Effects of Biopesticides and Undersown Cover Crops on Soil Properties in the Organic Farming System
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Conditions
2.2. Experimental Design
2.3. Agro-Technologies of Experiment
2.4. Meteorological Conditions
2.5. Research Methods
2.6. Statistical Analysis
3. Results
3.1. Soil Shear Strength
3.2. Soil Aggregate–Size Distribution
3.3. Plant Root Dry Biomass
3.4. Number and Biomass of Earthworms
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Orzech, K.; Zaluski, D. Effect of companion crops and crop rotation systems on some chemical properties of soil. J. Elem. 2020, 25, 931–949. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts?–A Meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef]
- FiBL. The World of Organic Farming: Statistics and Emerging Trends; FiBL: Frick, Switzerland, 2021; p. 340. [Google Scholar]
- Hubbard, R.H.; Strickland, T.C.; Phatak, S.C. Effects of cover crop systems on soil physical properties and carbon/nitrogen relationships in the coastal plain of southeastern USA. Soil Tillage Res. 2013, 126, 276–283. [Google Scholar] [CrossRef]
- Haruna, S.I.; Nkongolo, N.V. Cover crop management effects on soil physical and biological properties. Procedia Environ. Sci. 2015, 29, 13–14. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.A.; Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Haruna, S.I.; Anderson, S.H.; Udawatta, R.P.; Gantzer, C.J.; Phillips, N.C.; Cui, S.; Gao, Y. Improving soil physical properties through the use of cover crops: A review. Agrosyst. Geosci. Environ. 2020, 3, e20105. [Google Scholar] [CrossRef]
- Lucas, T.S.; D’angelo, E.M.; Williams, M.A. Improving soil structure by promoting fungal abundance with organic soil amendments. Appl. Soil Ecol. 2014, 75, 13–23. [Google Scholar] [CrossRef]
- Scotti, R.; Bonanomi, G.; Scelza, R.; Zoina, A.; Rao, M.A. Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J. Plant. Nutr. Soil Sci. 2015, 15, 333–352. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Irmak, S.; Padhi, J. Effects of cover crops on soil quality: Part I. Soil chemical properties—Organic carbon, total nitrogen, pH, electrical conductivity, organic matter content, nitrate-nitrogen, and phosphorus. J. Soil Water Conserv. 2018, 73, 637–651. [Google Scholar] [CrossRef]
- Koudahe, K.; Allen, S.C.; Djaman, K. Critical review of the impact of cover crops on soil properties. Int. Soil Water Conserv. Res. 2022, 10, 343–354. [Google Scholar] [CrossRef]
- Linsler, D.; Kaiser, M.; Andruschkewitsch, R.; Piegholdt, C.; Ludwig, B. Effects of cover crop growth and decomposition on the distribution of aggregate size fractions and soil microbial carbon dynamics. Soil Use Manag. 2016, 32, 192–199. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Holman, J.D.; Schlegel, A.J.; Tatarko, J.; Shaver, T.M. Replacing fallow with cover crops in a semiarid soil: Effects on soil properties. Soil Sci. Soc. Am. J. 2013, 77, 1026–1034. [Google Scholar] [CrossRef]
- Nouri, A.; Lee, J.; Yin, X.; Tyler, D.D.; Saxton, A.M. Thirty-four years of no-tillage and cover crops improve soil quality and increase cotton yield in Alfisols, Southeastern USA. Geoderma 2019, 337, 998–1008. [Google Scholar] [CrossRef]
- Kemper, R.; Bublitz, T.A.; Müller, P.; Kautz, T.; Döring, T.F.; Athmann, M. Vertical root distribution of different cover crops determined with the profile wall method. Agriculture 2020, 10, 503. [Google Scholar] [CrossRef]
- Ogilvie, C.M.; Ashiq, W.; Vasava, H.B.; Biswas, A. Quantifying root-soil interactions in cover crop systems: A review. Agriculture 2021, 11, 218. [Google Scholar] [CrossRef]
- Saleem, M.; Pervaiz, Z.H.; Contreras, J.; Lindenberger, J.H.; Hupp, B.M.; Chen, D.; Zhang, Q.; Wang, C.; Iqbal, J.; Twigg, P. Cover crop diversity improves multiple soil properties via altering root architectural traits. Rhizosphere 2020, 16, 100248. [Google Scholar] [CrossRef]
- Ohu, J.O.; Mamman, E.; Mustapha, A.A. Impact of organic material incorporation with soil in relation to their shear strength and water properties. Int. Agrophys. 2009, 23, 155–162. [Google Scholar]
- Dhawale, V.R.; Harle, S.M. Influence of Different Soil Properties on Shear Strength of Soil: A Review. Am. J. Constr. Build Mater. 2016, 1, 24–27. [Google Scholar]
- Holland, J.; Brown, J.L.; MacKenzie, K.M.; Neilson, R.; Piras, S.; McKenzie, B. Over winter cover crops provide yield benefits for spring barley and maintain soil health in northern Europe. Eur. J. Agron. 2021, 130, 126363. [Google Scholar] [CrossRef]
- Lemtiri, A.; Colinet, G.; Alabi, T.; Cluzeau, D.; Zirbes, L.; Haubruge, E.; Francis, F. Impacts of earthworms on soil components and dynamics. A review. Biotechnol. Agron. Soc. Environ. 2014, 18, 121–123. [Google Scholar]
- Briones, M.J.I.; Schmidt, O. Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Glob. Chang. Biol. 2017, 23, 4396–4419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korucu, T.; Shipitalo, M.J.; Kaspar, T.C. Rye cover crop increases earthworm populations and reduces losses of broadcast, fall-applied, fertilizers in surface runoff. Soil Tillage Res. 2018, 180, 99–106. [Google Scholar] [CrossRef]
- Bilalis, D.; Sidiras, N.; Vavoulidou, E.; Konstantas, A. Earthworm populations as affected by crop practices on clay loam soil in a Mediterranean climate. Acta Agric. Scand. Sect. B Soil Plant Sci. 2009, 59, 440–446. [Google Scholar] [CrossRef]
- Roarty, S.; Hackett, R.A.; Schmidt, O. Earthworm populations in twelve cover crop and weed management combinations. Appl. Soil Ecol. 2017, 114, 142–151. [Google Scholar] [CrossRef]
- De Notaris, C.; Jensen, J.L.; Olesen, J.E.; Da Silva, T.S.; Rasmussen, J.; Panagea, I.; Rubæk, G.H. Long-term soil quality effects of soil and crop management in organic and conventional arable cropping systems. Geoderma 2021, 403, 115383. [Google Scholar] [CrossRef]
- Kamarulzaman, N.H.; Mazlan, N.; Rajendran, S.D.; Mohayidin, M.G. Role of biopesticides in developing a sustainable vegetable industry in Malaysia. Int. J. Green Econ. 2012, 6, 243–259. [Google Scholar] [CrossRef]
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef]
- Parewa, H.P.; Joshi, N.; Meena, V.S.; Joshi, S.; Choudhary, A.; Ram, M.; Meena, S.C.; Jain, L.K. Chapter 9—Role of biofertilizers and biopesticides in organic farming. In Advances in Organic Farming: Agronomic Soil Management Practices; Woodhead Publishing: Delhi, India, 2021; pp. 133–159. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- McCormack, M.L.; Guo, D.; Iversen, C.M.; Chen, W.; Eissenstat, D.M.; Fernandez, C.W.; Li, L.; Ma, C.; Ma, Z.; Poorter, H.; et al. Building a better foundation: Improving root-trait measurements to understand and model plant and ecosystem processes. New Phytol. 2017, 215, 27–37. [Google Scholar] [CrossRef]
- Edwards, C.A. Earthworm Ecology; CRC Press: Boca Raton, FL, USA, 2004; 56p. [Google Scholar]
- Raudonius, S. Application of statistics in plant and crop research: Important issues. Zemdirb. Agric. 2017, 104, 377–382. [Google Scholar] [CrossRef]
- Tarakanovas, P.; Raudonius, S. Statistical Analysis of Agronomic Research Data Using Computer Programs ANOVA, STAT, SPLIT-PLOT from the Package SELEKCIJA and IRRISTAT; Academy Press: Kaunas, Lithuania, 2003; p. 58. [Google Scholar]
- Restovich, S.B.; Andriulo, A.E.; Portela, S.I. Cover crop mixtures increase ecosystem multifunctionality in summer crop rotations with low N fertilization. Agron. Sustain. Dev. 2022, 19, 11–118. [Google Scholar] [CrossRef]
- Wei, J.; Guo, S.; Sun, B.; Zhai, L.; Wang, H.; Liu, H.; Hua, L.; Yang, B. Effects of winter cover crops on soil nutrients and microbial properties of cinnamon soil. J. Ecol. Rural Environ. 2018, 34, 426–432. [Google Scholar]
- Calonego, J.C.; Raphael, J.P.A.; Rigon, J.P.G.; Oliveira Neto, L.D.; Rosolem, C.A. Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling. Eur. J. Agron. 2017, 85, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Demir, Z.; Tursun, N.; Işık, D. Effects of different cover crops on soil quality parameters and yield in an apricot orchard. Int. J. Agric. Biol. 2019, 21, 399–408. [Google Scholar]
- Blanco-Canqui, H.; Ruis, S.J. Cover crop impacts on soil physical properties: A review. Soil Sci. Soc. Am. J. 2020, 86, 1527–1576. [Google Scholar] [CrossRef]
- Stegarescu, G.; Reintam, E.; Tõnutare, T. Cover crop residues effect on soil structural stability and phosphatase activity. Acta Agric. Scand.-B Soil Plant Sci. 2021, 71, 992–1005. [Google Scholar] [CrossRef]
- Qi, J.; Jensen, J.L.; Christensen, B.T.; Munkholm, L.J. Soil structural stability following decades of straw incorporation and use of ryegrass cover crops. Geoderma 2022, 406, 115463. [Google Scholar] [CrossRef]
- Ruis, S.J.; Blanco-Canqui, H.; KoehlEer-Cole, K.; Jasa, P.J.; Slater, G.; Elmore, R.W.; Ferguson, R.B. Winter cover crop root biomass yield in corn and soybean systems. Agrosyst. Geosci. Environ. 2020, 3, e20101. [Google Scholar] [CrossRef]
- Hudek, C.; Putinica, C.; Otten, W.; De Baets, S. Functional root trait-based classification of cover crops toimprove soil physical properties. Eur. J. Soil Sci. 2022, 73, e13147. [Google Scholar] [CrossRef]
- Redin, M.; Recous, S.; Aita, C.; Chaves, B.; Pfeifer, I.C.; Bastos, L.M.; Pilecco, G.E.; Giacomini, S.J. Root and shoot contribution to carbon and nitrogen inputs in the topsoil layer in no-tillage crop systems under subtropical conditions. Rev. Bras. Cienc. Solo 2018, 42, 1–16. [Google Scholar] [CrossRef]
- Sanchez, E.; Maggi, M.F.; Genú, A.M.; Müller, M.M.L. Winter cover crops, plant biomass production and soil resistance. Appl. Res. Agrotech. 2012, 5, 33–40. [Google Scholar]
- Vecchia, L.; Di Gioia, F.; Ferrante, A.; Hong, J.C.; White, C.; Rosskopf, E.N. Integrating cover crops as a source of carbon for anaerobic soil disinfestation. Agronomy 2020, 10, 1614. [Google Scholar] [CrossRef]
- Amsili, J.P.; Kaye, J.P. Root traits of cover crops and carbon inputs in an organic grain rotation. Renew. Agric. Food Syst. 2020, 36, 182–191. [Google Scholar] [CrossRef]
- Ashworth, A.J.; Allen, F.L.; Tyler, D.D.; Pote, D.H.; Shipitalo, M.J. Earthworm populations are affected from long-term crop sequences and bio-covers under no-tillage. Pedobiologia 2017, 60, 27–33. [Google Scholar] [CrossRef]
- Curry, J.P.; Schmidt, O. The feeding ecology of earthworms—A review. Pedobiologia 2007, 50, 463–477. [Google Scholar] [CrossRef]
- Skinulienė, L.; Bogužas, V.; Steponavičienė, V.; Sinkevičienė, A.; Marcinkevičienė, A.; Sinkevičius, A. Effect of long-term crop rotations on soil CO2 emission and earthworms. Agric. Sci. 2019, 26, 83–93. [Google Scholar] [CrossRef]
- Sánchez de Cima, D.; Tein, B.; Eremeev, V.; Luik, A.; Kauer, K.; Reintam, E.; Kahu, G. Winter cover crop effects on soil structural stability and microbiological activity in organic farming. Biol. Agric. Hortic. 2016, 32, 170–181. [Google Scholar] [CrossRef]
- Euteneuer, P.; Wagentristl, H.; Steinkellner, S.; Fuchs, M.; Zaller, J.G.; Piepho, H.-P.; Butt, K.R. Contrasting effects of cover crops on earthworms: Results from field monitoring and laboratory experiments on growth, reproduction and food choice. Eur. J. Soil Biol. 2020, 100, 1–9. [Google Scholar] [CrossRef]
- Ahmadnia, F.; Ebadi, A.; Hashemi, M.; Ghavidel, A. Investigating the short time effect of cover crops on biophysical properties of soil. J. Soil Water Conserv. 2020, 26, 277–290. [Google Scholar]
Undersown Cover Crops (Factor B) | Biopesticides (Factor A) | Soil Aggregate–Size Distribution, % | ||
---|---|---|---|---|
Mega >10 mm | Macro 0.25–10 mm | Micro <0.25 mm | ||
1. Without cover crop | − | 68.5 ± 6.97 a | 29.0 ± 3.39 b | 2.44 ± 0.47 a |
+ | 59.4 ± 5.01 ab | 38.0 ± 2.57 ab | 2.54 ± 0.12 a | |
2. Crimson (incarnate) clover | − | 66.6 ± 11.5 ab | 30.6 ± 5.47 ab | 2.86 ± 0.41 a |
+ | 52.4 ± 13.7 b | 44.5 ± 6.79 a | 3.15 ± 0.46 a | |
3. Hairy (winter) vetch | − | 66.8 ± 18.3 ab | 30.9 ± 8.73 ab | 2.25 ± 0.50 a |
+ | 59.3 ± 8.56 ab | 37.7 ± 4.21 ab | 2.96 ± 0.21 a | |
4. Perennial ryegrass | − | 60.9 ± 8.50 ab | 36.7 ± 3.84 ab | 2.36 ± 0.50 a |
+ | 51.8 ± 10.8 b | 44.7 ± 5.06 a | 3.44 ± 1.06 a | |
5. Winter rye | − | 60.0 ± 9.59 ab | 37.1 ± 4.63 ab | 2.91 ± 0.67 a |
+ | 64.4 ± 5.19 ab | 32.5 ± 2.60 ab | 3.13 ± 0.54 a |
Undersown Cover Crops (Factor B) | Biopesticides (Factor A) | Soil Aggregate–Size Distribution, % | ||
---|---|---|---|---|
Mega >10 mm | Macro 0.25–10 mm | Micro <0.25 mm | ||
1. Without cover crop | − | 36.0 ± 2.75 a | 59.8 ± 2.46 c | 4.20 ± 0.68 b |
+ | 19.0 ± 2.19 b | 76.4 ± 2.20 a | 4.60 ± 0.22 b | |
2. Crimson (incarnate) clover | − | 36.3 ± 5.50 a | 57.9 ± 3.94 c | 5.80 ± 1.78 ab |
+ | 23.7 ± 5.22 b | 71.3 ± 4.80 ab | 5.00 ± 0.48 ab | |
3. Hairy (winter) vetch | − | 35.9 ± 7.49 a | 60.5 ± 6.67 bc | 3.60 ± 1.06 b |
+ | 20.9 ± 4.35 b | 71.3 ± 4.74 ab | 7.80 ± 2.02 a | |
4. Perennial ryegrass | − | 25.6 ± 7.17 ab | 68.2 ± 6.56 abc | 6.20 ± 0.68 ab |
+ | 28.6 ± 3.36 ab | 66.7 ± 3.13 abc | 4.70 ± 0.28 ab | |
5. Winter rye | − | 27.4 ± 6.10 ab | 67.1 ± 5.54 abc | 5.50 ± 0.67 ab |
+ | 21.0 ± 3.25 b | 72.8 ± 3.11 a | 6.20 ± 0.70 ab |
Undersown Cover Crops (Factor B) | Biopesticides (Factor A) | Number of Earthworms, pcs. m−2 | |
---|---|---|---|
2020 | 2021 | ||
1. Without cover crop | − | 94 ± 33.6 a | 122 ± 42.9 a |
+ | 100 ± 32.3 a | 86 ± 26.2 ab | |
2. Crimson (incarnate) clover | − | 85a ± 36.6 ab | 88 ± 35.0 ab |
+ | 90 ± 17.6 a | 79 ± 45.9 ab | |
3. Hairy (winter) vetch | − | 57 ± 13.4 b | 92 ± 39.3 ab |
+ | 92 ± 20.8 a | 116 ± 23.9 a | |
4. Perennial ryegrass | − | 68 ± 29.1 b | 65 ± 32.3 b |
+ | 84 ± 17.7 ab | 52 ± 11.2 b | |
5. Winter rye | − | 60 ± 11.3 b | 104 ± 47.1 ab |
+ | 104 ± 21.4 a | 116 ± 43.8 a |
Undersown Cover Crops (Factor B) | Biopesticides (Factor A) | Biomass of Earthworms, g m−2 | |
---|---|---|---|
2020 | 2021 | ||
1. Without cover crop | − | 48.9 ± 16.7 a | 47.4 ± 11.6 a |
+ | 33.3 ± 7.69 ab | 38.0 ± 7.84 ab | |
2. Crimson (incarnate) clover | − | 31.8 ± 13.0 ab | 31.3 ± 4.42 ab |
+ | 47.0 ± 6.37 a | 27.9 ± 8.76 ab | |
3. Hairy (winter) vetch | − | 21.7 ± 2.41 b | 34.8 ± 2.55 ab |
+ | 36.8 ± 8.02 ab | 42.8 ± 3.86 ab | |
4. Perennial ryegrass | − | 28.1 ± 12.9 ab | 25.4 ± 7.24 ab |
+ | 27.1 ± 3.85 ab | 23.1 ± 9.25 b | |
5. Winter rye | − | 23.0 ± 3.31 b | 41.5 ± 16.9 ab |
+ | 40.9 ± 10.5 ab | 51.7 ± 16.5 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcinkevičienė, A.; Čmukas, A.; Velička, R.; Kosteckas, R.; Skinulienė, L. Effects of Biopesticides and Undersown Cover Crops on Soil Properties in the Organic Farming System. Agronomy 2022, 12, 2153. https://doi.org/10.3390/agronomy12092153
Marcinkevičienė A, Čmukas A, Velička R, Kosteckas R, Skinulienė L. Effects of Biopesticides and Undersown Cover Crops on Soil Properties in the Organic Farming System. Agronomy. 2022; 12(9):2153. https://doi.org/10.3390/agronomy12092153
Chicago/Turabian StyleMarcinkevičienė, Aušra, Arūnas Čmukas, Rimantas Velička, Robertas Kosteckas, and Lina Skinulienė. 2022. "Effects of Biopesticides and Undersown Cover Crops on Soil Properties in the Organic Farming System" Agronomy 12, no. 9: 2153. https://doi.org/10.3390/agronomy12092153
APA StyleMarcinkevičienė, A., Čmukas, A., Velička, R., Kosteckas, R., & Skinulienė, L. (2022). Effects of Biopesticides and Undersown Cover Crops on Soil Properties in the Organic Farming System. Agronomy, 12(9), 2153. https://doi.org/10.3390/agronomy12092153