Leaching of Glyphosate and AMPA from Field Lysimeters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agronomic Practices Adopted in the Previous Years and Lysimeter Preparation
2.2. Soil Moisture Measurements
2.3. Glyphosate and AMPA Analysis
2.4. AMPA/Glyphosate Ratio (AMPA/GLY Ratio)
2.5. Statistical Analysis
2.6. Weather Conditions
3. Results
3.1. Percolation Volumes
3.2. Glyphosate and AMPA Concentrations
3.2.1. Season 2013
3.2.2. Season 2014
3.2.3. AMPA/GLY Ratio
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- VeVereecken, H. Mobility and Leaching of Glyphosate: A Review. Pest Manag. Sci. Former. Pestic. Sci. 2005, 61, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Van Bruggen, A.H.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.; Finckh, M.; Morris, J., Jr. Environmental and Health Effects of the Herbicide Glyphosate. Sci. Total Environ. 2018, 616, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Borggaard, O.K.; Gimsing, A.L. Fate of Glyphosate in Soil and the Possibility of Leaching to Ground and Surface Waters: A Review. Pest Manag. Sci. Former. Pestic. Sci. 2008, 64, 441–456. [Google Scholar] [CrossRef] [PubMed]
- Okada, E.; Costa, J.L.; Bedmar, F. Adsorption and Mobility of Glyphosate in Different Soils under No-till and Conventional Tillage. Geoderma 2016, 263, 78–85. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An International Database for Pesticide Risk Assessments and Management. Hum. Ecol. Risk Assess. 2016, 22, 1050–1064. [Google Scholar] [CrossRef] [Green Version]
- Simonsen, L.; Fomsgaard, I.S.; Svensmark, B.; Spliid, N.H. Fate and Availability of Glyphosate and AMPA in Agricultural Soil. J. Environ. Sci. Health Part B 2008, 43, 365–375. [Google Scholar] [CrossRef]
- Gimsing, A.L.; Borggaard, O.K.; Jacobsen, O.S.; Aamand, J.; Sørensen, J. Chemical and Microbiological Soil Characteristics Controlling Glyphosate Mineralisation in Danish Surface Soils. Appl. Soil Ecol. 2004, 27, 233–242. [Google Scholar] [CrossRef]
- Nguyen, N.K.; Dörfler, U.; Welzl, G.; Munch, J.C.; Schroll, R.; Suhadolc, M. Large Variation in Glyphosate Mineralization in 21 Different Agricultural Soils Explained by Soil Properties. Sci. Total Environ. 2018, 627, 544–552. [Google Scholar] [CrossRef]
- Grandcoin, A.; Piel, S.; Baures, E. AminoMethylPhosphonic Acid (AMPA) in Natural Waters: Its Sources, Behavior and Environmental Fate. Water Res. 2017, 117, 187–197. [Google Scholar] [CrossRef]
- Rampazzo, N.; Rampazzo Todorovic, G.; Mentler, A.; Blum, W.E. Adsorption of Glyphosate and Aminomethylphosphonic Acid in Soils. Int. Agrophys. 2013, 27, 203–209. [Google Scholar] [CrossRef]
- Kjær, J.; Olsen, P.; Ullum, M.; Grant, R. Leaching of Glyphosate and Amino-methylphosphonic Acid from Danish Agricultural Field Sites. J. Environ. Qual. 2005, 34, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Borggaard, O. Does Phosphate Affect Soil Sorption and Degradation of Glyphosate? A Review. Trends Soil Plant Sci. J. 2011, 2, 11. [Google Scholar]
- Carter, A. How Pesticides Get into Water-and Proposed Reduction Measures. Pestic. Outlook 2000, 11, 149–156. [Google Scholar] [CrossRef]
- ANSES. Glyphosate: ANSES Reviews the Monitoring Data. The French Agency for Food, Environmental and Occupational Health & Safety. 2019. Available online: https://www.anses.fr/en/content/glyphosate-anses-reviews-monitoring-data (accessed on 20 December 2021).
- Paris, P.; Pace, E.; Maschio, G.; Ursino, G. Rapporto Nazionale Pesticidi Nelle Acque. Dati 2017–2018. Edizione 2020. 2020. Available online: https://sinacloud.isprambiente.it/portal/apps/sites/?fromEdit=true#/portalepesticidi/pages/rapporti (accessed on 20 December 2021).
- Poiger, T.; Buerge, I.J.; Bächli, A.; Müller, M.D.; Balmer, M.E. Occurrence of the Herbicide Glyphosate and Its Metabolite AMPA in Surface Waters in Switzerland Determined with On-Line Solid Phase Extraction LC-MS/MS. Environ. Sci. Pollut. Res. 2017, 24, 1588–1596. [Google Scholar] [CrossRef] [PubMed]
- Rendon-von Osten, J.; Dzul-Caamal, R. Glyphosate Residues in Groundwater, Drinking Water and Urine of Subsistence Farmers from Intensive Agriculture Localities: A Survey in Hopelchén, Campeche, Mexico. Int. J. Environ. Res. Public Health 2017, 14, 595. [Google Scholar] [CrossRef]
- Scribner, E.A.; Battaglin, W.A.; Gilliom, R.J.; Meyer, M.T. Concentrations of Glyphosate, Its Degradation Product, Aminomethylphosphonic Acid, and Glufosinate in Ground- and Surface-Water, Rainfall, and Soil Samples Collected in the United States, 2001–2006; Scientific Investigation Report 2007-5122. U.S.; Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2007. [Google Scholar]
- Jayasumana, C.; Paranagama, P.; Agampodi, S.; Wijewardane, C.; Gunatilake, S.; Siribaddana, S. Drinking Well Water and Occupational Exposure to Herbicides Is Associated with Chronic Kidney Disease, in Padavi-Sripura, Sri Lanka. Environ. Health 2015, 14, 6. [Google Scholar] [CrossRef] [Green Version]
- Napoli, M.; Cecchi, S.; Zanchi, C.A.; Orlandini, S. Leaching of Glyphosate and Aminomethylphosphonic Acid through Silty Clay Soil Columns under Outdoor Conditions. J. Environ. Qual. 2015, 44, 1667–1673. [Google Scholar] [CrossRef]
- Milan, M.; Ferrero, A.; Fogliatto, S.; Piano, S.; Vidotto, F. Leaching of S-Metolachlor, Terbuthylazine, Desethyl-Terbuthylazine, Mesotrione, Flufenacet, Isoxaflutole, and Diketonitrile in Field Lysimeters as Affected by the Time Elapsed between Spraying and First Leaching Event. J. Environ. Sci. Health Part B 2015, 50, 851–861. [Google Scholar] [CrossRef]
- Norgaard, T.; Moldrup, P.; Ferré, T.P.; Olsen, P.; Rosenbom, A.E.; de Jonge, L.W. Leaching of Glyphosate and Aminomethylphosphonic Acid from an Agricultural Field over a Twelve-year Period. Vadose Zone J. 2014, 13, vzj2014-05. [Google Scholar] [CrossRef]
- Kladivko, E.J.; Brown, L.C.; Baker, J.L. Pesticide Transport to Subsurface Tile Drains in Humid Regions of North America. Crit. Rev. Environ. Sci. Technol. 2001, 31, 1–62. [Google Scholar] [CrossRef]
- Flury, M. Experimental Evidence of Transport of Pesticides through Field Soils—A Review. J. Environ. Qual. 1996, 25, 25–45. [Google Scholar] [CrossRef]
- Nicholls, P.H. Factors Influencing Entry of Pesticides into Soil Water. Pestic. Sci. 1988, 22, 123–137. [Google Scholar] [CrossRef]
- Bergström, L. Use of Lysimeters to Estimate Leaching of Pesticides in Agricultural Soils. Environ. Pollut. 1990, 67, 325–347. [Google Scholar] [CrossRef]
- Winton, K.; Weber, J.B. A Review of Field Lysimeter Studies to Describe the Environmental Fate of Pesticides. Weed Technol. 1996, 10, 202–209. [Google Scholar] [CrossRef]
- Grignani, C.; Zavattaro, L.; Sacco, D.; Gilardi, M. Misure Di Evapotraspirazione Da Sistemi Colturali Foraggeri Utilizzando Lisimetri a Percolazione. In Proceedings of the Congress Agro-Meteorology to Monitor Water Consumption, Sassari, Italy, November 1999; pp. 165–174. [Google Scholar]
- Zavattaro, L.; Grignani, C. Deriving Hydrological Parameters for Modeling Water Flow under Field Conditions. Soil Sci. Soc. Am. J. 2001, 65, 655–667. [Google Scholar] [CrossRef]
- Zavattaro, L.; Grignani, C.; Sacco, D.; Ferraris, S. Confronto Tra Metodi per La Misura Dell’evapotraspirazione Utilizzando Lisimetri a Percolazione. In Proceedings of the Congress Agro-Meteorology to Monitor Water Consumption, Sassari, Italy, November 1999; pp. 357–365. [Google Scholar]
- Zavattaro, L.; Grignani, C. Rappresentatività Di Lisimetri a Percolazione Di Grandi Dimensioni per Lo Studio Dei Consumi Idrici Delle Colture. In Proceedings of the Congress Agro-Meteorology to Monitor Water Consumption, Sassari, Italy, November 1999; pp. 349–356. [Google Scholar]
- Rivoira, C. L’efficienza di Diversi Metodi Irrigui in Risicoltura; Università di Torino: Torino, Italy, 2007. [Google Scholar]
- Thurman, E.M.; Goolsby, D.A.; Meyer, M.T.; Mills, M.S.; Pomes, M.L.; Kolpin, D.W. A Reconnaissance Study of Herbicides and Their Metabolites in Surface Water of the Midwestern United States Using Immunoassay and Gas Chromatography/Mass Spectrometry. Environ. Sci. Technol. 1992, 26, 2440–2447. [Google Scholar] [CrossRef] [Green Version]
- Bozzo, S.; Azimonti, G.; Villa, S.; Di Guardo, A.; Finizio, A. Spatial and Temporal Trend of Groundwater Contamination from Terbuthylazine and Desethyl-Terbuthylazine in the Lombardy Region (Italy). Environ. Sci. Processes Impacts 2013, 15, 366–372. [Google Scholar] [CrossRef]
- Adams, C.D.; Thurman, E.M. Formation and Transport of Deethylatrazine in the Soil and Vadose Zone. J. Environ. Qual. 1991, 20, 540–547. [Google Scholar] [CrossRef]
- Giuliano, S.; Alletto, L.; Deswarte, C.; Perdrieux, F.; Daydé, J.; Debaeke, P. Reducing Herbicide Use and Leaching in Agronomically Performant Maize-Based Cropping Systems: An 8-Year Study. Sci. Total Environ. 2021, 788, 147695. [Google Scholar] [CrossRef]
- Al-Rajab, A.J.; Amellal, S.; Schiavon, M. Sorption and Leaching of 14 C-Glyphosate in Agricultural Soils. Agron. Sustain. Dev. 2008, 28, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Sassman, J.; Pienta, R.; Jacobs, M.; Cioffi, J. Pesticide Background Statements: Herbicides; Forest Service, U.S. Department of Agriculture: Washington, DC, USA, 1984; Volume 1. [Google Scholar]
- Rasmussen, S.B.; Abrahamsen, P.; Nielsen, M.H.; Holm, P.E.; Hansen, S. Effects of Single Rainfall Events on Leaching of Glyphosate and Bentazone on Two Different Soil Types, Using the DAISY Model. Vadose Zone J. 2015, 14, vzj2014-11. [Google Scholar] [CrossRef]
- Lewan, E.; Kreuger, J.; Jarvis, N. Implications of Precipitation Patterns and Antecedent Soil Water Content for Leaching of Pesticides from Arable Land. Agric. Water Manag. 2009, 96, 1633–1640. [Google Scholar] [CrossRef]
- Al-Rajab, A.J.; Schiavon, M. Degradation of 14C-Glyphosate and Aminomethylphosphonic Acid (AMPA) in Three Agricultural Soils. J. Environ. Sci. 2010, 22, 1374–1380. [Google Scholar] [CrossRef]
- Bento, C.P.; Goossens, D.; Rezaei, M.; Riksen, M.; Mol, H.G.; Ritsema, C.J.; Geissen, V. Glyphosate and AMPA Distribution in Wind-Eroded Sediment Derived from Loess Soil. Environ. Pollut. 2017, 220, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
Soil Component | % |
---|---|
Sand | 34.8 |
Silt | 59.8 |
Clay | 5.4 |
Organic matter * | 0.44 |
Days Elapsed between the Treatment and the First Irrigation | 2013 | 2014 |
---|---|---|
DAT (1° irrigation) | Percolated water (L) | |
1 | 57 (±13) | NL |
7 | 12 (±2) | 7 (±2) |
14 | 14 (±8) | NL |
28 | 11 (±5) | 38 (±23) |
Days Elapsed between the treatment and the Second Irrigation | Percolated water (L) | |
DAT (2° irrigation) | ||
(15) 1 + 14 | 53 (±10) | 72 (±23) |
(21) 7 + 14 | 21 (±5) | 18 (±9) |
(28) 14 + 14 | 146 (±45) | 103 (±3) |
(42) 28 + 14 | 3 (±2) | 2 (±1) |
DAT | 2013 | 2014 |
---|---|---|
Soil moisture (%) ± SE | ||
1 | 19.6 (±0.29) a | 18.9 (±0.09) b |
7 | 18.4 (±0.82) a | 17.3 (±0.25) b |
14 | 17.9 (±0.79) a | 17.0 (±0.16) b |
28 | 20.8 (±0.53) a | 18.3 (±0.14) b |
(15) 1 + 14 | 18.1 (±0.38) | 20.5 (±0.27) |
(21) 7 + 14 | 20.2 (±1.15) | 20.6 (±0.18) |
(28) 14 + 14 | 20.2 (±0.28) | 20.5 (±0.30) |
(42) 28 + 14 | 20.2 (±0.35) a | 19.5 (±0.03) b |
2013 | 2014 | 2013 | 2014 | 2013 | 2014 | |
---|---|---|---|---|---|---|
DAT 1° Irrigation | GLY µg/L | GLY µg/L | AMPA µg/L | AMPA µg/L | ||
1 | 1.39 (±0.60) | - | 0.97 (±0.35) | - | 0.7 | - |
7 | 0.59 (±0.28) a | 0.19 (±0.09) b | 0.22 (±0.10) | <0.1 | 0.4 | ≤0.5 |
14 | 0.57 (±0.22) | - | 0.18 (±0.05) | - | 0.3 | - |
28 | 0.27(±0.13) | 0.52 (±0.40) | 0.11 (±0.01) | <0.1 | 0.4 | ≤0.2 |
DAT 2° irrigation | ||||||
(15) 1 + 14 | 1.04 (±0.45) a | 0.13 (±0.04) b | 0.84 (±0.28) A | 0.22 (±0.09) B | 0.8 | 1.7 |
(21) 7 + 14 | 1.19 (±0.70) | <0.1 | 0.11 (±0.01) | <0.1 | 0.1 | ≤1 |
(28) 14 + 14 | 0.28 (±0.10) | 0.12 (±0.02) | 0.08 (±0.01) B | 0.52 (±0.30) A | 0.3 | 4.3 |
(42) 28 + 14 | <0.1 | <0.1 | 1.07 (±0.25) | <0.1 | ≥1 | ≥1 |
2013 | 2014 | |||
---|---|---|---|---|
GLY | AMPA | GLY | AMPA | |
1° irrigation | 0.725 ** | 0.665 * | 0.850 * | - |
2° irrigation | −0.462 | −0.375 | 0.337 | 0.875 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milan, M.; Vidotto, F.; Fogliatto, S. Leaching of Glyphosate and AMPA from Field Lysimeters. Agronomy 2022, 12, 328. https://doi.org/10.3390/agronomy12020328
Milan M, Vidotto F, Fogliatto S. Leaching of Glyphosate and AMPA from Field Lysimeters. Agronomy. 2022; 12(2):328. https://doi.org/10.3390/agronomy12020328
Chicago/Turabian StyleMilan, Marco, Francesco Vidotto, and Silvia Fogliatto. 2022. "Leaching of Glyphosate and AMPA from Field Lysimeters" Agronomy 12, no. 2: 328. https://doi.org/10.3390/agronomy12020328
APA StyleMilan, M., Vidotto, F., & Fogliatto, S. (2022). Leaching of Glyphosate and AMPA from Field Lysimeters. Agronomy, 12(2), 328. https://doi.org/10.3390/agronomy12020328