Mitigation of Greenhouse Gas Emissions with Biochar Application in Compacted and Uncompacted Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mesocosm Setup
2.2. Incubation Experiment and Soil Analysis
2.3. Statistical Analyses
3. Results
3.1. Effects of Soil Compaction and Biochar on N2O Emission
3.2. Effects of Soil Compaction and Biochar on CO2 Emission
3.3. Relationships between Greenhouse Emissions and Soil Properties
4. Discussion
4.1. Soil Compaction, Biochar Addition, and GHG Emission
4.2. Relationships between Greenhouse Emissions and Soil Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Zhou, F.; Shang, Z.; Ciais, P.; Winiwarter, W.; Jackson, R.B.; Tubiello, F.; Janssens-Maenhout, G.; Tian, H.; Cui, X.; et al. Data driven estimates of global nitrous oxide emissions from croplands. Natl. Sci. Rev. 2020, 7, 441–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Nawaz, M.F.; Bourrié, G.; Trolard, F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 2013, 33, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Balashov, E.; Pellegrini, S.; Bazzoffi, P. Effects of repeated passages of a wheeled tractor on some physical properties of clayey loam soil. Acta Hortic. Regiotect. 2021, 24, 109–116. [Google Scholar] [CrossRef]
- Voltr, V.; Wollnerová, J.; Fuksa, P.; Hruška, M. Influence of tillage on the production inputs, outputs, soil compaction and GHG emissions. Agriculture 2021, 11, 456. [Google Scholar] [CrossRef]
- García-Marco, S.; Ravella, S.R.; Chadwick, D.; Vallejo, A.; Gregory, A.S.; Cárdenas, L.M. Ranking factors affecting emissions of GHG from incubated agricultural soils. Eur. J. Soil Sci. 2014, 65, 573–583. [Google Scholar] [CrossRef]
- Gürsoy, S. Soil Compaction Due to Increased Machinery Intensity in Agricultural Production: Its Main Causes, Effects and Management. In Technology in Agriculture; Fiaz, A., Muhammad, S.E., Eds.; IntechOpen: London, UK, 2021; Available online: https://www.intechopen.com/chapters/77140 (accessed on 14 June 2021).
- Riggert, R.; Fleige, F.; Kietz, B.; Gaertig, T.; Horn, R. Stress distribution under forestry machinery and consequences for soil stability. Soil Sci. Soc. Am. J. 2016, 80, 38. [Google Scholar] [CrossRef]
- Horn, R.; Doma, H.; Sowiska-Jurkiewicz, A.; Van Ouwerkerk, C. Soil compaction processes and their effects on the structure of arable soils and the environment. Soil Tillage Res. 1995, 35, 23–36. [Google Scholar] [CrossRef]
- Goutal, N.; Bottinelli, N.; Gelhaye, D.; Bonnaud, P.; Nourrisson, G.; Demaison, J.; Brêthes, A.; Capowiez, Y.; Lamy, F.; Johannes, A.; et al. Le suivi de la restauration du fonctionnement de deux sols forestiers après tassement dans le Nord Est de la France. Étude et Gestion des Sols 2013, 20, 163–177. Available online: https://www.afes.fr/wp-content/uploads/2017/09/EGS_20_2_20_2_JES_Goutal_web.pdf (accessed on 11 November 2013).
- Frey, B.; Kremer, J.; Rüdt, A.; Sciacca, S.; Matthies, D.; Lüscher, P. Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. Eur. J. Soil Biol. 2009, 45, 312–320. [Google Scholar] [CrossRef]
- Weber, J. Humic substances and their role in the environment. EC Agric. 2020, 1, 3–8. [Google Scholar]
- Hamza, M.; Anderson, W. Soil compaction in cropping systems A review of the nature, causes and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Ziyaee, A.; Roshan, M.R.A. Survey study on soil compaction problems for new methods in agriculture. Int. Res. J. Appl. Basic Sci. 2012, 3, 1787–1801. Available online: https://irjabs.com/files_site/paperlist/r_121_120929150101.pdf (accessed on 25 November 2021).
- Kobza, J.; Barančíková, G.; Makovníková, J.; Pálka, B.; Styk, J.; Širaň, M. Current state and development of land degradation processes based on soil monitoring in Slovakia. Agriculture 2017, 63, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, M.; Niklaus, P.; Zimmermann, S.; Schmutz, S.; Kremer, J.; Abarekov, K.; Lüscher, P.; Widmer, F.; Frey, B. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 2014, 8, 226–244. [Google Scholar] [CrossRef]
- Frey, B.; Niklaus, P.A.; Kremer, J.; Lüscher, P.; Zimmermann, S. Heavy machinery traffic impacts methane emissions as well as methanogen abundance and community structure in Oxic forest soils. Appl. Environ. Microbiol. 2011, 77, 6060–6068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarfraz, R.; Hussain, A.; Sabir, A.; Fekih, I.B.; Ditta, A.; Xing, S. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration—A review. Environ. Monit. Assess. 2019, 191, 251. [Google Scholar] [CrossRef] [PubMed]
- Horák, J. Testing biochar as a possible way to ameliorate slightly acidic soil at the research field located in the Danubian lowland. Acta Hortic. Regiotect. 2015, 18, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Horák, J.; Šimanský, V.; Igaz, D.; Juriga, M.; Aydin, E.; Lukac, M. Biochar: An important component ameliorating the productivity of intensively used soils—Review. Pol. J. Environ. Stud. 2020, 29, 2995–3001. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, S.; Chowdhury, M.B.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Toková, L.; Igaz, D.; Horák, J.; Aydin, E. Effect of biochar application and re-application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a silty loam Haplic Luvisol. Agronomy 2020, 10, 1005. [Google Scholar] [CrossRef]
- Šimanský, V.; Šrank, D. Relationships between soil organic matter and crop yield after biochar substrates application and their combinatin with mineral fertilizers on sandy soil. Acta Hortic. Regiotect. 2021, 24, 14–20. [Google Scholar] [CrossRef]
- Šrank, D.; Šimanský, V. Differences in soil organic matter and humus of sandy soil after application of biochar substrates and combination of biochar substrates with mineral fertilizers. Acta Fytotech. Zootech. 2020, 23, 117–124. [Google Scholar] [CrossRef]
- Kotuš, T.; Horák, J. Does biochar influence soil CO2 emission four years after its application to soil? Acta Hortic. Regiotect. 2021, 24, 109–116. [Google Scholar] [CrossRef]
- Murtaza, G.; Ditta, A.; Ullah, N.; Usman, M.; Ahmed, Z. Biochar for the management of nutrient impoverished and metal contaminated soils: Preparation, applications, and prospects. J. Soil Sci. Plant Nutr. 2021, 21, 2191–2213. [Google Scholar] [CrossRef]
- Barracosa, P.; Cardoso, I.; Marques, F.; Pinto, A.; Oliveira, J.; Trindade, H.; Rodrigues, P.; Pereira, J.L.S. Efect of biochar on emission of greenhouse gases and productivity of cardoon crop (Cynara cardunculus L.). J. Soil Sci. Plant Nutr. 2020, 20, 1524–1531. [Google Scholar] [CrossRef]
- Javeed, H.M.R.; Ali, M.; Ahmed, I.; Wang, X.; Al-Ashkar, I.; Qamar, R.; Ibrahim, A.; Habib-Ur-Rahman, M.; Ditta, A.; Sabagh, A.E. Biochar enriched with buffalo slurry improved soil nitrogen and carbon dynamics, nutrient uptake and growth attributes of wheat by reducing leaching losses of nutrients. Land 2021, 10, 1392. [Google Scholar] [CrossRef]
- Šimanský, V.; Aydın, E.; Horák, J. Is It Possible to Control the Nutrient Regime of Soils with Different Texture through Biochar Substrates? Agronomy 2022, 12, 51. [Google Scholar] [CrossRef]
- Šimanský, V.; Horák, J.; Bordoloi, S. Improving the soil physical properties and relationships between soil properties in arable soils of contrasting texture enhancement using biochar substrates: Case study in Slovakia. Geoderma Reg. 2022, 28, e00443. [Google Scholar] [CrossRef]
- Głąb, T.; Palmowska, J.; Zaleski, T.; Gondek, K. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 2016, 281, 11–20. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H. Does biochar application alleviate soil compaction? Review and data synthesis. Geoderma 2021, 404, 115317. [Google Scholar] [CrossRef]
- Šimanský, V. Effects of biochar and biochar with nitrogen on soil organic matter and soil structure in Haplic Luvisol. Acta Fytotech. Zootech. 2016, 19, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Are, K.S. Biochar and soils physical health. In An Imperative Amendment for Soil and the Environment; Abrol, V., Sharma, P., Eds.; IntechOpen: Rijeka, Croatia, 2019; pp. 21–33. [Google Scholar] [CrossRef] [Green Version]
- Šimanský, V.; Horák, J.; Igaz, D.; Jonczak, J.; Markiewicz, M.; Felber, R.; Rizhiya, E.Y.; Lukac, M. How dose of biochar and biochar with nitrogen can improve the parameters of soil organic matter and soil structure? Biologia 2016, 71, 989–995. [Google Scholar] [CrossRef]
- Horák, J.; Šimanský, V. Effect of biochar on soil CO2 production. Acta Fytotech. Zootech. 2017, 4, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. Recent advances in utilization of biochar. Renew. Sustian. Energy Rev. 2015, 42, 1055–1064. [Google Scholar] [CrossRef]
- IUSS. World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Fulajtár, E. Fyzikálne vlastnosti pôd Physical Properties of Soil; VÚPOP: Bratislava, Slovakia, 2006; p. 158. (In Slovak) [Google Scholar]
- Buchkina, N.P.; Balashov, E.V.; Rizhiya, E.Y.; Smith, K.A. Nitrous oxide emissions from a light-textured arable soil of North-Western Russia: Effects of crops, fertilizers, manures and climate parameters. Nutr. Cycl. Agroecosyst. 2010, 87, 429–442. [Google Scholar] [CrossRef]
- Parkin, T.B.; Venterea, R.T.; Hargreaves, S.K. Calculating the detection limits of chamber-based soil greenhouse gas flux measurements. J. Environ. Qual. 2012, 41, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Yuen, S.H.; Pollard, A.G. Determination of nitrogen in agricultural materials by the Nessler reagent. II. Micro-determinations in plant tissue and in soil extracts. J. Sci. Food Agric. 1954, 5, 364–369. [Google Scholar] [CrossRef]
- Dziadowiec, H.; Gonet, S. Przewodnik Metodyczny do Bada’n Materii Organicznej Gleb Methodological Guidebook for the Organic Matter Researches; Prace Komisji Naukowych Polskiego Towarzystwa Naukowego 120; PTG: Warszawa, Poland, 1999; pp. 31–34. (In Polish) [Google Scholar]
- Alskaf, K.; Mooney, S.J.; Sparkes, D.L.; Wilson, P.; Sjogersten, S. Short-term impacts of different tillage practices and plant residue retention on soil physical properties and greenhouse gas emissions. Soil Tillage Res. 2021, 206, 104803. [Google Scholar] [CrossRef]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Omondi, G.; Xia, O.M.; Nahayo, X.; Liu, A.; Korai, X.; Pan, K.P. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Tullberg, J.; Antille, D.L.; Bluetta, C.; Eberhard, J.; Scheer, C. Controlled traffic farming effects on soil emissions of nitrous oxide and methane. Soil Tillage Res. 2018, 176, 18–25. [Google Scholar] [CrossRef]
- Whitman, T.; Singh, B.P.; Zimmerman, A. Priming effects in biochar amended soils: Implications of Biochar-Soil Organic Matter Interactions for Carbon Storage. In Biochar for Environmental Management: Science, Technology and Implementation; Lehmann, J., Stephen, J., Eds.; Routhledge: London, UK, 2015; pp. 455–487. [Google Scholar]
- Šimanský, V.; Horák, J.; Lukáč, M. Application of degradable carbon and nitrogen moderates carbon sequestration potential of biochar in arable soils. Ekológia 2021, 40, 124–129. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sanchez-Monedero, M.A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Esfandbod, M.; Phillips, I.R.; Miller, B.; Rashti, M.R.; Lan, Z.M.; Srivastava, P. Aged acidic biochar increases nitrogen retention and decreases ammonia volatilization in alkaline bauxite residue sand. Ecol. Eng. 2017, 98, 157–165. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinkelebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Wang, J.; Sainju, U.M.; Barsotti, J.L. Residue placement and rate, crop species, and nitrogen fertilization effects on soil greenhouse gas emissions. J. Environ. Prot. 2012, 3, 1238–1250. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, A.R.; Gao, B.; Ahn, M.Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Šimanský, V.; Horvátová, M. Soil Texture and Organic Matter in Selected Soil Types of Slovakia. In Proceedings of the Lectures from VIII of the Congress of the Slovak Society for Agricultural, Forestry, Food and Veterinary Sciences at the Slovak Academy of Sciences in Bratislava; Sobocká, J., Kobza, J., Eds.; Research Institute of Soil Science and Soil Protection: Bratislava, Slovakia, 2010; pp. 32–37. [Google Scholar]
- Šimanský, V.; Polláková, N.; Chlpík, J.; Kolenčík, M. Pôdoznalectvo Soil Science; SPU: Nitra, Slovakia, 2018; p. 398. (In Slovak) [Google Scholar]
- Wardle, D.A.; Nilsson, M.C.; Zackrisson, O. Response to comment on fire-derived charcoal causes loss of forest humus. Science 2008, 321, 1295. [Google Scholar] [CrossRef] [Green Version]
- Reeves, S.H.; Somasundaram, J.; Wang, W.J.; Heenan, M.A.; Finn, D.; Dalal, R.C. Effect of soil aggregate size and long-term contrasting tillage, stubble and nitrogen management regimes on CO2 fluxes from a Vertisol. Geoderma 2019, 337, 1086–1096. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, S.; Shen, G.; Shaaban, M.; Ju, W.; Cui, Y.; Duan, C.; Fang, L. Effects of inorganic and organic fertilizers on CO2 and CH4 fluxes from tea plantation soil. Elem. Sci. Anthr. 2021, 9, 90. [Google Scholar] [CrossRef]
- Fischer, D.; Glaser, B. Synergisms between compost and biochar for sustainable soil amelioration. In Management of Organic Waste; Kumar, S., Bharti, A., Eds.; IntechOpen: Rijeka, Croatia, 2012; pp. 167–198. [Google Scholar] [CrossRef] [Green Version]
- Balashov, E.; Buchkina, N.; Šimanský, V.; Horák, J. Effects of slow and fast pyrolysis biochar on N2O emissions and water availability of two soils with high water-filled pore space. J. Hydrol. Hydromech. 2021, 69, 467–474. [Google Scholar] [CrossRef]
- Horák, J.; Kotuš, T.; Toková, L.; Aydın, E.; Igaz, D.; Šimanský, V. A sustainable approach for improving soil properties and reducing N2O emissions is possible through initial and repeated biochar application. Agronomy 2021, 11, 582. [Google Scholar] [CrossRef]
- Šimek, M.; Cooper, J.E. The influence of soil pH on denitrification: Progress towards the understanding of this interaction over the last 50 years. Eur. J. Soil Sci. 2002, 53, 345–354. [Google Scholar] [CrossRef]
Biochar Types | B1 | B2 | B3 |
---|---|---|---|
Feedstock | Softwood from spruce (mixture of branches and wood chips) made in kon-tiki kiln | Separate from the digestate (corn) 35%, cereal straw 35%, greenery 30% | Wood pallets from softwood (spruce without bark) |
Pyrolysis temperature (°C) | 600 | 460 | 500 and 750 |
Pyrolysis duration (min) | 15 | 25 | 180–360 |
pH (H2O) | 9.7 | 9.8 | 11.4 |
C (%) | 80 | 45 | 86.8 |
N (%) | 0.3 | 1 | 0.58 |
P (g kg−1) | 0.6 | 16 | 0.72 |
K (g kg−1) | 2.4 | 17 | 3.59 |
Ca (g kg−1) | 20.4 | 56.3 | 12.94 |
Mg (g kg−1) | 1.3 | 6.6 | 2.43 |
specific surface area (SSA) (m2 g−1) | 301 | 120 | 444 |
Regression Summary for Dependent Variable: N2O | ||||||||||||
R = 0.067142835 R2 = 0.45081603 Adjusted R2 = 0.33519836 | R = 0.55106459 R2 = 0.30367218 Adjusted R2 = 0.15707685 | |||||||||||
F (4.19) = 3.8992 p < 0.01779 Standard Error of Estimate: 5.8556 | F (4.19) = 2.0715 p < 0.12477 Standard Error of Estimate: 20.492 | |||||||||||
Compacted | Uncompacted | |||||||||||
b * | Standard Error of b * | b | Standard Error of b | t (19) | p-Value | b * | Standard Error of b * | b | Standard Error of b | t (19) | p-Value | |
Intercept | 67.924 | 97.782 | 0.695 | 0.496 | 526.164 | 310.221 | 1.696 | 0.106 | ||||
NH4+ | 0.500 | 0.188 | 0.233 | 0.088 | 2.662 | 0.015 | 0.247 | 0.217 | 0.275 | 0.240 | 1.142 | 0.268 |
NO3− | −0.055 | 0.196 | −0.028 | 0.100 | −0.278 | 0.784 | −0.020 | 0.228 | −0.079 | 0.878 | −0.090 | 0.930 |
pH | −0.195 | 0.258 | −11.072 | 14.702 | −0.753 | 0.461 | −0.431 | 0.275 | −76.277 | 48.555 | −1.571 | 0.133 |
SOC | 0.486 | 0.258 | 0.269 | 0.143 | 1.881 | 0.075 | 0.009 | 0.263 | 0.012 | 0.340 | 0.034 | 0.973 |
Regression Summary for Dependent Variable: CO2 | ||||||||||||
R = 0.71504881 R2 = 0.51129480 Adjusted R2 = 0.40840949 | R = 0.41932597 R2 = 0.17583427 Adjusted R2 = 0.00232569 | |||||||||||
F (4.19) = 4.9696 p < 0.00651 Standard Error of Estimate: 8.2868 | F (4.19) = 1.0134 p < 0.42532 Standard Error of Estimate: 28.129 | |||||||||||
Compacted | Uncompacted | |||||||||||
b * | Standard Error of b * | b | Standard Error of b | t (19) | p-Value | b * | Standard Error of b* | b | Standard Error of b | t (19) | p-Value | |
Intercept | 117.905 | 138.380 | 0.852 | 0.405 | 64.161 | 425.829 | 0.151 | 0.882 | ||||
NH4+ | 0.452 | 0.177 | 0.316 | 0.124 | 2.553 | 0.019 | 0.361 | 0.236 | 0.505 | 0.330 | 1.530 | 0.143 |
NO3− | −0.160 | 0.185 | 0.316 | 0.142 | −0.864 | 0.399 | −0.084 | 0.248 | −0.408 | 1.205 | −0.339 | 0.738 |
pH | −0.217 | 0.244 | −0.123 | 20.806 | −0.890 | 0.385 | −0.040 | 0.299 | −8.879 | 66.650 | −0.133 | 0.895 |
SOC | 0.532 | 0.244 | −18.518 | 0.203 | 2.183 | 0.042 | 0.051 | 0.286 | 0.083 | 0.467 | 0.177 | 0.862 |
Treatments | Linear Model | Trend | Probability | Linear Model | Trend | Probability |
---|---|---|---|---|---|---|
Compacted | Uncompacted | |||||
N | N2O = −0.00005 soil pH + 6.59 | n.d. | n.s. | N2O = −0.0156 soil pH + 6.62 | decrease | 0.595 ** |
N2O = 0.0316 NO3− + 47.01 | n.d. | n.s. | N2O = 0.3011 NO3− + 54.03 | n.d. | n.s. | |
N2O = 0.0141 NH4+ + 15.87 | n.d. | n.s. | N2O = 4.5145 NH4+ + 17.76 | increase | 0.644 ** | |
N2O = 0.006 SOC + 14.44 | n.d. | n.s. | N2O = −0.363 SOC + 14.38 | n.d. | n.s. | |
N + B1 | N2O = −0.0077 soil pH + 6.86 | decrease | 0.559 * | N2O = −0.0132 soil pH + 6.88 | decrease | 0.664 ** |
N2O = −0.726 NO3− + 37.13 | n.d. | n.s. | N2O = −0.9659 NO3− + 60.74 | decrease | 0.575 ** | |
N2O = 2.3578 NH4+ + 9.47 | increase | 0.680 ** | N2O = 6.0922 NH4+ + 10.62 | increase | 0.802 *** | |
N2O = 0.3697 SOC + 25.09 | n.d. | n.s. | N2O = −0.5007 SOC + 27.27 | n.d. | n.s. | |
N + B2 | N2O = −0.001 soil pH + 6.84 | n.d. | n.s. | N2O = –0.0057 soil pH + 6.84 | n.d. | n.s. |
N2O = −0.355 NO3− + 56.66 | decrease | 0.468 * | N2O = −0.3472 NO3− + 56.72 | n.d. | n.s. | |
N2O = 0.739 NH4+ + 12.58 | increase | 0.666 ** | N2O = 3.0485 NH4+ + 21.57 | increase | 0.532 * | |
N2O = −0.009 SOC + 35.03 | n.d. | n.s. | N2O = −3.6418 SOC + 46.07 | decrease | 0.732 *** | |
N + B3 | N2O = −0.0032 soil pH + 6.89 | decrease | 0.723 *** | N2O = –0.0105 soil pH + 6.90 | decrease | 0.495 * |
N2O = 0.1923 NO3− + 22.84 | n.d. | n.s. | N2O = −1.2616 NO3− + 57.92 | decrease | 0.631 ** | |
N2O = 0.6088 NH4+ + 8.77 | increase | 0.672 ** | N2O = 3.7047 NH4+ + 17.68 | increase | 0.630 ** | |
N2O = −0.1178 SOC + 48.70 | n.d. | n.s. | N2O = 0.4076 SOC + 51.80 | n.d. | n.s. |
Treatments | Linear Model | Trend | Probability | Linear Model | Trend | Probability |
---|---|---|---|---|---|---|
Compacted | Uncompacted | |||||
N | CO2 = −0.0015 soil pH + 6.59 | decrease | 0.558 * | CO2 = −0.0007 soil pH + 6.59 | n.d. | n.s. |
CO2 = −0.103 NO3− + 47.45 | n.d. | n.s. | CO2 = 0.1209 NO3− + 54.71 | n.d. | n.s. | |
CO2 = 0.2429 NH4+ + 17.26 | n.d. | n.s. | CO2 = 2.1865 NH4+ + 28.23 | increase | 0.684 ** | |
CO2 = −0.0033 SOC + 14.59 | n.d. | n.s. | CO2 = −0.0893 SOC + 13.60 | n.d. | n.s. | |
N + B1 | CO2 = −0.0003 soil pH + 6.84 | n.d. | n.s. | CO2 = −0.0033 soil pH + 6.85 | n.d. | n.s. |
CO2 = −0.2583 NO3− + 33.81 | decrease | 0.699 ** | CO2 = 0.0522 NO3− + 58.18 | n.d. | n.s. | |
CO2 = 0.2756 NH4+ + 17.91 | increase | 0.531 * | CO2 = 1.7288 NH4+ + 26.58 | increase | 0.550 * | |
CO2 = −0.0028 SOC + 26.22 | n.d. | n.s. | CO2 = −0.0606 SOC + 25.95 | n.d. | n.s. | |
N + B2 | CO2 = −0.0004 soil pH + 6.83 | n.d. | n.s. | CO2 = 0.0006 soil pH + 6.83 | n.d. | n.s. |
CO2 = −0.1026 NO3− + 54.27 | n.d. | n.s. | CO2 = −0.2835 NO3− + 57.37 | decrease | 0.470 * | |
CO2 = 0.2464 NH4+ + 17.42 | increase | 0.510 * | CO2 = 0.6126 NH4+ + 23.76 | increase | 0.494 * | |
CO2 = 0.0563 SOC + 34.75 | n.d. | n.s. | CO2 = −0.129 SOC + 40.92 | n.d. | n.s. | |
N + B3 | CO2 = 0.0003 soil pH + 6.86 | n.d. | n.s. | CO2 = 0.0044 soil pH + 6.87 | n.d. | n.s. |
CO2 = −0.0953 NO3− + 24.66 | n.d. | n.s. | CO2 = 0.2228 NO3− + 54.41 | n.d. | n.s. | |
CO2 = 0.1356 NH4+ + 16.71 | n.d. | n.s. | CO2 = −2.2031 NH4+ + 20.93 | n.d. | 0.808 *** | |
CO2 = 0.045 SOC + 47.52 | n.d. | n.s. | CO2 = −0.6719 SOC + 50.20 | n.d. | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horák, J.; Šimanský, V.; Kotuš, T.; Hnátková, T.; Trakal, L.; Lukac, M. Mitigation of Greenhouse Gas Emissions with Biochar Application in Compacted and Uncompacted Soil. Agronomy 2022, 12, 546. https://doi.org/10.3390/agronomy12030546
Horák J, Šimanský V, Kotuš T, Hnátková T, Trakal L, Lukac M. Mitigation of Greenhouse Gas Emissions with Biochar Application in Compacted and Uncompacted Soil. Agronomy. 2022; 12(3):546. https://doi.org/10.3390/agronomy12030546
Chicago/Turabian StyleHorák, Ján, Vladimír Šimanský, Tatijana Kotuš, Tereza Hnátková, Lukáš Trakal, and Martin Lukac. 2022. "Mitigation of Greenhouse Gas Emissions with Biochar Application in Compacted and Uncompacted Soil" Agronomy 12, no. 3: 546. https://doi.org/10.3390/agronomy12030546
APA StyleHorák, J., Šimanský, V., Kotuš, T., Hnátková, T., Trakal, L., & Lukac, M. (2022). Mitigation of Greenhouse Gas Emissions with Biochar Application in Compacted and Uncompacted Soil. Agronomy, 12(3), 546. https://doi.org/10.3390/agronomy12030546