Intermittent Deep Tillage on Improving Soil Physical Properties and Crop Performance in an Intensive Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Farming System
2.2. Experimental Design
2.3. Measurements
2.3.1. Meteorological Factors
2.3.2. Soil Chemical and Physical Characteristics
2.3.3. Crop Root Monitoring
2.3.4. Grain Yield
2.3.5. Soil Water Content, Seasonal Water Use and Water Productivity
2.4. Data Analysis
3. Results
3.1. Weather and Soil Water Conditions
3.2. The Effects of Tillage Practices on Soil Properties
3.3. The Effects of Tillage on Crop Root Growth and Soil Water Use
3.4. The Effects of Tillage on Crop Production and Water Productivity
4. Discussion
4.1. Changes in Soil Physical Properties with Different Tillage Practices
4.2. Crops Response to Different Tillage Practices
4.3. Agricultural Economy and Sustainability with Tillage Practices
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sun, H.; Zhang, X.; Wang, E.; Chen, S.; Shao, L. Quantifying the impact of irrigation on groundwater reserve and crop production–A case study in the North China Plain. Eur. J. Agron. 2015, 70, 48–56. [Google Scholar] [CrossRef]
- Liu, X.; Feike, T.; Shao, L.; Sun, H.; Chen, S.; Zhang, X. Effects of different irrigation regimes on soil compaction in a winter wheat–summer maize cropping system in the North China Plain. Catena 2016, 137, 70–76. [Google Scholar] [CrossRef]
- Liang, B.; Yang, X.; He, X.; Zhou, J. Effects of 17-year fertilization on soil microbial biomass C and N and soluble organic C and N in loessial soil during maize growth. Biol. Fertil. Soils 2010, 47, 121–128. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, X.; Rashid, M.A.; Li, H.; Jing, H.; Hochman, Z. Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change. Agric. Syst. 2019, 178, 102745. [Google Scholar] [CrossRef]
- Zhang, F.; Cui, Z.; Fan, M.; Zhang, W.; Chen, X.; Jiang, R. Integrated Soil-Crop System Management: Reducing Environmental Risk while Increasing Crop Productivity and Improving Nutrient Use Efficiency in China. J. Environ. Qual. 2011, 40, 1051–1057. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, X.; Shao, L.; Sun, H.; Niu, J.; Liu, X. Effects of straw and manure management on soil and crop performance in North China Plain. Catena 2019, 187, 104359. [Google Scholar] [CrossRef]
- Liao, Y.; Wu, W.L.; Meng, F.Q.; Smith, P.; Lal, R. Increase in soil organic carbon by agricultural intensification in northern China. Biogeosciences 2015, 12, 1403–1413. [Google Scholar] [CrossRef] [Green Version]
- Rui, W.; Zhang, W. Effect size and duration of recommended management practices on carbon sequestration in paddy field in Yangtze Delta Plain of China: A meta-analysis. Agric. Ecosyst. Environ. 2010, 135, 199–205. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Mikha, M.M.; Presley, D.; Claassen, M.M. Addition of Cover Crops Enhances No-Till Potential for Improving Soil Physical Properties. Soil Sci. Soc. Am. J. 2011, 75, 1471–1482. [Google Scholar] [CrossRef]
- Sun, H.Y.; Wang, C.X.; Wang, X.D.; Rees, R.M. Changes in soil organic carbon and its chemical fractions under different tillage practices on loess soils of the Guanzhong Plain in north-west China. Soil Use Manag. 2013, 29, 344–353. [Google Scholar] [CrossRef]
- Sekaran, U.; Sagar, K.L.; Kumar, S. Soil aggregates, aggregate-associated carbon and nitrogen, and water retention as influenced by short and long-term no-till systems. Soil Tillage Res. 2020, 208, 104885. [Google Scholar] [CrossRef]
- Kan, Z.-R.; Liu, Q.-Y.; He, C.; Jing, Z.-H.; Virk, A.L.; Qi, J.-Y.; Zhao, X.; Zhang, H.-L. Responses of grain yield and water use efficiency of winter wheat to tillage in the North China Plain. Field Crop. Res. 2020, 249, 107760. [Google Scholar] [CrossRef]
- Skaalsveen, K.; Clarke, L. Impact of no-tillage on water purification and retention functions of soil. J. Soil Water Conserv. 2021, 76, 116–129. [Google Scholar] [CrossRef]
- Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S.J. The effect of deep tillage on crop yield – What do we really know? Soil Tillage Res. 2017, 174, 193–204. [Google Scholar] [CrossRef]
- Kong, F.; Zhang, H.; Zhai, Y.; Yuan, J.; Chen, F. Effects of tillage methods on crop yield and water use characteristics in winter-wheat/summer-maize rotation system in the North China Plain. Chin. J. Eco-Agric. 2014, 22, 749–756. [Google Scholar]
- Liang, S.; Li, L.; An, P.; Chen, S.; Shao, L.; Zhang, X. Spatial soil water and nutrient distribution affecting the water productivity of winter wheat. Agric. Water Manag. 2021, 256, 107114. [Google Scholar] [CrossRef]
- Bengough, A.G.; McKenzie, B.M.; Hallett, P.D.; Valentine, T.A. Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 2011, 62, 59–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiesmeier, M.; Hübner, R.; Barthold, F.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; von Lützow, M.; Kögel-Knabner, I. Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria). Agric. Ecosyst. Environ. 2013, 176, 39–52. [Google Scholar] [CrossRef]
- Gong, J.; Zheng, Z.; Zheng, B.; Liu, Y.; Hu, R.; Gong, J.; Li, S.; Tian, L.; Tian, X.; Li, J.; et al. Deep tillage reduces the dependence of tobacco (Nicotiana tabacum L.) on arbuscular mycorrhizal fungi and promotes the growth of tobacco in dryland farming. Can. J. Microbiol. 2022, 68, 203–213. [Google Scholar] [CrossRef]
- Peixoto, D.S.; da Silva, L.D.C.M.; De Melo, L.B.B.; Azevedo, R.P.; Araújo, B.C.L.; De Carvalho, T.S.; Moreira, S.G.; Curi, N.; Silva, B.M. Occasional tillage in no-tillage systems: A global meta-analysis. Sci. Total Environ. 2020, 745, 140887. [Google Scholar] [CrossRef] [PubMed]
- Hofmeijer, M.A.; Krauss, M.; Berner, A.; Peigné, J.; Mäder, P.; Armengot, L. Effects of Reduced Tillage on Weed Pressure, Nitrogen Availability and Winter Wheat Yields under Organic Management. Agronomy 2019, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Kheir, A.M.S.; Ali, O.A.M.; Hafez, E.M.; ElShamey, E.A.; Zhou, Z.; Wang, B.; Lin, X.; Ge, Y.; Fahmy, A.E.; et al. A vermicompost and deep tillage system to improve saline-sodic soil quality and wheat productivity. J. Environ. Manag. 2021, 277, 111388. [Google Scholar] [CrossRef]
- Eck, H.V.; Unger, P.W. Soil Profile Modification for Increasing Crop Production. In Advances in Soil Science; Springer: New York, NY, USA, 1985; Volume 1, pp. 65–100. [Google Scholar] [CrossRef]
- Jansson, J.K.; Hofmockel, K.S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 2020, 18, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Hou, D. Sustainable soil management and climate change mitigation. Soil Use Manag. 2021, 37, 220–223. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Liu, X.; Liu, X.; Shao, L.; Chen, S.; Wang, J.; Dong, X. Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain. Agric. Water Manag. 2018, 211, 202–209. [Google Scholar] [CrossRef]
- Gao, W.; Hodgkinson, L.; Jin, K.; Watts, C.; Ashton, R.W.; Shen, J.; Ren, T.; Dodd, I.C.; Binley, A.; Phillips, A.L.; et al. Deep roots and soil structure. Plant Cell Environ. 2015, 39, 1662–1668. [Google Scholar] [CrossRef] [Green Version]
- Kirkegaard, J.A.; Lilley, J.; Howe, G.N.; Graham, J.M. Impact of subsoil water use on wheat yield. Aust. J. Agric. Res. 2007, 58, 303–315. [Google Scholar] [CrossRef]
- Zhang, M.-M.; Dong, B.-D.; Qiao, Y.-Z.; Shi, C.-H.; Yang, H.; Wang, Y.-K.; Liu, M.-Y. Yield and water use responses of winter wheat to irrigation and nitrogen application in the North China Plain. J. Integr. Agric. 2018, 17, 1194–1206. [Google Scholar] [CrossRef] [Green Version]
- Jiao, X.; Maimaitiyiming, A.; Salahou, M.K.; Liu, K.; Guo, W. Impact of Groundwater Level on Nitrate Nitrogen Accumulation in the Vadose Zone Beneath a Cotton Field. Water 2017, 9, 171. [Google Scholar] [CrossRef] [Green Version]
- Kemper, W.D.; Chepil, W.S. Size Distribution of Aggregates. In Methods of Soil Analysis: Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; Black, C.A., Evans, D.D., White, J.L., Ensmin, E.L.E., Clark, F.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 499–510. [Google Scholar]
- Franzluebbers, A. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Sun, H.; Pei, D.; Wang, Y. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat. Irrig. Sci. 2008, 27, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Uwimpaye, F.; Yan, Z.; Shao, L.; Chen, S.; Sun, H.; Liu, X. Water productivity improvement in summer maize – A case study in the North China Plain from 1980 to 2019. Agric. Water Manag. 2021, 247, 106728. [Google Scholar] [CrossRef]
- Chen, S.; Yang, P.; Zhang, Y.; Dong, W.; Hu, C.; Oenema, O. Responses of Cereal Yields and Soil Carbon Sequestration to Four Long-Term Tillage Practices in the North China Plain. Agronomy 2022, 12, 176. [Google Scholar] [CrossRef]
- Jin, H.; Qingjie, W.; Hongwen, L.; Lijin, L.; Huanwen, G. Effect of alternative tillage and residue cover on yield and water use efficiency in annual double cropping system in North China Plain. Soil Tillage Res. 2009, 104, 198–205. [Google Scholar] [CrossRef]
- Martínez, I.; Chervet, A.; Weisskopf, P.; Sturny, W.G.; Etana, A.; Stettler, M.; Forkman, J.; Keller, T. Two decades of no-till in the Oberacker long-term field experiment: Part I. Crop yield, soil organic carbon and nutrient distribution in the soil profile. Soil Tillage Res. 2016, 163, 141–151. [Google Scholar] [CrossRef]
- Liu, Q.; Kan, Z.; He, C.; Zhang, H. Effects of Strategic Tillage on Soil Physicochemical Properties and Grain Yield in the North China Plain. Agronomy 2020, 10, 1167. [Google Scholar] [CrossRef]
- Kuhwald, M.; Blaschek, M.; Brunotte, J.; Duttmann, R. Comparing soil physical properties from continuous conventional tillage with long-term reduced tillage affected by one-time inversion. Soil Use Manag. 2017, 33, 611–619. [Google Scholar] [CrossRef]
- Wachendorf, C.; Stuelpnagel, R.; Wachendorf, M. Influence of land use and tillage depth on dynamics of soil microbial properties, soil carbon fractions and crop yield after conversion of short-rotation coppices. Soil Use Manag. 2017, 21, 38–388. [Google Scholar] [CrossRef]
- Bienes, R.; Marques, M.J.; Sastre, B.; García-Díaz, A.; Esparza, I.; Antón, O.; Navarrete, L.; Hernánz, J.L.; Sánchez-Girón, V.; Sánchez del Arco, M.J.; et al. Tracking Changes on Soil Structure and Organic Carbon Sequestration after 30 Years of Different Tillage and Management Practices. Agronomy 2021, 11, 291. [Google Scholar] [CrossRef]
- Li, X.; Han, H.; Ning, T.; Shen, Y.; Lal, R. Variations of SOC and MBC observed in an incubated brown loam soil managed under different tillage systems for 12 years. Soil Use Manag. 2019, 35, 585–594. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, H.; Li, Z.; Liu, K.; Zamanian, K. Tillage Practice Impacts on the Carbon Sequestration Potential of Topsoil Microbial Communities in an Agricultural Field. Agronomy 2020, 11, 60. [Google Scholar] [CrossRef]
- Gómez-Rey, M.X.; García-Marco, S.; Gonzalez-Prieto, S. Soil P and cation availability and crop uptake in a forage rotation under conventional and reduced tillage. Soil Use Manag. 2014, 30, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Pei, D.; Chen, S. Root growth and soil water utilization of winter wheat in the North China Plain. Hydrol. Process. 2004, 18, 2275–2287. [Google Scholar] [CrossRef]
- Lv, G.; Han, W.; Wang, H.; Bai, W.; Song, J. Effect of subsoiling on tillers, root density and nitrogen use efficiency of winter wheat in loessal soil. Plant Soil Environ. 2019, 65, 456–462. [Google Scholar] [CrossRef] [Green Version]
- Munkholm, L.J.; Hansen, E.M.; Olesen, J.E. The effect of tillage intensity on soil structure and winter wheat root/shoot growth. Soil Use Manag. 2008, 24, 392–400. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Sun, H.; Chen, S.; Shao, L. Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply. Irrig. Sci. 2012, 31, 1103–1112. [Google Scholar] [CrossRef]
- De la Riva, E.G.; Prieto, I.; Marañón, T.; Pérez-Ramos, I.M.; Olmo, M.; Villar, R. Root economics spectrum and construction costs in Mediterranean woody plants: The role of symbiotic associations and the environment. J. Ecol. 2021, 109, 1873–1885. [Google Scholar] [CrossRef]
- Li, S.-X.; Wang, Z.-H.; Malhi, S.S.; Li, S.-Q.; Gao, Y.-J.; Tian, X.-H. Nutrient and water management effects on crop production, and nutrient and water use efficiency in dryland areas of china. Adv. Agron. 2009, 102, 223–265. [Google Scholar]
- Yan, J.; Bogie, N.A.; Ghezzehei, T.A. Root uptake under mismatched distributions of water and nutrients in the root zone. Biogeosciences 2020, 17, 6377–6392. [Google Scholar] [CrossRef]
- Fatumah, N.; Tilahun, S.A.; Mohammed, S. Water use efficiency, grain yield, and economic benefits of common beans (Phaseolus vulgaris L.) under four soil tillage systems in Mukono District, Uganda. Heliyon 2021, 7, e06308. [Google Scholar] [CrossRef]
- Teklewold, H.; Mekonnen, A. The tilling of land in a changing climate: Empirical evidence from the Nile Basin of Ethiopia. Land Use Policy 2017, 67, 449–459. [Google Scholar] [CrossRef]
- Abdalla, M.; Osborne, B.; Lanigan, G.; Forristal, D.; Williams, M.; Pea, S. Conservation tillage systems a review of its consequences for greenhouse gas emissions. Soil Use Manag. 2013, 29, 199–209. [Google Scholar] [CrossRef]
- Kan, Z.-R.; Virk, A.L.; He, C.; Liu, Q.-Y.; Qi, J.-Y.; Dang, Y.P.; Zhao, X.; Zhang, H.-L. Characteristics of carbon mineralization and accumulation under long-term conservation tillage. Catena 2020, 193, 104636. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, H.; Yin, Y.; Wang, H.; Cui, Z. Benefits and Trade-Offs of Tillage Management in China: A Meta-Analysis. Agronomy 2021, 11, 1495. [Google Scholar] [CrossRef]
- Sandén, T.; Spiegel, H.; Stüger, H.-P.; Schlatter, N.; Haslmayr, H.-P.; Zavattaro, L.; Grignani, C.; Bechini, L.; D′hose, T.; Molendijk, L.; et al. European long-term field experiments: Knowledge gained about alternative management practices. Soil Use Manag. 2018, 34, 167–176. [Google Scholar] [CrossRef]
Treatments and Their Combinations during the Four Years | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|
Continuous rotary tillage (CK, C-R) | Rotary tillage | Rotary tillage | Rotary tillage | Rotary tillage |
Continuous deep tillage (C-D) | Deep tillage | Deep tillage | Deep tillage | Deep tillage |
Deep tillage every three years (D+R+R+R) | Deep tillage | Rotary tillage | Rotary tillage | Rotary tillage |
Deep tillage every two years (D+R+R+D) | Deep tillage | Rotary tillage | Rotary tillage | Deep tillage |
Deep tillage every other year (D+R+D+R) | Deep tillage | Rotary tillage | Deep tillage | Rotary tillage |
Items | Sowing Date (Date/Month/Year) | Irrigation Amount (mm) | Irrigation Timing | Harvesting Date (Date/Month/Year) | |
---|---|---|---|---|---|
Winter wheat | 21 October 2016 | 75 | Jointing | 10 June 2017 | |
23 October 2017 | 75 | Jointing | 12 June 2018 | ||
21 October 2018 | 150 | Jointing | Grain filling | 11 June 2019 | |
16 October 2019 | 75 | Jointing | 15 June 2020 | ||
Summer maize | 15 June 2017 | 75 | After sowing | 05 October 2017 | |
18 June 2018 | 75 | 04 October 2018 | |||
27 June 2019 | 75 | 08 October 2019 | |||
21 June 2020 | 75 | 05 October 2020 |
Year | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | Average |
---|---|---|---|---|---|
Winter wheat season | |||||
Rainfall (mm) | 92.7 | 133.4 | 58.7 | 139.0 | 106.0 |
Daily average temperature (°C) | 9.79 | 8.46 | 8.87 | 9.78 | 9.23 |
Daily average relative humidity (%) | 57.81 | 51.30 | 50.17 | 56.14 | 53.85 |
Accumulated sunshine hours (h) | 1542.7 | 1601.7 | 1593.0 | 1573.0 | 1577.6 |
Summer maize season | |||||
Rainfall (mm) | 405.3 | 457.7 | 371.7 | 334.0 | 392.2 |
Daily average temperature (°C) | 25.99 | 26.24 | 25.40 | 25.44 | 25.77 |
Daily average relative humidity (%) | 68.51 | 68.01 | 65.23 | 72.30 | 68.51 |
Accumulated sunshine hours (h) | 726.2 | 803.0 | 692.3 | 581.2 | 700.7 |
Year | Treatments * | Soil Depths | |||
---|---|---|---|---|---|
0–10 cm | 10–20 cm | 20–30 cm | 30–40 cm | ||
Before Tillage | 1.42 ± 0.07 | 1.58 ± 0.05 | 1.55 ± 0.03 | 1.55 ± 0.03 | |
2016–2017 | R | 1.18 ± 0.06 a | 1.28 ± 0.05 a | 1.44 ± 0.02 a | 1.42 ± 0.02 a |
D | 1.21 ± 0.06 a | 1.29 ± 0.07 a | 1.36 ± 0.04 b | 1.43 ± 0.04 a | |
2017–2018 | R-R | 1.32 ± 0.11 a | 1.42 ± 0.14 b | 1.56 ± 0.09 a | 1.55 ± 0.04 a |
D-D | 1.34 ± 0.04 a | 1.37 ± 0.11 b | 1.45 ± 0.09 b | 1.50 ± 0.11 a | |
D-R | 1.23 ± 0.07 a | 1.56 ± 0.08 a | 1.59 ± 0.05 a | 1.51 ± 0.07 a | |
2018–2019 | R-R-R | 1.31 ± 0.05 a | 1.39 ± 0.19 a | 1.53 ± 0.12 a | 1.58 ± 0.05 a |
D-D-D | 1.28 ± 0.08 a | 1.38 ± 0.07 a | 1.45 ± 0.12 a | 1.50 ± 0.05 a | |
D-R-D | 1.22 ± 0.12 a | 1.40 ± 0.11 a | 1.41 ± 0.01 a | 1.47 ± 0.06 b | |
D-R-R | 1.33 ± 0.06 a | 1.55 ± 0.09 a | 1.49 ± 0.04 a | 1.51 ± 0.08 a | |
2019–2020 | R-R-R-R | 1.32 ± 0.12 a | 1.38 ± 0.08 a | 1.50 ± 0.15 a | 1.56 ± 0.03 a |
D-D-D-D | 1.29 ± 0.12 a | 1.34 ± 0.04 a | 1.52 ± 0.08 a | 1.55 ± 0.06 a | |
D-R-D-R | 1.26 ± 0.11 a | 1.44 ± 0.12 a | 1.54 ± 0.20 a | 1.41 ± 0.19 b | |
D-R-R-D | 1.34 ± 0.01 a | 1.31 ± 0.09 a | 1.41 ± 0.03 b | 1.51 ± 0.12 a | |
D-R-R-R | 1.28 ± 0.11 a | 1.37 ± 0.07 a | 1.58 ± 0.03 a | 1.49 ± 0.12 a |
Soil Nutrients | Treatments * | Soil Depth | Stratification Rate | |||
---|---|---|---|---|---|---|
0–10 cm | 10–20 cm | 20–30 cm | 30–40 cm | |||
Organic matter (‰) | R-R-R | 14.3 ± 1.04 b | 11.3 ± 1.01 b | 5.2 ± 1.7 a | 3.3 ± 0.54 c | 4.33 a |
D-D-D | 12.8 ± 0.71 b | 12.3 ± 1.32 b | 7.3 ± 0.65 a | 4.8 ± 0.24 b | 2.64 b | |
D-R-R | 19.5 ± 0.9 a | 16.7 ± 1.71 a | 7.98 ± 0.36 a | 6.8 ± 0.24 a | 2.46 b | |
D-R-D | 13.1 ± 1.17 b | 11.6 ± 0.62 b | 8.0 ± 1.88 a | 4.4 ± 0.42 b | 2.95 b | |
Total N (‰) | R-R-R | 0.10 ± 0.002 ab | 0.08 ± 0.007 b | 0.03 ± 0.012 b | 0.02 ± 0.005 c | 4.36 a |
D-D-D | 0.08 ± 0.004 c | 0.07 ± 0.004 b | 0.05 ± 0.020 ab | 0.04 ± 0.003 b | 2.31 b | |
D-R-R | 0.11 ± 0.022 a | 0.09 ± 0.005 a | 0.06 ± 0.004 a | 0.05 ± 0.005 a | 2.29 b | |
D-R-D | 0.08 ± 0.010 c | 0.07 ± 0.008 b | 0.06 ± 0.009 ab | 0.04 ± 0.001 b | 2.23 b | |
Available P (‰) | R-R-R | 16.66 ± 1.83 a | 11.63 ± 2.6 a | 2.75 ± 1.26 a | 1.87 ± 0.44 a | 9.28 a |
D-D-D | 10.70 ± 2.36 b | 7.96 ± 1.01 a | 4.66 ± 2.57 a | 2.24 ± 0.36 a | 4.74 b | |
D-R-R | 12.67 ± 4.67 ab | 7.72 ± 2.32 a | 3.01 ± 0.73 a | 2.70 ± 1.5 a | 5.62 ab | |
D-R-D | 14.71 ± 2.03 ab | 7.32 ± 0.09 a | 4.97 ± 0.65 a | 2.48 ± 0.99 a | 6.36 ab | |
Available K (‰) | R-R-R | 87.0 ± 6.49 c | 73.1 ± 4.89 c | 49.3 ± 3.66 c | 42.8 ± 4.18 b | 2.05 a |
D-D-D | 86.2 ± 2.01 c | 80.6 ± 2.01 b | 64.9 ± 4.29 b | 55.6 ± 3.33 b | 1.56 b | |
D-R-R | 127.3 ± 4.42 a | 111.7 ± 0.32 a | 88.2 ± 3.28 a | 77.5 ± 14.43 a | 1.67 b | |
D-R-D | 103.3 ± 5.92 b | 87.7 ± 3.83 b | 75.9 ± 4.28 ab | 64.9 ± 3.13 ab | 1.59 b |
Seasons | Treatments * | Root Length Proportion (%) | Total Root Length (km m−2) | |||
---|---|---|---|---|---|---|
0–20 cm | 20–40 cm | 40–60 cm | 60–150 cm | |||
2016/17 | R | 46.1 | 19 | 15.4 | 19.5 | 12.30 a |
D | 39 | 24.6 | 15.4 | 21 | 12.24 a | |
2017/18 | R-R | 49.5 | 15.4 | 16.1 | 19 | 8.28 b |
D-D | 40 | 25.3 | 15.9 | 18.8 | 9.35 a | |
D-R | 41.2 | 17.9 | 18.3 | 22.6 | 8.43 ab | |
2018/19 | R-R-R | 48 | 21 | 9.3 | 21.7 | 9.62 a |
D-D-D | 40.2 | 20.6 | 15.2 | 24 | 10.15 a | |
D-R-R | 41.1 | 19 | 15 | 24.9 | 10.04 a | |
D-R-D | 44.6 | 17.3 | 14.8 | 23.3 | 9.92 a | |
2019/20 | R-R-R-R | 37.7 | 14.2 | 16.8 | 31.2 | 11.35 a |
D-D-D-D | 31.4 | 18.2 | 13.3 | 37.1 | 7.54 b | |
D-R-R-R | 19 | 19.6 | 14.3 | 47.1 | 8.07 b | |
D-R-R-D | 23.1 | 14.7 | 13.7 | 48.4 | 9.20 ab | |
D-R-D-R | 31.1 | 19 | 14.3 | 35.6 | 8.31 b |
Seasons | Treatments * | Wheat Yield (t ha−1) | Maize Yield (t ha−1) | Annual Yield (t ha−1) | WP (kg m−3) | |
---|---|---|---|---|---|---|
Wheat | Maize | |||||
2016–2017 | R | 6.42 ± 0.8 a | 7.63 ± 0.4 b | 14.05 ± 0.9 b | 1.51 ± 0.3 b | 1.98 ± 0.2 b |
D | 7.48 ± 0.3 a | 8.95 ± 0.5 a | 16.43 ± 0.6 a | 1.93 ± 0.1 a | 2.26 ± 0.4 a | |
2017–2018 | R-R | 5.21 ± 0.2 c | 8.48 ± 1.0 a | 13.49 ± 0.4 a | 1.78 ± 0.1 b | 2.34 ± 0.3 a |
D-D | 6.41 ± 0.1 a | 8.71 ± 0.2 a | 15.12 ± 0.5 a | 1.93 ± 0.2 a | 2.30 ± 0.2 a | |
D-R | 5.94 ± 0.3 b | 9.14 ± 0.6 a | 14.96 ± 0.6 a | 1.95 ± 0.2 a | 2.41 ± 0.2 a | |
2018–2019 | R-R-R | 6.50 ± 0.7 b | 9.25 ± 1.8 a | 15.75 ± 1.6 a | 1.68 ± 0.2 a | 2.49 ± 0.1 a |
D-D-D | 7.01 ± 0.5 a | 8.96 ± 0.67 a | 15.97 ± 0.6 a | 1.77 ± 0.1 a | 2.21 ± 0.3 ab | |
D-R-R | 7.43 ± 0.4 a | 8.89 ± 0.8 a | 15.70 ± 0.9 a | 1.94 ± 0.1 a | 1.78 ± 0.5 bc | |
D-R-D | 7.04 ± 0.4 a | 8.66 ± 0.9 a | 16.32 ± 1.4 a | 1.96 ± 0.2 a | 2.34 ± 0.3 ab | |
2019–2020 | R-R-R-R | 7.32 ± 0.7 a | 8.29 ± 0.6 a | 15.61 ± 0.7 b | 1.77 ± 0.1 a | 2.24 ± 0.3 b |
D-D-D-D | 8.18 ± 0.8 a | 8.18 ± 0.8 a | 16.36 ± 0.8 ab | 1.88 ± 0.1 a | 2.57 ± 0.1 b | |
D-R-R-R | 7.20 ± 0.7 a | 8.43 ± 0.7 a | 15.63 ± 1.0 b | 1.85 ± 0.2 a | 2.56 ± 0.4 b | |
D-R-R-D | 8.34 ± 0.6 a | 8.91 ± 0.6 a | 17.25 ± 0.6 a | 1.73 ± 0.3 a | 2.65 ± 0.1 a | |
D-R-D-R | 7.31 ± 0.4 a | 8.13 ± 0.4 a | 15.44 ± 0.7 b | 1.84 ± 0.2 a | 2.19 ± 0.2 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Guan, J.; Chen, S.; Zhang, X. Intermittent Deep Tillage on Improving Soil Physical Properties and Crop Performance in an Intensive Cropping System. Agronomy 2022, 12, 688. https://doi.org/10.3390/agronomy12030688
Li L, Guan J, Chen S, Zhang X. Intermittent Deep Tillage on Improving Soil Physical Properties and Crop Performance in an Intensive Cropping System. Agronomy. 2022; 12(3):688. https://doi.org/10.3390/agronomy12030688
Chicago/Turabian StyleLi, Lu, Jiexi Guan, Suying Chen, and Xiying Zhang. 2022. "Intermittent Deep Tillage on Improving Soil Physical Properties and Crop Performance in an Intensive Cropping System" Agronomy 12, no. 3: 688. https://doi.org/10.3390/agronomy12030688
APA StyleLi, L., Guan, J., Chen, S., & Zhang, X. (2022). Intermittent Deep Tillage on Improving Soil Physical Properties and Crop Performance in an Intensive Cropping System. Agronomy, 12(3), 688. https://doi.org/10.3390/agronomy12030688