A Bibliometric Analysis of the Scientific Literature on Biostimulants
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Characteristics Analysis of Biostimulant Research
3.2. Contribution of Countries
3.3. High Frequency Keywords over Time
3.4. Document Co-Citation Analysis Results
- Cluster 1 (red)—use of seaweeds as biostimulant to increase crop productivity
- Cluster 2 (green)—applications and effects of humic acids, fulvic acids, and hydrolysed proteins on different crops
- Cluster 3 (blue)—reviews on biostimulants: what they are, categories, effects, and benefits
- Cluster 4 (yellow)—Methodologies for the quantification of plant metabolites affected by biostimulant treatment
4. Discussion
5. Conclusions and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hebinck, A.; Zurek, M.; Achterbosch, T.; Forkman, B.; Kuijsten, A.; Kuiper, M.; Nørrung, B.; van’t Veer, P.; Leip, A. A Sustainability Compass for policy navigation to sustainable food systems. Glob. Food Sec. 2021, 29, 100546. [Google Scholar] [CrossRef] [PubMed]
- United Nations Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 18 April 2022).
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Schmidt, R.E. The impact of growth regulators on alpha-tocopherol status of water-stressed Poa pratensis L. Int. Turfgrass. Soc. Res. J. 1997, 8, 1364–2137. [Google Scholar]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Horticult. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Du Jardin, P. The Science of Plant Biostimulants—Publications Office of the EU. Available online: https://op.europa.eu/en/publication-detail/-/publication/5c1f9a38-57f4-4f5a-b021-cad867c1ef3c (accessed on 15 April 2022).
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- EU Regulation (eu) 2019/1009 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1009&from=EN (accessed on 19 April 2022).
- Traon, D.; Amat, L.; Zotz, F.; Du Jardin, P. A Legal Framework for Plant Biostimulants and Agronomic Fertiliser Additives in the EU—Publications Office of the EU. Available online: https://op.europa.eu/en/publication-detail/-/publication/dbeffd43-98a5-4e39-a930-7dfa21816f8c (accessed on 15 April 2022).
- Marketsandmarkets. Global Biostimulants Market (2021–2026) by Active Ingredient, Application Method, Crop Type, Form, Geography and the Impact of COVID-19 with Ansoff Analysis; 2021. Available online: https://www.marketresearch.com/Infogence-Marketing-Advisory-Services-v4010/Global-Biostimulants-Active-Ingredient-Application-14533191/ (accessed on 18 April 2022).
- Heacox, L. Biostimulants Gaining Ground—CropLife. Available online: https://www.croplife.com/special-reports/biologicals/biostimulants-gaining-ground/ (accessed on 19 April 2022).
- EBIC Economic Overview of the Biostimulants Sector in Europe. Available online: http://www.biostimulants.eu/ (accessed on 18 April 2022).
- Micromarketmonitor. Global BioStimulants in Soil Market. Available online: http://www.micromarketmonitor.com/applications/bio-stimulants-in-soil-8597324994.html (accessed on 18 April 2022).
- News.agropages. Biostimulants Research Global Trends in 2021. Available online: https://news.agropages.com/News/NewsDetail---41969.htm (accessed on 18 April 2022).
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Laossi, K.R.; Ginot, A.; Noguera, D.C.; Blouin, M.; Barot, S. Earthworm effects on plant growth do not necessarily decrease with soil fertility. Plant Soil 2010, 328, 109–118. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Lubbers, I.M.; Vos, H.M.J.; Brown, G.G.; De Deyn, G.B.; Van Groenigen, K.J. Earthworms increase plant production: A meta-analysis. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ambrosini, S.; Sega, D.; Santi, C.; Zamboni, A.; Varanini, Z.; Pandolfini, T. Evaluation of the Potential Use of a Collagen-Based Protein Hydrolysate as a Plant Multi-Stress Protectant. Front. Plant Sci. 2021, 12, 63. [Google Scholar] [CrossRef]
- Schiavon, M.; Ertani, A.; Nardi, S. Effects of an Alfalfa Protein Hydrolysate on the Gene Expression and Activity of Enzymes of the Tricarboxylic Acid (TCA) Cycle and Nitrogen Metabolism in Zea mays L. J. Agric. Food Chem. 2008, 56, 11800–11808. [Google Scholar] [CrossRef] [PubMed]
- Subler, S.; Dominguez, J.; Edwards, C.A. Assessing biological activity of agricultural biostimulants: Bioassays for plant growth regulators in three soil additives. Crop Sci. 2008, 29, 859–866. [Google Scholar] [CrossRef]
- Sorrenti, V.; di Giacomo, C.; Acquaviva, R.; Bognanno, M.; Grilli, E.; D’Orazio, N.; Galvano, F. Dimethylarginine Dimethylaminohydrolase/Nitric Oxide Synthase Pathway in Liver and Kidney: Protective Effect of Cyanidin 3-O-β-D-Glucoside on Ochratoxin-A Toxicity. Toxins 2012, 4, 353–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Andreotti, C. Use of biostimulants for organic apple production: Effects on tree growth, yield, and fruit quality at harvest and during storage. Front. Plant Sci. 2018, 9, 1342. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Schnitkey, G.; Paulson, N.; Swanson, K.; Colussi, J.; Jim, B. Nitrogen Fertilizer Prices and Supply in Light of the Ukraine-Russia Conflict. Farmdoc Dly. 2022, 12, 45. [Google Scholar]
- Zhang, X.; Ervin, E.H.; Schmidt, R.E. Physiological Effects of Liquid Applications of a Seaweed Extract and a Humic Acid on Creeping Bentgrass. J. Am. Soc. Hortic. Sci. 2003, 128, 492–496. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Geelen, D. Developing biostimulants from agro-food and industrial by-products. Front. Plant Sci. 2018, 871, 1567. [Google Scholar] [CrossRef] [Green Version]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Povero, G.; Mejia, J.F.; Di Tommaso, D.; Piaggesi, A.; Warrior, P. A systematic approach to discover and characterize natural plant biostimulants. Front. Plant Sci. 2016, 7, 435. [Google Scholar] [CrossRef] [Green Version]
- De Solla Price, D.J. Networks of Scientific Papers. Science 1965, 149, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Garfield, E. Citation Indexes for Science: A New Dimension in Documentation through Association of Ideas. Science 1955, 122, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Small, H.G. Co-citation in the Scientific Literature: A New Measure of the Relationship Between Two Documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Moed, H.F.; Glänzel, W.; Schmoch, U. Handbook of Quantitative Science and Technology Research; Springer: Amsterdam, The Netherlands, 2005; ISBN 978-1-4020-2755-0. [Google Scholar]
- Noyons, E.C.M.; Moed, H.F.; Luwel, M. Combining mapping and citation analysis for evaluative bibliometric purposes: A bibliometric study. J. Am. Soc. Inf. Sci. 1999, 50, 115–131. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. In Measuring Scholarly Impact: Methods and Practice; Ding, Y., Rousseau, R.W.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 285–320. ISBN 9783319103778. [Google Scholar]
- Ruggeri, G.; Orsi, L.; Corsi, S. A bibliometric analysis of the scientific literature on Fairtrade labelling. Int. J. Consum. Stud. 2019, 43, 134–152. [Google Scholar] [CrossRef] [Green Version]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Steg, L.; Lindenberg, S.; Keizer, K. Intrinsic motivation, norms and environmental behaviour: The dynamics of overarching goals. Int. Rev. Environ. Resour. Econ. 2016, 9, 179–207. [Google Scholar] [CrossRef]
- Small, H.G.; Griffith, B.C. The structure of scientific literature: Identifying and graphing specialties. Sci. Stud. 1974, 4, 17–40. [Google Scholar] [CrossRef]
- Small, H.G. Co-citation context analysis and the structure of paradigms. J. Doc. 1980, 36, 183–196. [Google Scholar] [CrossRef]
- López-Fernández, M.C.; Serrano-Bedia, A.M.; Pérez-Pérez, M. Entrepreneurship and Family Firm Research: A Bibliometric Analysis of An Emerging Field. J. Small Bus. Manag. 2016, 54, 622–639. [Google Scholar] [CrossRef]
- Waltman, L.; Van Eck, N.J. A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B 2013, 86, 1–33. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOS: A New Method for Visualizing Similarities Between Objects. Stud. Classif. Data Anal. Knowl. Organ. 2007, 299–306. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Murata, M.M.; Ito Morioka, L.R.; Da Silva Marques, J.B.; Bosso, A.; Suguimoto, H.H. What do patents tell us about microalgae in agriculture? AMB Express 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Maia, R.; Maciel, L.; Moreira, R. Technological forecasting: Oligosaccharides in agricultural preparations. Geintec 2020, 10, 5289–5301. [Google Scholar] [CrossRef]
- Sutherland, D.L.; McCauley, J.; Labeeuw, L.; Ray, P.; Kuzhiumparambil, U.; Hall, C.; Doblin, M.; Nguyen, L.N.; Ralph, P.J. How microalgal biotechnology can assist with the UN Sustainable Development Goals for natural resource management. Curr. Res. Environ. Sustain. 2021, 3, 100050. [Google Scholar] [CrossRef]
- Moore, F.C.; Lobell, D.B. The fingerprint of climate trends on European crop yields. Proc. Natl. Acad. Sci. USA 2015, 112, 2970–2975. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.; Menon, U.; Subramanian, S.; Critchley, A.T.; Usha, A.E.; Rayirath, P.; Sowmyalakshmi, A.E.; Ae, S.; Ae, M.N.J.; Rayorath, P.; et al. Seaweed Extracts as Biostimulants of Plant Growth and Development Tropical Phyconomy Coalition Development #1—The eucheumatoids View project PGPR and plant growth View project Seaweed Extracts as Biostimulants of Plant Growth and Development. Artic. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Bondok, S.A.; Omran, Y.A.M.M.; Abd El-Hamid, H.M. Enhanced productivity and fruit quality of flame seedless grapevines treated with seaweed extract. Int. J. Plant Prod. 2010, 1, 1625–1635. [Google Scholar] [CrossRef]
- Ruzzi, M.; Aroca, R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hortic. 2015, 196, 124–134. [Google Scholar] [CrossRef]
- Varanini, Z.; Pinton, R. Humic substances and plant nutrition. In Progress in Botany; Lüttge, U., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 97–117. [Google Scholar]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant Nutr. Soil Sci. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Cana-guier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Sharma, H.S.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2013, 26, 465–490. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as allevi-ators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Parrado, J.; Bautista, J.; Romero, E.J.; García-Martínez, A.M.; Friaza, V.; Tejada, M. Production of a carob enzymatic extract: Potential use as a biofertilizer. Bioresour. Technol. 2008, 99, 2312–2318. [Google Scholar] [CrossRef]
- García-Martínez, A.M.; Díaz, A.; Tejada, M.; Bautista, J.; Rodríguez, B.; Santa María, C.; Revilla, E.; Parrado, J. Enzymatic production of an organic soil biostimulant from wheat-condensed distiller solubles: Effects on soil biochemistry and biodiversity. Proc. Biochem. 2010, 45, 1127–1133. [Google Scholar] [CrossRef]
- Xu, C.; Leskovar, D.I. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci. Hortic. 2015, 183, 39–47. [Google Scholar] [CrossRef]
- Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Sci. Hortic. 2010, 125, 263–269. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.M.; Santacruz-Ruvalcaba, F.; Ruiz-López, M.A.; Norrie, J.; Hernández-Carmona, G. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J. Appl. Phycol. 2013, 26, 619–628. [Google Scholar] [CrossRef]
- Zodape, S.T.; Gupta, A.; Bhandari, S.C.; Rawat, U.S.; Chaudhary, D.R.; Eswaran, K.; Chikara, J. Foliar application of seaweed sap as biostimulant for enhancement of yield and quality of tomato (Lycopersicon esculentum Mill.). J. Sci. Ind. Res. 2011, 70, 215–219. [Google Scholar]
- Jayaraj, J.; Wan, A.; Rahman, M.; Punja, Z.K. Seaweed extract reduces foliar fungal diseases on carrot. Crop Prot. 2008, 27, 1360–1366. [Google Scholar] [CrossRef]
- Fan, D.; Hodges, D.M.; Critchley, A.T.; Prithiviraj, B. A Commercial Extract of Brown Macroalga (Ascophyllum nodosum) Affects Yield and the Nutritional Quality of Spinach In Vitro. Plants 2013, 44, 1873–1884. [Google Scholar] [CrossRef]
- Sivasankari, S.; Venkatesalu, V.; Anantharaj, M.; Chandrasekaran, M. Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresour. Technol. 2006, 97, 1745–1751. [Google Scholar] [CrossRef]
- Canellas, L.P.; Teixeira, L.R.L.; Dobbss, L.B.; Silva, C.A.; Medici, L.O.; Zandonadi, D.B.; Façanha, A.R. Humic acids crossinteractions with root and organic acids. Ann. Appl. Biol. 2008, 153, 157–166. [Google Scholar] [CrossRef]
- Mora, V.; Bacaicoa, E.; Zamarreño, A.M.; Aguirre, E.; Garnica, M.; Fuentes, M.; García-Mina, J.M. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J. Plant Physiol. 2010, 167, 633–642. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Schiavon, M.; Ertani, A. Plant biostimulants: Physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. Agric. 2016, 73, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 2002, 34, 1527–1536. [Google Scholar] [CrossRef]
- Jannin, L.; Arkoun, M.; Ourry, A.; Laîné, P.; Goux, D.; Garnica, M.; Fuentes, M.; Francisco, S.S.; Baigorri, R.; Cruz, F.; et al. Microarray analysis of humic acid effects on Brassica napus growth: Involvement of N, C and S metabolisms. Plant Soil 2012, 359, 297–319. [Google Scholar] [CrossRef]
- Brown, P.; Saa, S. Biostimulants in agriculture. Front. Plant Sci. 2015, 6, 671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Ertani, A.; Schiavon, M.; Muscolo, A.; Nardi, S. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 2012, 364, 145–158. [Google Scholar] [CrossRef]
- Ertani, A.; Pizzeghello, D.; Francioso, O.; Sambo, P.; Sanchez-Cortes, S.; Nardi, S. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Front. Plant Sci. 2014, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Significance of Genetic, Environmental, and Pre- and Postharvest Factors Affecting Carotenoid Contents in Crops: A Review. J. Agric. Food Chem. 2018, 66, 5310–5325. [Google Scholar] [CrossRef]
- Ronga, D.; Biazzi, E.; Parati, K.; Carminati, D.; Carminati, E.; Tava, A. Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy 2019, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, D.; Malcolm, R.E. Soil Organic Matter and Biological Activity; Vaughan, D., Malcolm, R.E., Eds.; Springer: Dordrecht, The Netherlands, 1985; ISBN 978-94-010-8757-5. [Google Scholar]
- Zamboni, A.; Zanin, L.; Tomasi, N.; Avesani, L.; Pinton, R.; Varanini, Z.; Cesco, S. Early transcriptomic response to Fe supply in Fe-deficient tomato plants is strongly influenced by the nature of the chelating agent. BMC Genom. 2016, 17, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanin, L.; Tomasi, N.; Zamboni, A.; Sega, D.; Varanini, Z.; Pinton, R. Water-extractable humic substances speed up transcriptional response of maize roots to nitrate. Environ. Exp. Bot. 2018, 147, 167–178. [Google Scholar] [CrossRef]
- Pinton, R.; Cesco, S.; Varanini, Z. Role of humic substances in the rhizosphere. In Biophysico-Chemical Procees Involving Natural Nonliving Organic Matter in Environmental Systems; Senesi, N., Xing, B., Huang, P.M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2009; p. 341. [Google Scholar]
- Olaetxea, M.; De Hita, D.; Garcia, C.A.; Fuentes, M.; Baigorri, R.; Mora, V.; Garnica, M.; Urrutia, O.; Erro, J.; Zamarreño, A.M.; et al. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot—growth. Appl. Soil Ecol. 2018, 123, 521–537. [Google Scholar] [CrossRef]
- Maini, P. The experience of the first biostimulant, based on amino acids and peptides: A short retrospective review on the laboratory researches and the practical results. Fertil. Agror. 2006, 1, 29–43. [Google Scholar]
- Santi, C.; Zamboni, A.; Varanini, Z.; Pandolfini, T. Growth stimulatory effects and genome-wide transcriptional changes produced by protein hydrolysates in maize seedlings. Front. Plant Sci. 2017, 8, 433. [Google Scholar] [CrossRef] [Green Version]
- Trevisan, S.; Manoli, A.; Quaggiotti, S. A Novel Biostimulant, Belonging to Protein Hydrolysates, Mitigates Abiotic Stress Effects on Maize Seedlings Grown in Hydroponics. Agronomy 2019, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Lucini, L.; Miras-Moreno, B.; Rouphael, Y.; Cardarelli, M.; Colla, G. Combining Molecular Weight Fractionation and Metabolomics to Elucidate the Bioactivity of Vegetal Protein Hydrolysates in Tomato Plants. Front. Plant Sci. 2020, 11, 976. [Google Scholar] [CrossRef]
- Paul, C.; Leser, S.; Oesser, S. Significant Amounts of Functional Collagen Peptides Can Be Incorporated in the Diet While Maintaining Indispensable Amino Acid Balance. Nutrients 2019, 11, 1079. [Google Scholar] [CrossRef] [Green Version]
- Franzoni, G.; Cocetta, G.; Prinsi, B.; Ferrante, A.; Espen, L. Biostimulants on Crops: Their Impact under Abiotic Stress Conditions. Horticulture 2022, 8, 189. [Google Scholar] [CrossRef]
Year | No. of Articles | No. of Authors | No. Authors/No. Docs | Times Cited | Average Times Cited Count | Average Reference Count |
---|---|---|---|---|---|---|
2000 | 1 | 3 | 3.0 | 7 | 7.0 | 10.0 |
2002 | 1 | 3 | 3.0 | 44 | 44.0 | 11.0 |
2003 | 2 | 6 | 3.0 | 72 | 36.0 | 18.0 |
2004 | 1 | 4 | 4.0 | 32 | 32.0 | 36.0 |
2005 | 2 | 3 | 1.5 | 33 | 16.5 | 34.0 |
2006 | 1 | 6 | 6.0 | 24 | 24.0 | 36.0 |
2007 | 7 | 25 | 3.6 | 305 | 43.6 | 29.1 |
2008 | 6 | 26 | 4.3 | 57 | 9.5 | 19.2 |
2009 | 4 | 15 | 3.8 | 217 | 54.3 | 42.0 |
2010 | 7 | 32 | 4.6 | 178 | 25.4 | 40.6 |
2011 | 6 | 25 | 4.2 | 246 | 41.0 | 36.5 |
2012 | 8 | 42 | 5.3 | 116 | 14.5 | 31.9 |
2013 | 12 | 66 | 5.5 | 431 | 35.9 | 43.4 |
2014 | 18 | 93 | 5.2 | 848 | 47.1 | 62.8 |
2015 | 29 | 149 | 5.1 | 1695 | 58.4 | 54.5 |
2016 | 51 | 237 | 4.6 | 1140 | 22.4 | 44.1 |
2017 | 69 | 353 | 5.1 | 1496 | 21.7 | 54.0 |
2018 | 132 | 647 | 4.9 | 2211 | 16.8 | 50.8 |
2019 | 164 | 899 | 5.5 | 1691 | 10.3 | 56.3 |
2020 | 247 | 1391 | 5.6 | 1267 | 5.1 | 57.4 |
2021 | 298 | 1735 | 5.8 | 417 | 1.4 | 65.0 |
2022 | 22 | 122 | 5.5 | 4 | 0.2 | 57.3 |
Journal | No. of Biostimulants Publications | No. of Total Publications | No. of Citations |
---|---|---|---|
Agronomy Basel | 95 | 5948 | 671 |
Frontiers in Plant Science | 78 | 16,359 | 1783 |
Scientia Horticulturae | 45 | 9981 | 1782 |
Plants Basel | 43 | 5409 | 222 |
Journal of Applied Phycology | 39 | 4613 | 1016 |
Agriculture Basel | 18 | 2620 | 66 |
Molecules | 15 | 33,917 | 199 |
Sustainability | 15 | 42,222 | 245 |
Hortscience | 13 | 26,595 | 191 |
Journal of the Science of Food and Agriculture | 13 | 12,380 | 196 |
Subject Categories | Frequency | % | Cumulative % |
---|---|---|---|
Agriculture | 504 | 46% | 31.48 |
Plant Sciences | 348 | 32% | 53.22 |
Environmental Sciences & Ecology | 128 | 12% | 61.22 |
Chemistry | 94 | 9% | 67.09 |
Biotechnology & Applied Microbiology | 89 | 8% | 72.65 |
Science & Technology-Other Topics | 54 | 5% | 76.02 |
Food Science & Technology | 52 | 5% | 79.27 |
Microbiology | 50 | 5% | 82.39 |
Engineering | 49 | 5% | 85.45 |
Marine & Freshwater Biology | 49 | 5% | 88.51 |
Country | Frequency | % |
---|---|---|
Italy | 197 | 18% |
Poland | 144 | 13% |
Brazil | 84 | 8% |
Spain | 76 | 7% |
USA | 64 | 6% |
India | 44 | 4% |
Egypt | 41 | 4% |
People’s Republic of China | 40 | 4% |
Mexico | 27 | 2% |
South Africa | 25 | 2% |
Iran | 21 | 2% |
France | 19 | 2% |
Canada | 17 | 2% |
Portugal | 16 | 1% |
Morocco | 14 | 1% |
Cited Reference | Citations from Biostimulant Studies | Total Citations |
---|---|---|
Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. https://doi.org/10.1016/J.SCIENTA.2015.09.021 [8] | 334 | 713 |
Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. https://doi.org/10.1007/S11104-014-2131-8/TABLES/1 [3] | 261 | 763 |
Khan, W.; et al. Seaweed Extracts as Biostimulants of Plant Growth and Development Tropical Phyconomy Coalition Development #1—The eucheumatoids View project PGPR and plant growth View project Seaweed Extracts as Biostimulants of Plant Growth and Development. Artic. J. Plant Growth Regul. 2009, 28, 386–399. https://doi.org/10.1007/s00344-009-9103-x [49] | 165 | 646 |
Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front Plant Sci. 2017, 7, 2049. https://doi.org/10.3389/FPLS.2016.02049/BIBTEX [5] | 151 | 362 |
Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. https://doi.org/10.1016/J.SCIENTA.2015.09.012 [56] | 132 | 293 |
Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. (Amsterdam). 2015, 196, 28–38, https://doi.org/10.1016/J.SCIENTA.2015.08.037 [57] | 121 | 212 |
Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393, https://doi.org/10.1007/S10811-010-9560-4 [50] | 119 | 436 |
Sharma, H.S.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2013 261 2013, 26, 465–490, https://doi.org/10.1007/S10811-013-0101-9. [58] | 119 | 238 |
Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 1–12, https://doi.org/10.1186/S40538-017-0089-5 [59] | 100 | 240 |
Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Horticult. 2015, 31, 1–17. https://doi.org/10.1080/01448765.2014.964649 [6] | 96 | 199 |
Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front Plant Sci. 2014, 5, 448. https://doi.org/10.3389/FPLS.2014.00448/BIBTEX [54] | 93 | 171 |
Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202, https://doi.org/10.3389/FPLS.2017.02202/BIBTEX [60] | 83 | 147 |
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254, https://doi.org/10.1016/0003-2697(76)90527-3 [61] | 82 | 237,327 |
Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. (Amsterdam). 2015, 196, 15–27 [16] | 82 | 322 |
Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant Nutr. Soil Sci. 2009, 172, 237–244, https://doi.org/10.1002/JPLN.200800174 [55] | 77 | 143 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corsi, S.; Ruggeri, G.; Zamboni, A.; Bhakti, P.; Espen, L.; Ferrante, A.; Noseda, M.; Varanini, Z.; Scarafoni, A. A Bibliometric Analysis of the Scientific Literature on Biostimulants. Agronomy 2022, 12, 1257. https://doi.org/10.3390/agronomy12061257
Corsi S, Ruggeri G, Zamboni A, Bhakti P, Espen L, Ferrante A, Noseda M, Varanini Z, Scarafoni A. A Bibliometric Analysis of the Scientific Literature on Biostimulants. Agronomy. 2022; 12(6):1257. https://doi.org/10.3390/agronomy12061257
Chicago/Turabian StyleCorsi, Stefano, Giordano Ruggeri, Anita Zamboni, Prinsi Bhakti, Luca Espen, Antonio Ferrante, Martina Noseda, Zeno Varanini, and Alessio Scarafoni. 2022. "A Bibliometric Analysis of the Scientific Literature on Biostimulants" Agronomy 12, no. 6: 1257. https://doi.org/10.3390/agronomy12061257
APA StyleCorsi, S., Ruggeri, G., Zamboni, A., Bhakti, P., Espen, L., Ferrante, A., Noseda, M., Varanini, Z., & Scarafoni, A. (2022). A Bibliometric Analysis of the Scientific Literature on Biostimulants. Agronomy, 12(6), 1257. https://doi.org/10.3390/agronomy12061257