Printed Sowing of High-Density Mechanical Transplanted Hybrid Rice Can Reduce the Amount of Fertilizer Needed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Weather Conditions
2.2. Arrangement of Field Experiments
2.3. Sample and Data Collection
2.4. Data Analysis
3. Results
3.1. Rice Yield and Its Components
3.2. SPAD Values
3.3. Leaf Area Index
3.4. Dry Matter Accumulation
3.5. PLS-PM Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, L.P. Development of hybrid rice to ensure food security. Rice Sci. 2014, 21, 1–2. [Google Scholar] [CrossRef]
- Stewart, W.M.; Dibb, D.W.; Johnston, A.E.; Smyth, T.J. The Contribution of Commercial Fertilizer Nutrients to Food Production. Agron. J. 2005, 97, 1–6. [Google Scholar] [CrossRef]
- Di Salvo, L.P.; Cellucci, G.C.; Carlino, M.E.; De Salamone, I.E.G. Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea Mays L.) grain yield and modified rhizosphere microbial communities. Appl. Soil Ecol. 2018, 126, 113–120. [Google Scholar]
- Gong, Y.L.; Lei, Y.; Zhang, X.P.; Yan, B.C.; Ju, X.T.; Cheng, X.Y.; Zhang, J.D.; Sun, X.Y.; Xu, H.; Chen, W.F. Nitrogen rate and plant density interaction enhances grain yield by regulating the grain distribution of secondary branches on the panicle axis and photosynthesis in japonica rice. Photosynthetica. 2022, 60, 79–189. [Google Scholar] [CrossRef]
- Peng, S.; Buresh, R.J.; Huang, J.; Yang, J.; Zou, Y.; Zhong, X.; Wang, G.; Zhang, F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crop. Res. 2006, 96, 37–47. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Adviento-Borbe, M.A.; van Kessel, C.; Hill, J.E.; Linquist, B.A. Optimizing rice yields while minimizing yield-scaled global warming potential. Glob. Change Biol. 2014, 20, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Y.; Zhou, N.; Lai, S.K.; Frei, M.; Wang, Y.X.; Yang, L.X. Elevated CO2 improves lodging resistance of rice by changing physicochemical properties of the basal internodes. Sci. Total Environ. 2019, 647, 223–231. [Google Scholar] [CrossRef]
- Zhu, D.W.; Zhang, H.C.; Guo, B.W.; Xu, K.; Dai, Q.G.; Wei, H.Y.; Gao, H.; Hu, Y.J.; Cui, P.Y.; Huo, Z.Y. Effects of nitrogen level on yield and quality of japonica soft super rice. J. Integr. Agr. 2017, 16, 1018–1027. [Google Scholar] [CrossRef]
- Hou, W.; Khan, M.R.; Zhang, J.; Lu, J.; Ren, T.; Cong, R.; Li, X. Nitrogen rate and plant density interaction enhances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice. Agric. Ecosyst. Environ. 2019, 269, 183–192. [Google Scholar] [CrossRef]
- Xie, X.; Shan, S.; Wang, Y.; Cao, F.; Chen, J.; Huang, M.; Zou, Y. Dense planting with reducing nitrogen rate increased grain yield and nitrogen use efficiency in two hybrid rice varieties across two light conditions. Field Crop. Res. 2019, 236, 24–32. [Google Scholar] [CrossRef]
- Zou, Y.; Dai, K. The Advantages for promoting double-season rice production in Hunan Province. Crop. Res. 2008, 22, 209–213. [Google Scholar]
- Wu, W.; Nie, L.X.; Liao, Y.C.; Shah, F.; Cui, K.H.; Wang, Q.; Lian, Y.; Huang, J.L. Toward yield improvement of early-season rice: Other options under double rice-cropping system in central China. Europ J. Agron. 2013, 45, 75–86. [Google Scholar] [CrossRef]
- Peng, S.B.; Tang, Q.Y.; Zou, Y.B. Current status and challenges of rice production in China. Plant. Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef]
- Huang, M.; Shan, S.L.; Xie, X.B.; Cao, F.B.; Zou, Y.B. Why high grain yield can be achieved in single seedling machine-transplanted hybrid rice under dense planting conditions? J. Integr. Agr. 2018, 17, 1299–1306. [Google Scholar] [CrossRef]
- Huang, M.; Chen, J.N.; Cao, F.B.; Zou, Y.B. Increased hill density can compensate for yield loss from reduced nitrogen input in machine-transplanted double-cropped rice. Field Crop. Res. 2018, 221, 333–338. [Google Scholar] [CrossRef]
- Shan, S.L.; Jiang, P.; Fang, S.L.; Cao, F.B.; Zhang, H.D.; Chen, J.N.; Yin, X.H.; Tao, Z.; Lei, T.; Huang, M.; et al. Printed sowing improves grain yield with reduced seed rate in machine-transplanted hybrid rice. Field Crop. Res. 2020, 245, 107676. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. Long Range Plann. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Tenenhaus, M.; Vinzi, V.E.; Chatelin, Y.-M.; Lauro, C. PLS path modeling. Comput. Stat. Data An. 2005, 48, 159–205. [Google Scholar] [CrossRef]
- Zheng, H.B.; Chen, Y.W.; Chen, Q.M.; Li, B.; Zhang, Y.S.; Jia, W.; Mo, W.W.; Tang, Q.Y. High-density planting with lower nitrogen application increased early rice production in a double-season rice system. Agron. J. 2020, 112, 205–214. [Google Scholar] [CrossRef]
- Zhu, X.C.; Zhang, J.; Zhang, Z.P.; Deng, A.X.; Zhang, W.J. Dense planting with less basal nitrogen fertilization might benefit rice cropping for high yield with less environmental impacts. Eur. J. Agron. 2016, 75, 50–59. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.F.; Wu, W.H. Potassium and phosphorus transport and signaling in plants. J. Integr. Plant. Biol. 2021, 63, 34–52. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, N.P.; Berner, C.; Smits, M.M.; Krám, P.; Wallander, H. The role of phosphorus, magnesium and potassium availability in soil fungal exploration of mineral nutrient sources in Norway spruce forests. New Phytol. 2016, 211, 542–553. [Google Scholar] [CrossRef]
- Hua, J.P.; Xing, Y.Z.; Xu, C.G.; Sun, X.L.; Yu, S.B.; Zhang, Q.F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 2002, 162, 1885–1895. [Google Scholar] [CrossRef]
- Wells, B.R.; Faw, W.F. Short-statured rice response to seeding and N rates. Agron. J. 1978, 70, 477–480. [Google Scholar] [CrossRef]
- Jones, D.B.; Snyder, G.H. Seeding rate and row spacing effects on yield and yield components of ratoon rice. Agron. J. 1987, 79, 627–629. [Google Scholar] [CrossRef]
- Huang, M.; Zou, Y.B.; Feng, Y.H.; Cheng, Z.W.; Mo, Y.L.; Ibrahim, M.; Xia, B.; Jiang, P. No-tillage and direct seeding for super hybrid rice production in rice-oilseed rape cropping system. Eur. J. Agron. 2011, 34, 278–286. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, C.; Kong, X.S.; Hou, D.P.; Gu, J.F.; Liu, L.J.; Wang, Z.Q.; Yang, J.C. Progressive integrative crop managements increase grain yield, nitrogen use efficiency and irrigation water productivity in rice. Field Crop. Res. 2018, 215, 1–11. [Google Scholar] [CrossRef]
- Fagade, S.O.; De Datta, S.K. Leaf area index, tillering capacity, and grain yield of tropical rice as affected by plant density and nitrogen level. Agron. J. 1971, 63, 503–506. [Google Scholar]
- Katsura, K.; Maeda, S.; Lubis, I.; Horie, T.; Cao, W.X.; Shiraiwa, T. The high yield of irrigated rice in Yunnan, China–‘A ross-location analysis’. Field Crop. Res. 2008, 107, 1–11. [Google Scholar] [CrossRef]
- Mitchell, P.L.; Sheehy, J.E. Supercharging rice photosynthesis to increase yield. New Phytol. 2006, 171, 688–693. [Google Scholar] [CrossRef]
- Wei, H.H.; Meng, T.Y.; Ge, J.L.; Zhang, X.B.; Shi, T.Y.; Ding, E.H.; Lu, Y.; Li, X.Y.; Tao, Y.; Chen, Y.L.; et al. Reduced nitrogen application rate with dense planting improves rice grain yield and nitrogen use efficiency: A case study in east China. Crop. J. 2021, 9, 954–961. [Google Scholar] [CrossRef]
- Zeng, X.M.; Han, B.J.; Xu, F.S.; Huang, J.L.; Cai, H.M.; Shi, L. Effects of modified fertilization technology on the grain yield and nitrogen use efficiency of midseason rice. Field Crop. Res. 2012, 137, 203–212. [Google Scholar] [CrossRef]
- Turner, F.T.; Jund, M.F. Assessing the nitrogen requirements of rice crops with a chlorophyll meter. Aust. J. Exp. Agric. 1994, 34, 1001–1005. [Google Scholar] [CrossRef]
- Shukla, A.K.; Ladha, J.K.; Singh, V.K.; Dwivedi, B.S.; Balasubramanian, V.; Gupta, R.K.; Sharma, S.K.; Singh, Y.; Pathak, H.; Pandey, P.S.; et al. Calibrating the leaf color chart for nitrogen management in different genotypes of rice and wheat in a systems perspective. Agron. J. 2004, 96, 1606–1621. [Google Scholar] [CrossRef]
- Pan, Y.H.; Gao, S.; Xie, K.L.; Lu, Z.F.; Meng, X.S.; Wang, S.Y.; Lu, J.W.; Guo, S.E. Higher radiation use efficiency produces greater biomass before heading and grain yield in super hybrid rice. Agronomy 2020, 10, 209. [Google Scholar] [CrossRef]
- Gu, J.F.; Yin, X.Y.; Stomph, T.J.; Wang, H.Q.; Struik, P.C. Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza Sativa L.) introgression lines under drought and well-watered conditions. J. Exp. Bot. 2012, 63, 5137–5153. [Google Scholar] [CrossRef]
- Acreche, M.M.; Briceño-Félix, G.; Martín Sánchez, J.A.; Slafer, G.A. Radiation interception and use efficiency as affected by breeding in Mediterranean wheat. Field Crop. Res. 2009, 110, 91–97. [Google Scholar] [CrossRef]
Treatment | Before Transplanting | After Regeneration Period | Booting Stage | Total Fertilization | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N Rate (kg/ha) | P Rate (kg/ha) | K Rate (kg/ha) | N Rate (kg/ha) | P Rate (kg/ha) | K Rate (kg/ha) | N Rate (kg/ha) | P Rate (kg/ha) | K Rate (kg/ha) | N Rate (kg/ha) | P Rate (kg/ha) | K Rate (kg/ha) | |
LDHF | 67.5 | 67.5 | 67.5 | 91.5 | 22.5 | 22.5 | 48.3 | 0 | 45 | 207.3 | 90 | 135 |
LDLF | 67.5 | 67.5 | 67.5 | 34.5 | 0 | 0 | 48.3 | 0 | 45 | 150.3 | 67.5 | 112.5 |
MDHF | 67.5 | 67.5 | 67.5 | 91.5 | 22.5 | 22.5 | 48.3 | 0 | 45 | 207.3 | 90 | 135 |
MDLF | 67.5 | 67.5 | 67.5 | 34.5 | 0 | 0 | 48.3 | 0 | 45 | 150.3 | 67.5 | 112.5 |
HDHF | 67.5 | 67.5 | 67.5 | 91.5 | 22.5 | 22.5 | 48.3 | 0 | 45 | 207.3 | 90 | 135 |
HDLF | 67.5 | 67.5 | 67.5 | 34.5 | 0 | 0 | 48.3 | 0 | 45 | 150.3 | 67.5 | 112.5 |
Treatment | Grain Yield (t·ha−1) | Thousand Seed Weight (g·1000−1) | Panicles (m−2) | Spikelets per Panicle | Seed-Setting Rate (%) | |
---|---|---|---|---|---|---|
2019 | LDHF | 7.91 ± 0.22 b | 23.14 ± 0.66 a | 274.78 ± 9.1 bc | 166.93 ± 3.83 ab | 85.84 ± 1.06 a |
LDLF | 7.47 ± 0.12 c | 23.09 ± 0.24 a | 267.14 ± 3.7 c | 167.07 ± 3.82 ab | 78.87 ± 3.82 b | |
MDHF | 7.17 ± 0.11 d | 23.76 ± 0.55 a | 277.21 ± 13.66 bc | 168.02 ± 11.95 ab | 82.91 ± 1.84 ab | |
MDLF | 7.11 ± 0.02 d | 22.74 ± 0.97 a | 285.02 ± 4.37 b | 176.7 ± 4.26 a | 79.51 ± 2.38 b | |
HDHF | 7.76 ± 0.12 b | 23.19 ± 0.49 a | 307.76 ± 5.92 a | 160.3 ± 1.84 b | 83.12 ± 1.56 ab | |
HDLF | 8.31 ± 0.08 a | 23.1 ± 0.27 a | 316.86 ± 8.91 a | 157.98 ± 2.32 b | 80.95 ± 2.69 b | |
2020 | LDHF | 7.23 ± 0.06 b | 23.31 ± 0.2 ab | 267.73 ± 20.26 ab | 165.19 ± 7.54 a | 86.12 ± 1.3 a |
LDLF | 6.36 ± 0.1 d | 23.03 ± 0.28 b | 248.00 ± 25.15 b | 166.3 ± 13.81 a | 83.41 ± 3.01 ab | |
MDHF | 6.79 ± 0.2 c | 23.77 ± 0.14 a | 269.21 ± 48.72 ab | 168.24 ± 27.46 a | 83.7 ± 1.1 ab | |
MDLF | 6.67 ± 0.04 cd | 22.42 ± 0.55 c | 289.52 ± 24.91 ab | 171.71 ± 11.22 a | 81.42 ± 2.18 b | |
HDHF | 7.03 ± 0.41 b | 23.60 ± 0.27 ab | 298.82 ± 20.1 ab | 158.87 ± 7.58 a | 83.1 ± 2.01 ab | |
HDLF | 7.71 ± 0.17 a | 23.17 ± 0.15 b | 313.73 ± 20.56 a | 147.7 ± 12.91 a | 82.11 ± 0.91 ab | |
ANOVAs | Year(Y) | ** | NS | NS | NS | NS |
Density(D) | ** | NS | ** | * | NS | |
Fertilizer(F) | ** | ** | NS | NS | ** | |
Y × D | ** | NS | NS | NS | NS | |
Y × F | NS | NS | NS | NS | NS | |
D × F | ** | * | NS | NS | NS | |
Y × D × F | NS | NS | NS | NS | NS |
Treatment | Tillering Stage | Jointing Stage | Heading Stage | Filling Stage | |
---|---|---|---|---|---|
2019 | LDHF | 39.19 ± 2.2 ab | 36.07 ± 1.86 a | 38.3 ± 1.39 b | 37.50 ± 0.95 a |
LDLF | 41.6 ± 0.75 a | 35.41 ± 2.46 a | 39.03 ± 1.71 b | 30.23 ± 0.91 b | |
MDHF | 39.9 ± 1.12 ab | 38.92 ± 2.72 a | 40.35 ± 1.09 b | 33.88 ± 0.91 a | |
MDLF | 40.15 ± 1.03 ab | 38.04 ± 1.89 a | 37.57 ± 0.64 ab | 34.37 ± 4.14 a | |
HDHF | 39.75 ± 2.27 ab | 36.77 ± 1.15 a | 37.1 ± 1.04 ab | 34.09 ± 0.47 a | |
HDLF | 37.58 ± 1.67 b | 36.78 ± 0.74 a | 37.97 ± 0.87 a | 30.93 ± 1.50 b | |
2020 | LDHF | 42.77 ± 1.1 a | 46.53 ± 0.88 a | 41.96 ± 0.4 a | 40.19 ± 2.09 a |
LDLF | 41.7 ± 3.12 a | 44.07 ± 1.47 b | 41.45 ± 0.62 a | 38.33 ± 1.39 a | |
MDHF | 42.5 ± 0.95 a | 43.03 ± 0.45 b | 40.68 ± 1.09 a | 38.47 ± 0.66 a | |
MDLF | 43.3 ± 0.17 a | 44.54 ± 1.54 ab | 40.63 ± 2.9 a | 39.42 ± 1.48 a | |
HDHF | 41.73 ± 0.49 a | 43.07 ± 1.13 b | 41.47 ± 0.71 a | 39.23 ± 0.34 a | |
HDLF | 42.3 ± 0.52 a | 42.67 ± 1.07 b | 41.03 ± 0.24 a | 38.21 ± 0.08 a | |
ANOVAs | Year(Y) | ** | ** | ** | ** |
Density(D) | NS | NS | NS | * | |
Fertilizer (F) | NS | NS | NS | ** | |
Y × D | NS | ** | NS | NS | |
Y × F | NS | NS | NS | ** | |
D × F | NS | NS | NS | ** | |
Y × D × F | NS | NS | NS | NS |
Treatment | Tillering Stage | Jointing Stage | Heading Stage | Filling Stage | |
---|---|---|---|---|---|
2019 | LDHF | 0.77 ± 0.05 c | 3.53 ± 0.3 ab | 5.43 ± 0.22 c | 6.26 ± 0.08 a |
LDLF | 0.73 ± 0.09 c | 3.03 ± 0.28 b | 5.41 ± 0.39 c | 6.24 ± 0.71 a | |
MDHF | 1.12 ± 0.05 a | 3.55 ± 0.58 ab | 5.31 ± 0.54 c | 5.66 ± 0.3 ab | |
MDLF | 0.96 ± 0.05 b | 3.56 ± 0.11 ab | 7.55 ± 0.32 a | 5.66 ± 0.63 ab | |
HDHF | 0.83 ± 0.1 ab | 3.91 ± 0.08 a | 5.23 ± 0.23 c | 5.35 ± 0.42 b | |
HDLF | 0.94 ± 0.13 b | 3.89 ± 0.09 a | 6.49 ± 0.36 b | 6.38 ± 0.18 a | |
2020 | LDHF | 0.79 ± 0.04 c | 2.98 ± 0.2 bc | 6.66 ± 0.02 ab | 6.24 ± 0.17 a |
LDLF | 0.74 ± 0.17 bc | 2.64 ± 0.15 c | 6.3 ± 0.27 c | 6.05 ± 0.28 a | |
MDHF | 1.19 ± 0.15 a | 3.55 ± 0.62 ab | 7.57 ± 0.14 a | 5.66 ± 0.63 ab | |
MDLF | 1.02 ± 0.11 ab | 3.32 ± 0.46 abc | 7.06 ± 0.17 b | 5.20 ± 0.44 b | |
HDHF | 0.97 ± 0.17 abc | 3.93 ± 0.09 a | 6.57 ± 0.31 c | 6.25 ± 0.18 a | |
HDLF | 0.85 ± 0.06 bc | 3.17 ± 0.38 bc | 6.51 ± 0.32 c | 6.27 ± 0.49 a | |
ANOVAs | Year(Y) | NS | * | ** | NS |
Density(D) | ** | ** | ** | ** | |
Fertilizer (F) | NS | * | ** | NS | |
Y × D | NS | NS | NS | NS | |
Y × F | NS | NS | ** | NS | |
D × F | NS | NS | ** | NS | |
Y × D × F | NS | NS | ** | NS |
Treatment | Tillering Stage | Jointing Stage | Heading Stage | Filling Stage | Maturity Stage | |
---|---|---|---|---|---|---|
2019 | LDHF | 0.45 ± 0.07 b | 3.16 ± 0.32 a | 11.01 ± 1.69 a | 14.20 ± 1.33 a | 15.25 ± 1.20 a |
LDLF | 0.50 ± 0.07 ab | 3.21 ± 0.08 a | 7.65 ± 1.00 bc | 11.95 ± 0.76 ab | 14.19 ± 0.66 ab | |
MDHF | 0.53 ± 0.13 ab | 2.91 ± 0.21 a | 7.25 ± 1.14 c | 10.87 ± 1.19 b | 12.42 ± 0.76 b | |
MDLF | 0.53 ± 0.01 ab | 2.95 ± 0.40 a | 7.68 ± 1.62 bc | 12.49 ± 1.15 ab | 14.44 ± 1.00 a | |
HDHF | 0.64 ± 0.07 a | 3.25 ± 0.51 a | 7.87 ± 0.63 bc | 13.00 ± 1.10 ab | 13.93 ± 0.55 ab | |
HDLF | 0.55 ± 0.08 ab | 3.45 ± 0.65 a | 9.88 ± 0.65 ab | 14.26 ± 1.40 a | 15.82 ± 1.68 a | |
2020 | LDHF | 0.41 ± 0.07 a | 2.45 ± 0.21 b | 8.95 ± 2.06 ab | 12.05 ± 0.84 b | 13.16 ± 1.9 ab |
LDLF | 0.42 ± 0.07 a | 2.50 ± 0.41 b | 6.52 ± 0.78 b | 10.93 ± 0.58 b | 11.25 ± 0.75 b | |
MDHF | 0.49 ± 0.18 a | 2.81 ± 0.51 ab | 9.03 ± 1.95 ab | 11.82 ± 1.67 b | 11.87 ± 0.66 b | |
MDLF | 0.55 ± 0.21 a | 2.83 ± 0.16 ab | 8.15 ± 1.17 ab | 11.96 ± 1.34 b | 11.95 ± 0.45 b | |
HDHF | 0.67 ± 0.09 a | 2.86 ± 0.40 ab | 8.92 ± 1.4 ab | 11.98 ± 0.31 b | 14.63 ± 0.62 a | |
HDLF | 0.66 ± 0.19 a | 3.31 ± 0.49 a | 10.04 ± 1.60 a | 14.65 ± 0.65 a | 15.37 ± 2.41 a | |
ANOVAs | Year(Y) | NS | ** | NS | NS | ** |
Density(D) | ** | NS | NS | ** | ** | |
Fertilizer (F) | NS | NS | NS | NS | * | |
Y × D | NS | NS | NS | NS | NS | |
Y × F | NS | NS | NS | NS | NS | |
D × F | NS | NS | ** | ** | * | |
Y × D × F | NS | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, N.; Wen, S.; Gao, Q.; Gao, Z.; Yang, H. Printed Sowing of High-Density Mechanical Transplanted Hybrid Rice Can Reduce the Amount of Fertilizer Needed. Agronomy 2022, 12, 2002. https://doi.org/10.3390/agronomy12092002
Shi N, Wen S, Gao Q, Gao Z, Yang H. Printed Sowing of High-Density Mechanical Transplanted Hybrid Rice Can Reduce the Amount of Fertilizer Needed. Agronomy. 2022; 12(9):2002. https://doi.org/10.3390/agronomy12092002
Chicago/Turabian StyleShi, Nan, Shuangya Wen, Qianwen Gao, Zhiqiang Gao, and Huibing Yang. 2022. "Printed Sowing of High-Density Mechanical Transplanted Hybrid Rice Can Reduce the Amount of Fertilizer Needed" Agronomy 12, no. 9: 2002. https://doi.org/10.3390/agronomy12092002
APA StyleShi, N., Wen, S., Gao, Q., Gao, Z., & Yang, H. (2022). Printed Sowing of High-Density Mechanical Transplanted Hybrid Rice Can Reduce the Amount of Fertilizer Needed. Agronomy, 12(9), 2002. https://doi.org/10.3390/agronomy12092002