Introgression of Resistance to Multiple Pathotypes of Plasmodiophora brassicae from Turnip (Brassica rapa ssp. rapifera) into Spring B. napus Canola
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Population Development
2.2. Greenhouse Assay for Clubroot Resistance
2.3. Field Evaluation for Clubroot Resistance
2.4. Field Trials for Agronomic and Seed Quality Traits
2.5. Chemical Analysis
2.6. Ploidy Analysis
2.7. Statistical Analysis
3. Results
3.1. Development of B. napus Lines Carrying Resistance to Pathotype 3H
3.2. Development of B. napus Lines Carrying Resistance to Pathotype 3A
3.3. Evaluation for Resistance to Clubroot under Field Conditions
3.4. Evaluation for Resistance to Multiple P. brassicae Pathotypes in the Greenhouse
3.5. Flow Cytometric Analysis
3.6. Agronomic and Seed Quality Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dixon, G.R. The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. J. Plant Growth Regul. 2009, 28, 194–202. [Google Scholar] [CrossRef]
- Kageyama, K.; Asano, T. Life cycle of Plasmodiophora brassicae. J. Plant Growth Regul. 2009, 28, 203–211. [Google Scholar] [CrossRef]
- Rahman, H.; Peng, G.; Yu, F.; Falk, K.C.; Kulkarni, M.; Selvaraj, G. Genetics and breeding for clubroot resistance in Canadian spring canola (Brassica napus L.). Can. J. Plant Pathol. 2014, 36, 122–134. [Google Scholar] [CrossRef]
- Tewari, J.P.; Strelkov, S.E.; Orchard, D.; Hartman, M.; Lange, R.M.; Turkington, T.K. Identification of clubroot of crucifers on canola (Brassica napus) in Alberta. Can. J. Plant Pathol. 2005, 27, 143–144. [Google Scholar] [CrossRef]
- Chai, A.L.; Xie, X.W.; Shi, Y.X.; Li, B.J. Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China. Can. J. Plant Pathol. 2014, 36, 142–153. [Google Scholar] [CrossRef]
- Bhattacharya, I.; Dutta, S.; Mondal, S.; Mondal, B. Clubroot disease on Brassica crops in India. Can. J. Plant Pathol. 2014, 36, 154–160. [Google Scholar] [CrossRef]
- Diederichsen, E.; Frauen, M.; Ludwig-Müller, J. Clubroot disease management challenges from a German perspective. Can. J. Plant Pathol. 2014, 36, 85–98. [Google Scholar] [CrossRef]
- Wallenhammar, A.C.; Almquist, C.; Schwelm, A.; Roos, J.; Marzec-Schmidt, K.; Jonsson, A.; Dixelius, C. Clubroot, a persistent threat to Swedish oilseed rape production. Can. J. Plant Pathol. 2014, 36, 135–141. [Google Scholar] [CrossRef]
- Donald, E.C.; Porter, I.J. Clubroot in Australia: The history and impact of Plasmodiophora brassicae in Brassica crops and research efforts directed towards its control. Can. J. Plant Pathol. 2014, 36, 66–84. [Google Scholar] [CrossRef]
- Howard, R.J.; Strelkov, S.E.; Harding, M.W. Clubroot of cruciferous crops- New perspectives on an old disease. Can. J. Plant Pathol. 2010, 32, 43–57. [Google Scholar] [CrossRef]
- Pageau, D.; Lajeunesse, J.; Lafond, J. Impact de l’hernie des crucifères [Plasmodiophora brassicae] sur la productivité et la qualité du canola [Impact of cruciferous hernia (Plasmodiophora brassicae) on canola productivity and quality]. Can. J. Plant Pathol. 2006, 28, 137–143. [Google Scholar] [CrossRef]
- Wallenhammar, A.C. Prevalence of Plasmodiophora brassicae in a spring oilseed rape growing area in central Sweden and factors influencing soil infestation levels. Plant Pathol. 1996, 45, 710–719. [Google Scholar] [CrossRef]
- Manzanares-Dauleux, M.J.; Divaret, I.; Baron, F.; Thomas, G. Assessment of biological and molecular variability between and within field isolates of Plasmodiophora brassicae. Plant Pathol. 2001, 50, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Strelkov, S.E.; Tewari, J.P.; Smith-Degenhardt, E. Characterization of Plasmodiophora brassicae populations from Alberta, Canada. Can. J. Plant Pathol. 2006, 28, 467–474. [Google Scholar] [CrossRef]
- Strelkov, S.E.; Hwang, S.F.; Manolii, V.P.; Cao, T.S.; Feindel, D. Emergence of new virulence phenotypes of Plasmodiophora brassicae on canola (Brassica napus) in Alberta. Canada. Eur. J. Plant Pathol. 2016, 145, 517–529. [Google Scholar] [CrossRef]
- Strelkov, S.E.; Hwang, S.F.; Manolii, V.P.; Cao, T.; Fredua-Agyeman, R.; Harding, M.W.; Peng, G.; Gossen, B.D.; McDonald, M.R.; Feindel, D. Virulence and pathotype classification of Plasmodiophora brassicae populations collected from clubroot resistant canola (Brassica napus) in Canada. Can. J. Plant Pathol. 2018, 40, 284–298. [Google Scholar] [CrossRef]
- Strelkov, S.E.; Hwang, S.F.; Manolii, V.P.; Turnbull, G.; Fredua-Agyeman, R.; Hollman, K.; Kaus, S. Characterization of clubroot (Plasmodiophora brassicae) from canola (Brassica napus) in the Peace Country of Alberta, Canada. Can. J. Plant Pathol. 2021, 43, 155–161. [Google Scholar] [CrossRef]
- Hasan, M.J.; Megha, S.; Rahman, H. Clubroot in Brassica: Recent advances in genomics, breeding and disease management. Genome 2021, 64, 8. [Google Scholar] [CrossRef]
- Cho, K.; Han, Y.; Yoon, B.; Ryu, S.; Woo, J. Resistance in Chinese cabbage using single spore isolate of Plasmodiophora brassicae and development of RAPD markers linked to its resistance gene. J. Crop Sci. Biotech. 2008, 11, 101–106. [Google Scholar]
- Hatakeyama, K.; Niwa, T.; Kato, T.; Ohara, T.; Kakizaki, T.; Matsumoto, S. The tandem repeated organization of NB-LRR genes in the clubroot-resistant CRb locus in Brassica rapa L. Mol. Genet. Genomics. 2017, 292, 397–405. [Google Scholar] [CrossRef]
- Kato, T.; Hatakeyama, K.; Fukino, N.; Matsumoto, S. Identification of a clubroot resistance locus conferring resistance to a Plasmodiophora brassicae classified into pathotype group 3 in Chinese cabbage (Brassica rapa L.). Breed. Sci. 2012, 62, 282–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, T.; Hatakeyama, K.; Fukino, N.; Matsumoto, S. Fine mapping of the clubroot resistance gene CRb and development of a useful selectable marker in Brassica rapa. Breed. Sci. 2013, 63, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, E.; Yasui, C.; Ohi, M.; Tsukada, M. Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbage (Brassica rapa ssp. pekinensis). Euphytica 1998, 104, 79. [Google Scholar] [CrossRef]
- Piao, Z.Y.; Deng, Y.Q.; Choi, S.R.; Park, Y.J.; Lim, Y.P. SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis). Theor. Appl. Genet. 2004, 108, 1458–1465. [Google Scholar] [CrossRef]
- Pang, W.; Fu, P.; Li, X.; Zhan, Z.; Yu, S.; Piao, Z. Identification and mapping of the clubroot resistance gene CRd in Chinese cabbage (Brassica rapa ssp. pekinensis). Front. Plant Sci. 2018, 9, 653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, K.; Saito, A.; Hayashida, N.; Taguchi, G.; Matsumoto, E. Mapping of isolate-specific QTLs for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor. Appl. Genet. 2008, 117, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Hirai, M.; Harada, T.; Kubo, N.; Tsukada, M.; Suwabe, K.; Matsumoto, S. A novel locus for clubroot resistance in Brassica rapa and its linkage markers. Theor. Appl. Genet. 2004, 108, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Kubo, N.; Matsumoto, S.; Suwabe, K.; Tsukada, M.; Hirai, M. Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. Theor. Appl. Genet. 2006, 114, 81–91. [Google Scholar] [CrossRef]
- Yuan, Y.; Wei, X.; Zhang, Q.; Zhao, Y.; Jiang, W.; Yao, Q. BSA-Seq technologies identify a major QTL for clubroot resistance in Chinese cabbage (Brassica rapa ssp. pekinensis). In Proceedings of the KSM Spring Meeting & KSM-ICWG-GSP Joint Clubroot Symposium, Daejeon, Korea, 13–15 May 2015; p. 41. [Google Scholar]
- Chu, M.; Song, T.; Falk, K.C.; Zhang, X.; Liu, X.; Chang, A.; Lahlali, R.; McGregor, L.; Gossen, B.D.; Yu, F.; et al. Fine mapping of Rcr1 and analyses of its effect on transcriptome patterns during infection by Plasmodiophora brassicae. BMC Genom. 2014, 15, 1166. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Peng, G.; Liu, X.; Deora, A.; Falk, K.C.; Gossen, B.D.; McDonald, M.R.; Yu, F. Fine mapping of a clubroot resistance gene in Chinese cabbage using SNP markers identified from bulked segregant RNA sequencing. Front. Plant Sci. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Zhang, X.; Peng, G.; Falk, K.C.; Strelkov, S.E.; Gossen, B.D. Genotyping-by-sequencing reveals three QTL for clubroot resistance to six pathotypes of Plasmodiophora brassicae in Brassica rapa. Sci. Rep. 2017, 7, 4516. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Peng, G.; Gossen, B.D.; Yu, F. Fine mapping of a clubroot resistance gene from turnip using SNP markers identified from bulked segregant RNA-Seq. Mol. Breeding. 2019, 39, 131. [Google Scholar] [CrossRef]
- Farid, M.; Yang, R.C.; Kebede, B.; Rahman, H. Evaluation of Brassica oleracea accessions for resistance to Plasmodiophora brassicae and identification of genomic regions associated with resistance. Genome 2020, 63, 91–101. [Google Scholar] [CrossRef]
- Rahman, H.; Shakir, A.; Jakir, H.M. Breeding for clubroot resistant spring canola (Brassica napus L.) for the Canadian prairies: Can the European winter canola cv. Mendel be used as a source of resistance? Can. J. Plant Sci. 2011, 91, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Chu, M.; Yu, F.; Falk, K.C.; Liu, X.; Zhang, X.; Chang, A.; Peng, G. Identification of the clubroot resistance gene Rpb1 and introgression of the resistance gene into canola breeding lines using a marker-assisted selection approach. Acta Hortic. 2013, 1005, 599–605. [Google Scholar] [CrossRef]
- Hirani, A.H.; Gao, F.; Liu, J.; Fu, G.; Wu, C.; Yuan, Y.; Li, W.; Hou, J.; Duncan, R.; Li, G. Transferring clubroot resistance from Chinese cabbage (Brassica rapa) to canola (B. napus). Can. J. Plant Pathol. 2016, 38, 82–90. [Google Scholar] [CrossRef]
- Hasan, M.J.; Shaikh, R.; Basu, U.; Rahman, H. Mapping clubroot resistance of Brassica rapa introgressed into Brassica napus and development of molecular markers for the resistance. Crop Sci. 2021, 61, 4112–4127. [Google Scholar] [CrossRef]
- Diederichsen, E.; Sacristan, M. Disease response of resynthesized Brassica napus L. lines carrying different combinations of resistance to Plasmodiophora brassicae Wor. Plant Breed. 1996, 115, 5–10. [Google Scholar] [CrossRef]
- Fredua-Agyeman, R.; Rahman, H. Mapping of the clubroot disease resistance in spring Brassica napus canola introgressed from European winter canola cv. “Mendel”. Euphytica 2016, 211, 201–213. [Google Scholar] [CrossRef]
- Ayers, G.W.; Lelacheur, K.E. Genetics of resistance in rutabaga to two races of Plasmodiophora brassicae. Can. J. Plant Sci. 1972, 52, 897–900. [Google Scholar] [CrossRef]
- Bradshaw, J.; Gemmell, D.; Wilson, R. Transfer of resistance to clubroot (Plasmodiophora brassicae) to swedes (Brassica napus L. var. napobrassica Peterm) from B. rapa. Ann. Appl. Biol. 1997, 130, 337–348. [Google Scholar] [CrossRef]
- Hasan, M.J.; Rahman, H. Genetics and molecular mapping of resistance to Plasmodiophora brassicae pathotypes 2, 3, 5, 6, and 8 in rutabaga (Brassica napus var. napobrassica). Genome 2016, 59, 805–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeBoldus, J.M.; Manolii, V.P.; Turkington, T.K.; Strelkov, S.E. Adaptation to Brassica host genotypes by a single spore isolate and population of Plasmodiophora brassicae (clubroot). Plant Dis. 2012, 96, 833–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedaghatkish, A.; Gossen, B.D.; Yu, F.; Torkamaneh, D.; McDonald, M.R. Whole-genome DNA similarity and population structure of Plasmodiophora brassicae strains from Canada. BMC Genom. 2019, 20, 744. [Google Scholar] [CrossRef]
- Frauen, M. A new clubroot resistant variety in winter oilseed rape. In Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 26–29 September 1999. [Google Scholar]
- Attri, R.; Rahman, H. Introgression of allelic diversity from genetically distinct variants of Brassica rapa into Brassica napus canola and inheritance of the B. rapa alleles. Crop Pasture Sci. 2018, 69, 94–106. [Google Scholar] [CrossRef]
- Williams, P.H. A system for the determination of races of Plasmodiophora brassicae that infect cabbage and rutabaga. Phytopathology 1996, 56, 624–626. [Google Scholar]
- Hasan, M.J.; Strelkov, S.; Howard, R.; Rahman, H. Screening of Brassica germplasm for resistance to Plasmodiophora brassicae pathotypes prevalent in Canada for broadening diversity in clubroot resistance. Can. J. Plant Sci. 2012, 92, 501–515. [Google Scholar] [CrossRef] [Green Version]
- Voorrips, R.E.; Visser, D.L. Examination of resistance to clubroot in accessions of Brassica oleracea using a glasshouse seedling test. Neth. J. Plant Pathol. 1993, 99, 269–276. [Google Scholar] [CrossRef]
- Kuginuki, Y.; Yoshikawa, H.; Hirai, M. Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot-resistant cultivars of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Eur. J. Plant Pathol 1999, 105, 327–332. [Google Scholar] [CrossRef]
- Iftikhar, R.; Wang, X.; Rahman, H. Broadening the genetic base of Brassica napus canola by interspecific crosses with different variants of B. oleracea. Euphytica 2018, 214, 133. [Google Scholar] [CrossRef]
- R Core Team. 2020 R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 10 November 2021).
- Iversen, G.R.; Gergen, M. Statistics: The Conceptual Approach; Springer: New York, NY, USA, 1997; ISBN 13-978-1-4612-2244-6. [Google Scholar]
- Leflon, M.; Eber, F.; Letanneur, J.C.; Chelysheva, L.; Coriton, O.; Huteau, V.; Ryder, C.D.; Barker, G.; Jenczewski, E.; Chèvre, A.M. Pairing and recombination at meiosis of Brassica rapa (AA) × Brassica napus (AACC) hybrids. Theor. Appl. Genet. 2006, 113, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Falk, K.C.; Gugel, R.K.; Franke, C.; Yu, F.; James, B.; Strelkov, S.E.; Hwang, S.F.; McGregor, L. Sources of resistance to Plasmodiophora brassicae (clubroot) pathotypes virulent on canola. Can. J. Plant Pathol. 2014, 36, 89–99. [Google Scholar] [CrossRef]
- Suwabe, K.; Tsukazaki, H.; Iketani, H.; Hatakeyama, K.; Fujimura, M.; Nunome, T.; Fukuoka, H.; Matsumoto, S.; Hirai, M. Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor. Appl. Genet. 2003, 107, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Suwabe, K.; Tsukazaki, H.; Iketani, H.; Hatakeyama, K.; Kondo, M.; Fujimura, M.; Nunome, T.; Fukuoka, H.; Hirai, M.; Matsumoto, S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: The genetic origin of clubroot resistance. Genetics 2006, 173, 309–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Jing, J.; Zhan, Z.; Zhang, T.; Zhang, C.; Piao, Z. Identification of Novel QTLs for Isolate-Specific Partial Resistance to Plasmodiophora brassicae in Brassica rapa. PLoS ONE 2013, 12, 85307. [Google Scholar] [CrossRef] [Green Version]
- Hirani, A.H.; Gao, F.; Liu, J.; Fu, G.; Wu, C.; McVetty, P.B.E.; Duncan, R.W.; Li, G. Combinations of independent dominant loci conferring clubroot resistance in all four turnip accessions (Brassica rapa) from the European clubroot differential set. Front. Plant Sci. 2018, 9, 1628. [Google Scholar] [CrossRef] [Green Version]
- Fredua-Agyeman, R.; Jiang, J.; Hwang, S.F.; Strelkov, S.E. QTL mapping and inheritance of clubroot resistance genes derived from Brassica rapa subsp. rapifera (ECD 02) reveals resistance loci and distorted segregation ratios in two F2 populations of different crosses. Front. Plant Sci. 2020, 11, 899. [Google Scholar] [CrossRef]
- Zhan, Z.; Jiang, Y.; Shah, N.; Hou, Z.; Zhou, Y.; Dun, B.; Li, S.; Zhu, L.; Li, Z.; Piao, Z.; et al. Association of clubroot resistance locus PbBa8.1 with a linkage drag of high erucic acid content in the seed of the European turnip. Front. Plant Sci. 2020, 11, 810. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, Y.; Wang, J.; Chen, Q.; Karim, M.M.; Gossen, B.D.; Peng, G. Identification of two major QTLs in Brassica napus lines with introgressed clubroot resistance from turnip cultivar ECD01. Front. Plant Sci. 2022, 12, 785989. [Google Scholar] [CrossRef]
- Luo, Y.X.; Luo, C.Y.; Du, D.Z.; Fu, Z.; Yao, Y.M.; Xu, C.C.; Zhang, H.S. Quantitative trait analysis of flowering time in spring rapeseed (B. napus L.). Euphytica 2014, 200, 321–335. [Google Scholar] [CrossRef]
- Liu, S.; Fan, C.; Li, J.; Cai, G.; Yang, Q.; Wu, J.; Yi, X.; Zhang, C.; Zhou, Y. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor. Appl. Genet. 2016, 129, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; Sun, Z.; McVetty, P.B.E.; Li, G. High throughput genome-specific and gene-specific molecular markers for erucic acid genes in Brassica napus (L.) for marker-assisted selection in plant breeding. Theor. Appl. Genet. 2008, 117, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Harvey, B.L.; Downey, R.K. The inheritance of erucic acid content in rapeseed (Brassica napus). Can. J. Plant Sci. 1964, 44, 104–111. [Google Scholar] [CrossRef]
- Jönsson, R. Breeding for improved oil and meal quality in rape (Brassica napus L.) and turnip rape (Brassica campestris L.). Hereditas 1978, 87, 205–218. [Google Scholar] [CrossRef]
- Rahman, M.H.; Joersbo, M.; Poulsen, M.H. Development of yellow-seeded Brassica napus of double low quality. Plant Breed. 2001, 120, 473–478. [Google Scholar] [CrossRef]
- Rahman, H.; Kebede, B.; Zimmerli, C.; Yang, R.C. Genetic study and QTL mapping of seed glucosinolate content in Brassica rapa L. Crop Sci. 2014, 54, 537–543. [Google Scholar] [CrossRef]
Generation | Total Families | Total Plants | No. Segr. Families | No. Non-Segr. Families | No. Plants with Disease Score 0 to 3, and Disease Severity Index (DSI) | Percent Plants * | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | DSI (%) | Resistant | Susceptible | |||||
(a) Selection for resistance to pathotype 3H: | |||||||||||
BC1F2 | 9 | 358 | 5 | 4 | 173 | 40 | 30 | 115 | 41.4 | 59.5 | 40.5 |
BC1F3 | 44 | 594 | 23 | 21 | 436 | 43 | 35 | 80 | 19.8 | 80.6 | 19.3 |
BC1F4 | 108 | 930 | 53 | 55 | 587 | 96 | 57 | 190 | 27.9 | 73.4 | 26.5 |
BC1F5 | 191 | 767 | 20 | 171 | 725 | 9 | 1 | 32 | 4.6 | 95.6 | 4.3 |
BC1F6 | 46 | 286 | 0 | 46 | 280 | 0 | 0 | 6 | 2.1 | 97.9 | 2.1 |
(b) Selection for resistance to pathotype 3A: | |||||||||||
BC1F5 | 217 | 725 | 59 | 158 | 183 | 64 | 91 | 387 | 64.6 | 34.0 | 66.0 |
BC1F6 | 168 | 1109 | 53 | 115 | 90 | 24 | 36 | 959 | 89.3 | 10.3 | 89.7 |
BC1F7 | 91 | 1151 | 58 | 33 | 976 | 49 | 36 | 90 | 11.3 | 89.0 | 11.0 |
BC1F8 | 233 | 1561 | 11 | 222 | 1485 | 55 | 11 | 10 | 2.3 | 98.6 | 1.4 |
Population | Generation | No. Plants | Range | Mean ± S.E. |
---|---|---|---|---|
(B. napus × B. rapa) × B. napus | BC1F6 | 150 | 351.4–409.2 | 383.0 ± 0.9 |
B. napus (A04-73NA) | Parent | 6 | 400.3–408.2 | 404.2 ± 1.2 |
B. rapa (ECD 01) | Parent | 6 | 154.3–169.2 | 161.5 ± 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, K.; Liu, Y.; Rahman, H. Introgression of Resistance to Multiple Pathotypes of Plasmodiophora brassicae from Turnip (Brassica rapa ssp. rapifera) into Spring B. napus Canola. Agronomy 2022, 12, 1225. https://doi.org/10.3390/agronomy12051225
Kaur K, Liu Y, Rahman H. Introgression of Resistance to Multiple Pathotypes of Plasmodiophora brassicae from Turnip (Brassica rapa ssp. rapifera) into Spring B. napus Canola. Agronomy. 2022; 12(5):1225. https://doi.org/10.3390/agronomy12051225
Chicago/Turabian StyleKaur, Kawalpreet, Yingyi Liu, and Habibur Rahman. 2022. "Introgression of Resistance to Multiple Pathotypes of Plasmodiophora brassicae from Turnip (Brassica rapa ssp. rapifera) into Spring B. napus Canola" Agronomy 12, no. 5: 1225. https://doi.org/10.3390/agronomy12051225
APA StyleKaur, K., Liu, Y., & Rahman, H. (2022). Introgression of Resistance to Multiple Pathotypes of Plasmodiophora brassicae from Turnip (Brassica rapa ssp. rapifera) into Spring B. napus Canola. Agronomy, 12(5), 1225. https://doi.org/10.3390/agronomy12051225