Novel Methodology for the Assessment of Organic Carbon Stocks in German Arable Soils
Abstract
:1. Introduction
- SOC stocks can be expressed as the result of a carbon reproduction flux;
- Carbon reproduction flux can be related to the classification of the VDLUFA humus balance method;
- Optimum carbon reproduction flux can be predicted from soil texture and site-specific turnover activity.
2. Materials and Methods
2.1. Long-Term Fertilization Experiments (LTFEs)
Site | Initial Year | Time Range Years | MAP mm | MAT °C | Clay M% | Silt M% | SOC Opt. M% | FYM Rate Mg ha−1 year−1 | Data Source |
---|---|---|---|---|---|---|---|---|---|
(1) Bad Lauchstädt (a) | 1902 | 117 | 480 | 8.8 | 21.0 | 67.8 | 2.12 | 0,10, 15 | [14,23] |
(2) Bad Lauchstädt (b) | 1978 | 30 | 480 | 8.8 | 21.0 | 67.8 | - | 50, 100, 200 | [22] |
(3) Berlin Dahlem | 1984 | 12 | 550 | 9.3 | 4.3 | 22.9 | 0.56 | 10 | [23] |
(4) Dikopshof | 1904 | 92 | 635 | 9.7 | 10.0 | 74.9 | 1.27 | 12 | [23] |
(5) Groß Kreutz | 1967 | 43 | 537 | 8.9 | 6.0 | 44.0 | 0.92 | 21 | [24] |
(6) Jable | 1992 | 10 | 1397 | 9.7 | 16.8 | 55.5 | 1.4 | 10 | [23] |
(7) Puch | 1983 | 12 | 922 | 7.9 | 15.0 | 33.1 | 1.06 | 10 | [23] |
(8) Rakican | 1992 | 10 | 810 | 9.4 | 14.7 | 31.2 | 1.16 | 10 | [23] |
(9) Rothamsted | 1852 | 156 | 712 | 9.5 | 25.0 | 62.0 | - | 35 | [15] |
(10) Speyer | 1984 | 12 | 583 | 9.8 | 8.9 | 22.7 | 0.96 | 10 | [23] |
(11) Thyrow | 1937 | 74 | 496 | 8.6 | 2.7 | 14.2 | 0.63 | 15 | [23] |
(12) Wien | 1986 | 12 | 489 | 9.5 | 25.2 | 46.5 | 2.24 | 10 | [23,25] |
2.2. First German Agricultural Soil Inventory
2.3. Relation between SOC Stock and C Flux into SOC
2.4. VDLUFA Humus Balance
3. Results and Discussion
3.1. Relation between SOC Stock and C Flux into SOM
3.2. Site-Specific Assessment of C Stocks and C Fluxes
3.3. Assessment of a Wide Range of SOC Levels at the Bad Lauchstädt Site
3.4. Humus Level of Arable Soils in Germany
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vogel, H.J.; Eberhardt, E.; Franko, U.; Lang, B.; Ließ, M.; Weller, U.; Wiesmeier, M.; Wollschläger, U. Quantitative Evaluation of Soil Functions: Potential and State. Front. Environ. Sci. 2019, 7. [Google Scholar] [CrossRef]
- Poeplau, C.; Jacobs, A.; Don, A.; Vos, C.; Schneider, F.; Wittnebel, M.; Tiemeyer, B.; Heidkamp, A.; Prietz, R.; Flessa, H. Stocks of Organic Carbon in German Agricultural Soils—Key Results of the First Comprehensive Inventory. J. Plant Nutr. Soil Sci. 2020, 183, 665–681. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A.; Flessa, H. Erste Bodenzustandserhebung Landwirtschaft—Kerndatensatz; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2020. [Google Scholar]
- Vos, C.; Don, A.; Hobley, E.U.; Prietz, R.; Heidkamp, A.; Freibauer, A. Factors Controlling the Variation in Organic Carbon Stocks in Agricultural Soils of Germany. Eur. J. Soil Sci. 2019, 70, 550–564. [Google Scholar] [CrossRef]
- Drexler, S.; Broll, G.; Flessa, H.; Don, A. Benchmarking Soil Organic Carbon to Support Agricultural Carbon Management: A German Case Study. J. Plant Nutr. Soil Sci. 2022. [Google Scholar] [CrossRef]
- Jacobs, A.; Flessa, H.; Don, A. Landwirtschaftlich genutzte Böden in Deutschland—Ergebnisse der Bodenzustandserhebung; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2018. [Google Scholar]
- Vos, C.; Jaconi, A.; Jacobs, A.; Don, A. Hot Regions of Labile and Stable Soil Organic Carbon in Germany—Spatial Variability and Driving Factors. SOIL 2018, 4, 153–167. [Google Scholar] [CrossRef] [Green Version]
- VDLUFA Humusbilanzierung. Eine Methode Zur Analyse Und Bewertung Der Humusversorgung von Ackerland; VDLUFA-Standpunkt; VDLUFA Selbstverlag: Speyer, Germany, 2014. [Google Scholar]
- Brock, C.; Oberholzer, H.-R.; Franko, U. Soil Organic Matter Balance as a Practical Tool for Environmental Impact Assessment and Management Support in Arable Farming. Eur. J. Soil Sci. 2017, 68, 951–952. [Google Scholar] [CrossRef] [Green Version]
- Körschens, M.; Albert, E.; Baumecker, M.; Ellmer, F.; Grunert, M.; Hoffmann, S.; Kismanyoky, T.; Kubat, J.; Kunzova, E.; Marx, M.; et al. Humus and Climate Change—Results of 15 Long-Term Experiments. Arch. Agron. Soil Sci. 2014, 60, 1485–1517. [Google Scholar] [CrossRef]
- Musinguzi, P.; Ebanyat, P.; Tenywa, J.S.; Basamba, T.A.; Tenywa, M.M.; Mubiru, D.N. Critical Soil Organic Carbon Range for Optimal Crop Response to Mineral Fertiliser Nitrogen on A Ferralsol. Exp. Agric. 2016, 52, 635–653. [Google Scholar] [CrossRef]
- Patrick, M.; Tenywa, J.S.; Ebanyat, P.; Tenywa, M.M.; Mubiru, D.N.; Basamba, T.A.; Leip, A. Soil Organic Carbon Thresholds and Nitrogen Management in Tropical Agroecosystems: Concepts and Prospects. J. Sustain. Dev. 2013, 6, 31. [Google Scholar] [CrossRef]
- Riggers, C.; Poeplau, C.; Don, A.; Bamminger, C.; Höper, H.; Dechow, R. Multi-Model Ensemble Improved the Prediction of Trends in Soil Organic Carbon Stocks in German Croplands. Geoderma 2019, 345, 17–30. [Google Scholar] [CrossRef]
- Franko, U.; Diel, J.; Ruehlmann, J. Applying CCB to Predict Management Change Affected Long-term SOM Turnover of the E Xtended S Tatic F Ertilization E Xperiment in Bad Lauchstädt. Eur. J. Soil Sci. 2021. [Google Scholar] [CrossRef]
- Rothamsted Research Hoosfield Soil Organic Carbon Content. 2012. Available online: http://www.era.rothamsted.ac.uk/dataset/rhb2/01-HBSOC1852 (accessed on 3 January 2022).
- Ruehlmann, J.; Körschens, M. Calculating the Effect of Soil Organic Matter Concentration on Soil Bulk Density. Soil Sci. Soc. Am. J. 2009, 73, 876–885. [Google Scholar] [CrossRef]
- Altermann, M.; Rinklebe, J.; Merbach, I.; Körschens, M.; Langer, U.; Hofmann, B. Chernozem—Soil of the Year 2005. J. Plant Nutr. Soil Sci. 2005, 168, 725–740. [Google Scholar] [CrossRef]
- Körschens, M. (Ed.) Der Statische Düngungsversuch Bad Lauchstädt nach 90 Jahren: Einfluß der Düngung auf Boden, Pflanze und Umwelt; mit einem Verzeichnis von 240 Dauerfeldversuchen der Welt; Teubner: Stuttgart, Germany; Leipzig, Germany, 1994; ISBN 978-3-8154-3507-6. [Google Scholar]
- Körschens, M. Erträge, N-entzüge Und Humusdynamik Im Statischen Düngungsversuch Bad Lauchstädt, 18 Jahre Nach Erweiterung Der Versuchsfrage. Arch. Agron. Soil Sci. 1998, 43, 77–92. [Google Scholar] [CrossRef]
- Merbacha, I.; Körschens, M. The Static Fertilization Experiment at the Start and the End of the 20th Century. Arch. Agron. Soil Sci. 2002, 48, 413–422. [Google Scholar] [CrossRef]
- Merbach, I.; Schulz, E. Long-Term Fertilization Effects on Crop Yields, Soil Fertility and Sustainability in the Static Fertilization Experiment Bad Lauchstädt under Climatic Conditions 2001–2010. Arch. Agron. Soil Sci. 2013, 59, 1041–1057. [Google Scholar] [CrossRef]
- Franko, U.; Schulz, E. Carbon Accumulation in a Bare Fallow Chernozem Soil with High Carbon Input Rates. Eur. J. Soil Sci. 2021, 72, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Beuke, K. Überprüfung der Humusbilanzierung anhand von Dauerversuchen in verschiedenen Klimaregionen Europas; Diplomarbeit, Universität Trier: Morenhoven, Germany, 2006. [Google Scholar]
- Rühlmann, J. Dauerfeldversuche in Brandenburg Und Berlin: Beiträge Für Eine Nachhaltige Landwirt-Schaftliche Bodennutzung; Schriftenreihe des Landesamtes für Verbraucherschutz, Landwirtschaft und Flurneuordnung, Reihe Landwirtschaft; Ministerium für Ländliche Entwicklung, Umwelt und Verbraucherschutz des Landes Bran-denburg (MLUV) (Hrsg.): Berlin, Germany, 2009; Volume 10. [Google Scholar]
- Spiegel, H.; Dersch, G.; Baumgarten, A.; Hösch, J. The International Organic Nitrogen Long-Term Fertilisation Experiment (IOSDV) at Vienna after 21 Years. Arch. Agron. Soil Sci. 2010, 56, 405–420. [Google Scholar] [CrossRef]
- Hénin, S.; Dupuis, N. Essai de Bilan de La Matière Organique Du Sol. Ann. Agron. 1945, 15, 17–29. [Google Scholar]
- Franko, U.; Oelschlägel, B.; Schenk, S. Simulation of Temperature-, Water- and Nitrogen Dynamics Using the Model CANDY. Ecol. Model. 1995, 81, 213–222. [Google Scholar] [CrossRef]
- Franko, U.; Oelschlägel, B. Einfluss von Klima Und Textur Auf Die Biologische Aktivität Beim Umsatz Der Organischen Bodensubstanz. Arch. Agron. Soil Sci. 1995, 39, 155–163. [Google Scholar] [CrossRef]
- Franko, U.; Kolbe, H.; Thiel, E.; Ließ, E. Multi-Site Validation of a Soil Organic Matter Model for Arable Fields Based on Generally Available Input Data. Geoderma 2011, 166, 119–134. [Google Scholar] [CrossRef]
- Franko, U.; Merbach, I. Modelling Soil Organic Matter Dynamics on a Bare Fallow Chernozem Soil in Central Germany. Geoderma 2017, 303, 93–98. [Google Scholar] [CrossRef]
- Brock, C.; Franko, U.; Oberholzer, H.; Kuka, K.; Leithold, G.; Kolbe, H.; Reinhold, J. Humus Balancing in Central Europe—Concepts, State of the Art, and Further Challenges. J. Plant Nutr. Soil Sci. 2013, 176, 3–11. [Google Scholar] [CrossRef]
- Bruni, E.; Guenet, B.; Huang, Y.; Clivot, H.; Virto, I.; Farina, R.; Kätterer, T.; Ciais, P.; Martin, M.; Chenu, C. Additional Carbon Inputs to Reach a 4 per 1000 Objective in Europe: Feasibility and Projected Impacts of Climate Change Based on Century Simulations of Long-Term Arable Experiments. Biogeosciences 2021, 18, 3981–4004. [Google Scholar] [CrossRef]
- Bruni, E.; Guenet, B.; Clivot, H.; Kätterer, T.; Martin, M.; Virto, I.; Chenu, C. Defining Quantitative Targets for Topsoil Organic Carbon Stock Increase in European Croplands: Case Studies with Exogenous Organic Matter Inputs. Front. Environ. Sci. 2022, 10. [Google Scholar] [CrossRef]
- Tiefenbacher, A.; Sandén, T.; Haslmayr, H.-P.; Miloczki, J.; Wenzel, W.; Spiegel, H. Optimizing Carbon Sequestration in Croplands: A Synthesis. Agronomy 2021, 11, 882. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Hübner, R.; Dechow, R.; Maier, H.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; von Lützow, M.; et al. Estimation of past and recent carbon input by crops into agricultural soils of southeast Germany. Eur. J. Agron. 2014, 61, 10–23. [Google Scholar] [CrossRef]
- Gasser, A.A.; Diel, J.; Nielsen, K.; Mewes, P.; Engels, C.; Franko, U. A model ensemble approach to determine the humus building efficiency of organic amendments in incubation experiments. Soil Use Manag. 2021, 38, 179–190. [Google Scholar] [CrossRef]
- Gasser, S.A.A.; Nielsen, K.; Franko, U. Transfer of carbon incubation parameters to model the SOC and SON dynamics of a field trial with energy crops applying digestates as organic fertilizers. Soil Use Manag. 2022. [Google Scholar] [CrossRef]
VDLUFA Classification | HEQ Balance | C Flux Difference |
---|---|---|
A: very low | <−200 | <−320 |
B: low | −200–−75 | −320–−120 |
C: normal | −75–100 | −120–160 |
D: high | 100–300 | 160–480 |
E: very high | >300 | >480 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franko, U.; Ruehlmann, J. Novel Methodology for the Assessment of Organic Carbon Stocks in German Arable Soils. Agronomy 2022, 12, 1231. https://doi.org/10.3390/agronomy12051231
Franko U, Ruehlmann J. Novel Methodology for the Assessment of Organic Carbon Stocks in German Arable Soils. Agronomy. 2022; 12(5):1231. https://doi.org/10.3390/agronomy12051231
Chicago/Turabian StyleFranko, Uwe, and Joerg Ruehlmann. 2022. "Novel Methodology for the Assessment of Organic Carbon Stocks in German Arable Soils" Agronomy 12, no. 5: 1231. https://doi.org/10.3390/agronomy12051231
APA StyleFranko, U., & Ruehlmann, J. (2022). Novel Methodology for the Assessment of Organic Carbon Stocks in German Arable Soils. Agronomy, 12(5), 1231. https://doi.org/10.3390/agronomy12051231