U.; Rana, M.S.; Rasul, F.; Saleem, M.H.; Moussa, M.G.; Bhantana, P.; Afzal, J.; et al. Molybdenum-Induced Effects on Nitrogen Metabolism Enzymes and Elemental Profile of Winter Wheat (Triticum aestivum L.) Under Different Nitrogen Sources. Int. J. Mol. Sci. 2019, 20, 3009. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Chen, Y.; Zhang, H.; Li, Z.; Zhou, Q.; Yu, C.; Kong, X.; Liu, L.; Wang, Z.; Yang, J. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crop. Res. 2017, 206, 74–85. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, W.; Hu, F.; Fan, Z.; Fan, H.; Zhao, C.; Yu, A.; Chai, Q.; Coulter, J.A. Reduced irrigation and nitrogen coupled with no-tillage and plastic mulching increase wheat yield in maize-wheat rotation in an arid region. Field Crop. Res. 2019, 243, 107615. [Google Scholar] [CrossRef]
- Jiang, S.; Du, B.; Wu, Q.; Zhang, H.; Deng, Y.; Tang, X.; Zhu, J. Selenium Decreases the Cadmium Content in Brown Rice: Foliar Se Application to Plants Grown in Cd-contaminated Soil. J. Soil Sci. Plant Nutr. 2022, 22, 1033–1043. [Google Scholar] [CrossRef]
- Curtis, T.; Halford, N.G. Food security: The challenge of increasing wheat yield and the importance of not compromising food safety. Ann. Appl. Biol. 2014, 164, 354–372. [Google Scholar] [CrossRef]
- Lara, T.S.; Lessa, J.H.D.L.; de Souza, K.R.D.; Corguinha, A.P.B.; Martins, F.A.D.; Lopes, G.; Guilherme, L.R.G. Selenium biofortification of wheat grain via foliar application and its effect on plant metabolism. J. Food Compos. Anal. 2019, 81, 10–18. [Google Scholar] [CrossRef]
- Da Silveira, A.P.D.; Sala, V.M.R.; Cardoso, E.J.B.N.; Labanca, E.G.; Cipriano, M.A.P. Nitrogen metabolism and growth of wheat plant under diazotrophic endophytic bacteria inoculation. Appl. Soil Ecol. 2016, 107, 313–319. [Google Scholar] [CrossRef]
- Yan, F.; Shi, Y.; Yu, Z. Optimized Border Irrigation Improved Nitrogen Accumulation, Translocation of Winter Wheat and Reduce Soil Nitrate Nitrogen Residue. Agronomy 2022, 12, 433. [Google Scholar] [CrossRef]
- Albornoz, F. Crop responses to nitrogen overfertilization: A review. Sci. Hortic. 2016, 205, 79–83. [Google Scholar] [CrossRef]
- Chu, J.; Yao, X.; Yue, Z.; Li, J.; Zhao, J. The Effects of Selenium on Physiological Traits, Grain Selenium Content and Yield of Winter Wheat at Different Development Stages. Biol. Trace Element Res. 2012, 151, 434–440. [Google Scholar] [CrossRef]
- Nawaz, F.; Ashraf, M.; Ahmad, R.; Waraich, E.; Shabbir, R.; Bukhari, M. Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chem. 2015, 175, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, F.; Ahmad, R.; Ashraf, M.Y.; Waraich, E.A.; Khan, S.Z. Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol. Environ. Saf. 2015, 113, 191–200. [Google Scholar] [CrossRef]
- Makino, A. Photosynthesis, Grain Yield, and Nitrogen Utilization in Rice and Wheat. Plant Physiol. 2010, 155, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Liu, K.; Li, M.; Zhang, W.; Zhao, X.; Zhao, Z.; Liu, X. Difference of selenium uptake and distribution in the plant and selenium form in the grains of rice with foliar spray of selenite or selenate at different stages. Field Crop. Res. 2017, 211, 165–171. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, S.; Jiang, Z.; Wang, Y.; Zhang, Z. Selenium Biofortification Modulates Plant Growth, Microelement and Heavy Metal Concentrations, Selenium Uptake, and Accumulation in Black-Grained Wheat. Front. Plant Sci. 2021, 12, 2189. [Google Scholar] [CrossRef]
- Ali, S.; Hafeez, A.; Ma, X.; Tung, S.A.; Chattha, M.S.; Shah, A.N.; Luo, D.; Ahmad, S.; Liu, J.; Yang, G. Equal potassium-nitrogen ratio regulated the nitrogen metabolism and yield of high-density late-planted cotton (Gossypium hirsutum L.) in Yangtze River valley of China. Ind. Crop. Prod. 2018, 129, 231–241. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Z.; Zhang, Y.; Shi, Y. Optimized nitrogen fertilizer application strategies under supplementary irrigation improved winter wheat (Triticum aestivum L.) yield and grain protein yield. PeerJ 2021, 9, e11467. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Asthir, B.; Bains, N.; Farooq, M. Nitrogen Nutrition, its Assimilation and Remobilization in Diverse Wheat Genotypes. Int. J. Agric. Biol. 2015, 17, 531–538. [Google Scholar] [CrossRef]
- The, S.V.; Snyder, R.; Tegeder, M. Targeting Nitrogen Metabolism and Transport Processes to Improve Plant Nitrogen Use Efficiency. Front. Plant Sci. 2021, 11, 628366. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Liu, Y.; Gong, X.; Zeng, G.; Zheng, B.; Wang, D.; Sun, Z.; Zhou, L.; Zeng, X. Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress. Environ. Sci. Pollut. Res. 2015, 22, 9999–10008. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.; Yang, M.; Fahad, S.; Saleem, M.H.; Liu, L.; Liu, F.; Deng, G. Morpho-physiological traits, antioxidant capacity, and nitrogen metabolism in ramie under nitrogen fertilizer. Agron. J. 2020, 112, 2988–2997. [Google Scholar] [CrossRef]
- Garnett, T.; Plett, D.; Heuer, S.; Okamoto, M. Genetic approaches to enhancing nitrogen-use efficiency (NUE) in cereals: Challenges and future directions. Funct. Plant Biol. 2015, 42, 921. [Google Scholar] [CrossRef]
- Panel, E.N.E. Nitrogen Use Efficiency (NUE) an Indicator for the Utilization of Nitrogen in Food Systems; Wageningen University: Alterra, Wageningen, The Netherlands, 2015. [Google Scholar]
Years | N Application Levels | Se Application Levels | Spikes per | Kernels per Spike | 1000-Grain Weight (g) | Yield |
---|---|---|---|---|---|---|
m−2 × 103 | t ha−1 | |||||
2020 | N0 | Se0 | 0.506 ± 0.0244 e | 26.5 ± 0.180 c | 40.5 ± 0.590 d | 5.19 ± 0.303 e |
Se1 | 0.519 ± 0.0255 e | 27.3 ± 0.910 bc | 44.5 ± 1.22 bc | 6.03 ± 0.292 d | ||
Se2 | 0.484 ± 0.0264 e | 27.1 ± 0.480 bc | 44.4 ± 1.54 bc | 5.58 ± 0.466 de | ||
N1 | Se0 | 0.644 ± 0.00584 d | 28.5 ± 1.73 ab | 43.7 ± 0.640 c | 7.64 ± 0.472 c | |
Se1 | 0.663 ± 0.0362 bcd | 29.4 ± 1.01 a | 46.1 ± 0.180 ab | 8.57 ± 0.214 b | ||
Se2 | 0.653 ± 0.00359 cd | 29.0 ± 0.380 a | 46.7 ± 1.80 a | 8.44 ± 0.230 b | ||
N2 | Se0 | 0.694 ± 0.0191 abc | 28.2 ± 0.490 ab | 44.5 ± 1.07 bc | 8.32 ± 0.181 b | |
Se1 | 0.697 ± 0.0270 ab | 28.2 ± 0.520 ab | 45.3 ± 0.540 abc | 8.54 ± 0.361 b | ||
Se2 | 0.720 ± 0.0246 a | 29.73 ± 0.450 a | 45.5 ± 1.25 abc | 9.25 ± 0.302 a | ||
2021 | N0 | Se0 | 0.523 ± 0.00781 d | 27.2 ± 0.260 bc | 41.1 ± 0.51 c | 5.57 ± 0.169 d |
Se1 | 0.505 ± 0.0241 d | 27.2 ± 1.16 bc | 42.9 ± 0.670 bc | 5.62 ± 0.542 d | ||
Se2 | 0.516 ± 0.0227 d | 26.9 ± 0.270 c | 44.1 ± 1.35 ab | 5.87 ± 0.473 d | ||
N1 | Se0 | 0.663 ± 0.0174 bc | 28.1 ± 1.42 abc | 44.4 ± 0.470 ab | 7.92 ± 0.631 d | |
Se1 | 0.643 ± 0.0269 c | 28.6 ± 0.590 a | 45.9 ± 1.56 a | 8.05 ± 0.456 bc | ||
Se2 | 0.657 ± 0.0147 c | 28.8 ± 0.530 a | 46.3 ± 1.25 a | 8.39 ± 0.419 abc | ||
N2 | Se0 | 0.703 ± 0.0183 ab | 29.5 ± 0.310 a | 45.4 ± 1.90 ab | 8.97 ± 0.407 a | |
Se1 | 0.714 ± 0.00433 a | 28.58 ± 0.39 a | 45.05 ± 0.91 ab | 8.80 ± 0.274 ab | ||
Se2 | 0.683 ± 0.0462 abc | 28.45 ± 0.54 ab | 45.18 ± 2.16 ab | 8.38 ± 0.312 abc | ||
Years (Y) | ns | ns | ns | ns | ||
Nitrogen (N) | ** | ** | ** | ** | ||
Selenium (Se) | ns | ns | ** | ** | ||
Y × N | ns | ns | ns | ns | ||
Y × Se | ns | ns | ns | * | ||
N × Se | ns | ns | * | ns | ||
Y × N × Se | ns | ns | ns | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Du, B.; Jiang, S.; Zhu, J.; Wu, Q. Potential Assessment of Selenium for Improving Nitrogen Metabolism, Yield and Nitrogen Use Efficiency in Wheat. Agronomy 2023, 13, 110. https://doi.org/10.3390/agronomy13010110
Zhang H, Du B, Jiang S, Zhu J, Wu Q. Potential Assessment of Selenium for Improving Nitrogen Metabolism, Yield and Nitrogen Use Efficiency in Wheat. Agronomy. 2023; 13(1):110. https://doi.org/10.3390/agronomy13010110
Chicago/Turabian StyleZhang, Haiwei, Bin Du, Shuochen Jiang, Jianqiang Zhu, and Qixia Wu. 2023. "Potential Assessment of Selenium for Improving Nitrogen Metabolism, Yield and Nitrogen Use Efficiency in Wheat" Agronomy 13, no. 1: 110. https://doi.org/10.3390/agronomy13010110
APA StyleZhang, H., Du, B., Jiang, S., Zhu, J., & Wu, Q. (2023). Potential Assessment of Selenium for Improving Nitrogen Metabolism, Yield and Nitrogen Use Efficiency in Wheat. Agronomy, 13(1), 110. https://doi.org/10.3390/agronomy13010110