Reversion of Perennial Biomass Crops to Conserve C and N: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.1.1. Soil
2.1.2. Crops
2.1.3. Time
2.1.4. Climate
2.2. Effect Size and Meta-Analysis
3. Results
3.1. Reversion of Perennial Crops
Variable | Mean | Minimum | Maximum |
---|---|---|---|
Latitude | 48.24 | 41.88 | 53.82 |
Longitude | 49.35 | −100.63 | 124.31 |
Elevation * (m) | 310 | 22 | 1350 |
Mean annual temperature (°C) | 6.29 | −1 | 12 |
Mean annual precipitation (mm) | 565 | 350 | 815 |
Duration (years) | 14 | 5 | >75 |
Years from reversion | 13 | 1 | 70 |
SOC stock (0–30 cm, Mg ha−1) | 61.9 | 24.0 | 92.1 |
STN stock (0–30 cm, Mg ha−1) | 4.6 | 1.9 | 8.2 |
Depth of reversion (cm) | 30 | 15 | 40 |
Reference | Country | Location | Climate | Depth (cm) | MAT (°C) | MAP (mm) | Elevation (a.m.s.l) | Crop | Perennial Crop Type | Main Crop | Duration | YFR | Texture Class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Toenshoff et al. (2013) [31] | Germany | Georgenhof | Continental | 0–30 | 8 | 740 | 322 | Poplar | Perennial biomass crop | Corn | 20 | 1 | silty loam |
Toenshoff et al. (2013) [31] | Germany | Georgenhof | Continental | 0–30 | 8 | 740 | 322 | Poplar | Perennial biomass crop | Lolium perenne | 20 | 1 | silty loam |
Toenshoff et al. (2013) [31] | Germany | Watchum | Continental | 0–30 | 9 | 815 | 22 | Poplar | Perennial biomass crop | Corn | 20 | 1 | sandy loam |
Toenshoff et al. (2013) [31] | Germany | Watchum | Continental | 0–30 | 9 | 815 | 22 | Poplar | Perennial biomass crop | Lolium perenne | 20 | 1 | sandy loam |
Toenshoff et al. (2013) [31] | Germany | Georgenhof | Continental | 0–30 | 8 | 740 | 322 | Willow | Perennial biomass crop | Corn | 20 | 1 | silty loam |
Toenshoff et al. (2013) [31] | Germany | Georgenhof | Continental | 0–30 | 8 | 740 | 322 | Willow | Perennial biomass crop | Lolium perenne | 20 | 1 | silty loam |
Wachendorf et al. (2017) [45] | Germany | Georgenhof | Continental | 0–30 | 8 | 740 | 322 | Poplar | Perennial biomass crop | Corn | 20 | 4 | silty loam |
Wachendorf et al. (2017) [45] | Germany | Georgenhof | Continental | 0–30 | 8 | 740 | 322 | Poplar | Perennial biomass crop | Lolium perenne | 20 | 4 | silty loam |
Wachendorf et al. (2017) [45] | Germany | Watchum | Continental | 0–30 | 9 | 815 | 22 | Poplar | Perennial biomass crop | Corn | 20 | 4 | sandy loam |
Wachendorf et al. (2017) [45] | Germany | Watchum | Continental | 0–30 | 9 | 815 | 22 | Poplar | Perennial biomass crop | Lolium perenne | 20 | 4 | sandy loam |
Wachendorf et al. (2017) [45] | Germany | Georgenhof | Continental | 0–30 | 8 | 740 | 322 | Willow | Perennial biomass crop | Corn | 20 | 4 | silty loam |
Wachendorf et al. (2017) [45] | Germany | Georgenhof | Continental | 0–30 | 8 | 740 | 322 | Willow | Perennial biomass crop | Lolium perenne | 20 | 4 | silty loam |
Qi et al. (2012) [46] | China | Xilin River Basin | Semi-Arid | 0–100 | −1 | 450 | 1350 | Mixture | Multiannual biomass crops | Wheat | >75 | 36 | NA |
Dufossé et al. (2014) [47] | France | Paris | Oceanic | 0–45 | 12 | 557 | NA | Miscanthus | Perennial biomass crop | Wheat | 20 | 1 | silty loam |
Dufossé et al. (2014) [47] | France | Paris | Oceanic | 0–45 | 12 | 557 | NA | Miscanthus | Perennial biomass crop | Bare soil | 20 | 1 | silty loam |
Ding et al. (2013) [48] | China | Duerbote 1 | Continental | 0–100 | 4 | 407 | 150 | Mixture | Multiannual biomass crops | Corn | >75 | 30 | silty loam |
Ding et al. (2013) [48] | China | Duerbote 2 | Continental | 0–100 | 4 | 407 | 150 | Mixture | Multiannual biomass crops | Corn | >75 | 70 | silty loam |
Ding et al. (2013) [48] | China | Changling 1 | Continental | 0–100 | 5 | 470 | 150 | Mixture | Multiannual biomass crops | Sunflower | >75 | 2 | silty loam |
Ding et al. (2013) [48] | China | Changling 2 | Continental | 0–100 | 5 | 470 | 150 | Mixture | Multiannual biomass crops | Sunflower | >75 | 15 | silty loam |
Ding et al. (2013) [48] | China | Kezuohouqi 1 | Continental | 0–100 | 6 | 450 | 260 | Alfalfa | Multiannual biomass crops | Corn | 3 | 15 | sandy loam |
Ding et al. (2013) [48] | China | Kezuohouqi 2 | Continental | 0–100 | 6 | 450 | 260 | Mixture | Multiannual biomass crops | Corn | >75 | 4 | loam |
Wienhold & Tanaka (2001) [49] | USA | North Dakota | Continental | 0–15 | 4 | 410 | 549 | Alfalfa | Multiannual biomass crops | Wheat | 6 | 2 | loam |
Wang et al. (2008) [50] | China | Site 1 | Semi-Arid | 0–100 | 1 | 350 | NA | Mixture | Multiannual biomass crops | Wheat | >75 | 35 | sandy loam |
Wang et al. (2008) [50] | China | Site 2 | Semi-Arid | 0–100 | 1 | 350 | NA | Mixture | Multiannual biomass crops | Corn | >75 | 20 | sandy loam |
Wang et al. (2008) [50] | China | Site 3 | Semi-Arid | 0–100 | 1 | 350 | NA | Mixture | Multiannual biomass crops | Wheat | >75 | 33 | sandy loam |
Wang et al. (2008) [50] | China | Site 4 | Semi-Arid | 0–100 | 1 | 350 | NA | Mixture | Multiannual biomass crops | Wheat | >75 | 36 | sandy loam |
Kahle et al. (2013) [51] | Germany | Gülzow | Continental | 0–90 | 9 | 578 | NA | Poplar | Perennial biomass crop | Barley | 17 | 1 | sandy loam |
Rowe et al. (2020) [52] | UK | Nottingham | Continental | 0–100 | 10 | 741 | NA | Miscanthus | Perennial biomass crop | Wheat | 6 | 3 | sandy loam |
Rowe et al. (2020) [52] | UK | Taunton A | Continental | 0–100 | 11 | 734 | NA | Miscanthus | Perennial biomass crop | Wheat | 6 | 4 | silty loam |
Rowe et al. (2020) [52] | UK | Taunton A | Continental | 0–100 | 11 | 734 | NA | Miscanthus | Perennial biomass crop | Wheat | 7 | 3 | silty loam |
Rowe et al. (2020) [52] | UK | Taunton B | Continental | 0–100 | 11 | 734 | NA | Miscanthus | Perennial biomass crop | Alfalfa | 5 | 4 | silty loam |
3.2. Effect of Crop Type
3.3. Effect of Environmental Conditions
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- FAO. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; Volume 4, ISBN 1815-6797. [Google Scholar]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s Contribution to Climate Change and Role in Mitigation Is Distinct From Predominantly Fossil CO2-Emitting Sectors. Front. Sustain. Food Syst. 2021, 4, 300. [Google Scholar] [CrossRef]
- Paustian, K.; Larson, E.; Kent, J.; Marx, E.; Swan, A. Soil C Sequestration as a Biological Negative Emission Strategy. Front. Clim. 2019, 1, 49–57. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration to Mitigate Climate Change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Herzfeld, T.; Heinke, J.; Rolinski, S.; Müller, C. Soil Organic Carbon Dynamics from Agricultural Management Practices under Climate Change. Earth Syst. Dyn. 2021, 12, 1037–1055. [Google Scholar] [CrossRef]
- Lal, R. Digging Deeper: A Holistic Perspective of Factors Affecting Soil Organic Carbon Sequestration in Agroecosystems. Glob. Chang. Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef] [PubMed]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.S.; Cheng, K.; Das, B.S.; et al. Soil Carbon 4 per Mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Ledo, A.; Smith, P.; Zerihun, A.; Whitaker, J.; Vicente-Vicente, J.L.; Qin, Z.; McNamara, N.P.; Zinn, Y.L.; Llorente, M.; Liebig, M.; et al. Changes in Soil Organic Carbon under Perennial Crops. Glob. Chang. Biol. 2020, 26, 4158–4168. [Google Scholar] [CrossRef]
- Walter, K.; Don, A.; Flessa, H. No General Soil Carbon Sequestration under Central European Short Rotation Coppices. GCB Bioenergy 2015, 7, 727–740. [Google Scholar] [CrossRef]
- Chimento, C.; Amaducci, S. Characterization of Fine Root System and Potential Contribution to Soil Organic Carbon of Six Perennial Bioenergy Crops. Biomass Bioenergy 2015, 83, 116–122. [Google Scholar] [CrossRef]
- Chimento, C.; Almagro, M.; Amaducci, S. Carbon Sequestration Potential in Perennial Bioenergy Crops: The Importance of Organic Matter Inputs and Its Physical Protection. GCB Bioenergy 2016, 8, 111–121. [Google Scholar] [CrossRef]
- Lemus, R.; Lal, R. Bioenergy Crops and Carbon Sequestration. Crit. Rev. Plant Sci. 2005, 24, 365–384. [Google Scholar] [CrossRef]
- Martani, E.; Ferrarini, A.; Serra, P.; Pilla, M.; Marcone, A.; Amaducci, S. Belowground Biomass C Outweighs Soil Organic C of Perennial Energy Crops: Insights from a Long-term Multispecies Trial. GCB Bioenergy 2021, 13, 459–472. [Google Scholar] [CrossRef]
- Lask, J.; Magenau, E.; Ferrarini, A.; Kiesel, A.; Wagner, M.; Lewandowski, I. Perennial Rhizomatous Grasses: Can They Really Increase Species Richness and Abundance in Arable Land?—A Meta-Analysis. GCB Bioenergy 2020, 12, 968–978. [Google Scholar] [CrossRef]
- Scordia, D.; Cosentino, S.L. Perennial Energy Grasses: Resilient Crops in a Changing European Agriculture. Agriculture 2019, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, M.A.; Adler, P.R. Perennial Forages as Second Generation Bioenergy Crops. Int. J. Mol. Sci. 2008, 9, 768–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprunger, C.D.; Culman, S.W.; Peralta, A.L.; DuPont, S.T.; Lennon, J.T.; Snapp, S.S. Perennial Grain Crop Roots and Nitrogen Management Shape Soil Food Webs and Soil Carbon Dynamics. Soil Biol. Biochem. 2019, 137, 107573. [Google Scholar] [CrossRef]
- Amaducci, S.; Facciotto, G.; Bergante, S.; Perego, A.; Serra, P.; Ferrarini, A.; Chimento, C. Biomass Production and Energy Balance of Herbaceous and Woody Crops on Marginal Soils in the Po Valley. GCB Bioenergy 2017, 9, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Clifton-Brown, J.; Hastings, A.; Mos, M.; McCalmont, J.P.; Ashman, C.; Awty-Carroll, D.; Cerazy, J.; Chiang, Y.C.; Cosentino, S.; Cracroft-Eley, W.; et al. Progress in Upscaling Miscanthus Biomass Production for the European Bio-Economy with Seed-Based Hybrids. GCB Bioenergy 2017, 9, 6–17. [Google Scholar] [CrossRef] [Green Version]
- Haberzettl, J.; Hilgert, P.; von Cossel, M. A Critical Review on Lignocellulosic Biomass Yield Modeling and the Bioenergy Potential from Marginal Land. Agronomy 2021, 11, 2397. [Google Scholar] [CrossRef]
- Lewandowski, I.; Scurlock, J.M.O.; Lindvall, E.; Christou, M. The Development and Current Status of Perennial Rhizomatous Grasses as Energy Crops in the US and Europe. Biomass Bioenergy 2003, 25, 335–361. [Google Scholar] [CrossRef]
- Asbjornsen, H.; Hernandez-Santana, V.; Liebman, M.; Bayala, J.; Chen, J.; Helmers, M.; Ong, C.K.; Schulte, L.A. Targeting Perennial Vegetation in Agricultural Landscapes for Enhancing Ecosystem Services. Renew. Agric. Food Syst. 2014, 29, 101–125. [Google Scholar] [CrossRef] [Green Version]
- Ferrarini, A.; Bini, C.; Amaducci, S. Soil and Ecosystem Services: Current Knowledge and Evidences from Italian Case Studies. Appl. Soil Ecol. 2018, 123, 693–698. [Google Scholar] [CrossRef]
- Ferrarini, A.; Serra, P.; Almagro, M.; Trevisan, M.; Amaducci, S. Multiple Ecosystem Services Provision and Biomass Logistics Management in Bioenergy Buffers: A State-of-the-Art Review. Renew. Sustain. Energy Rev. 2017, 73, 277–290. [Google Scholar] [CrossRef]
- Ferrarini, A.; Martani, E.; Fornasier, F.; Amaducci, S. High C Input by Perennial Energy Crops Boosts Belowground Functioning and Increases Soil Organic P Content. Agric. Ecosyst. Environ. 2021, 308, 107247. [Google Scholar] [CrossRef]
- Ferrarini, A.; Fornasier, F.; Serra, P.; Ferrari, F.; Trevisan, M.; Amaducci, S. Impacts of Willow and Miscanthus Bioenergy Buffers on Biogeochemical N Removal Processes along the Soil-Groundwater Continuum. GCB Bioenergy 2017, 9, 246–261. [Google Scholar] [CrossRef]
- Agostini, A.; Serra, P.; Giuntoli, J.; Martani, E.; Ferrarini, A.; Amaducci, S. Biofuels from Perennial Energy Crops on Buffer Strips: A Win-Win Strategy. J. Clean. Prod. 2021, 297, 126703. [Google Scholar] [CrossRef]
- Ferrarini, A.; Fracasso, A.; Spini, G.; Fornasier, F.; Taskin, E.; Fontanella, M.C.; Beone, G.M.; Amaducci, S.; Puglisi, E.; Saleem, M. Bioaugmented Phytoremediation of Metal-Contaminated Soils and Sediments by Hemp and Giant Reed. Front. Microbiol. 2021, 12, 645893. [Google Scholar] [CrossRef]
- Lewandowski, I. The Role of Perennial Biom Ass Crops in a Growing Bioeconomy. In Perennial Biomass Crops for a Resource-Constrained World; Springer: Cham, Switzerland, 2016; pp. 1–313. [Google Scholar] [CrossRef]
- Ledo, A.; Hillier, J.; Smith, P.; Aguilera, E.; Blagodatskiy, S.; Brearley, F.Q.; Datta, A.; Diaz-Pines, E.; Don, A.; Dondini, M.; et al. A Global, Empirical, Harmonised Dataset of Soil Organic Carbon Changes under Perennial Crops. Sci. Data 2019, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Toenshoff, C.; Georg, R.; Stuelpnagel, R.; Wachendorf, C. Dynamics of Soil Organic Carbon Fractions One Year after the Re-Conversion of Poplar and Willow Plantations to Arable Use and Perennial Grassland. Agric. Ecosyst. Environ. 2013, 174, 21–27. [Google Scholar] [CrossRef]
- Toenshoff, C.; Joergensen, R.G.; Stuelpnagel, R.; Wachendorf, C. Initial Decomposition of Post-Harvest Crown and Root Residues of Poplars as Affected by N Availability and Particle Size. Biol. Fertil. Soils 2014, 50, 675–683. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Can No-Tillage Stimulate Carbon Sequestration in Agricultural Soils? A Meta-Analysis of Paired Experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Terrer, C.; Phillips, R.P.; Hungate, B.A.; Rosende, J.; Pett-Ridge, J.; Craig, M.E.; van Groenigen, K.J.; Keenan, T.F.; Sulman, B.N.; Stocker, B.D.; et al. A Trade-off between Plant and Soil Carbon Storage under Elevated CO2. Nature 2021, 591, 599–603. [Google Scholar] [CrossRef]
- Casas, P. Package ‘FunModeling’. CRAN 2020. FunModeling: Explenatory Data Analysis and Data Preparation Toolbox. Available online: https://cran.r-project.org/web/packages/funModeling/index.html (accessed on 15 June 2020).
- Borenstein, M.; Hedges, L.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis; Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Viechtbauer, W. Package “Metafor”. The Metafor Package: A Meta-Analysis Package for R. Available online: https://www.metafor-project.org/doku.php/metafor (accessed on 6 November 2021).
- Viechtbauer, W. Bias and Efficiency of Meta-Analytic Variance Estimators in the Random-Effects Model. J. Educ. Behav. Stat. 2005, 30, 261–293. [Google Scholar] [CrossRef]
- Veroniki, A.A.; Jackson, D.; Viechtbauer, W.; Bender, R.; Bowden, J.; Knapp, G.; Kuss, O.; Higgins, J.P.; Langan, D.; Salanti, G. Methods to Estimate the Between-Study Variance and Its Uncertainty in Meta-Analysis. Res. Synth. Methods 2016, 7, 55–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viechtbauer, W. Conducting Meta-Analyses in R with the Metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Hothorn, T.; Bretz, F.; Westfall, P.; Heiberger, R.M.; Schuetzenmeister, A.; Scheibe, S. Package ‘Multcomp’. In Simultaneous Inference in General Parametric Models; Project for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Lumley, T. Package ‘Leaps’. CRAN 2020. Regression Subset Selection. Thomas Lumley Based on Fortran Code by Alan Miller. Available online: http://CRAN.R-project.org/package=leaps (accessed on 18 March 2018).
- Groempings, U.; Lehrkamp, M. Package ‘Relaimpo’. In Relative Importance of Regressors in Linear Models; R Fundation for Statstical Computing: Vienna, Austria, 2021. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Fundation for Statstical Computing: Vienna, Austria, 2020. [Google Scholar]
- Wachendorf, C.; Stuelpnagel, R.; Wachendorf, M. Influence of Land Use and Tillage Depth on Dynamics of Soil Microbial Properties, Soil Carbon Fractions and Crop Yield after Conversion of Short-Rotation Coppices. Soil Use Manag. 2017, 33, 379–388. [Google Scholar] [CrossRef]
- Qi, Y.; Dong, Y.; Peng, Q.; Xiao, S.; He, Y.; Liu, X.; Sun, L.; Jia, J.; Yang, Z. Effects of a Conversion from Grassland to Cropland on the Different Soil Organic Carbon Fractions in Inner Mongolia, China. J. Geogr. Sci. 2012, 22, 315–328. [Google Scholar] [CrossRef] [Green Version]
- Dufossé, K.; Drewer, J.; Gabrielle, B.; Drouet, J.L. Effects of a 20-Year Old Miscanthus × Giganteus Stand and Its Removal on Soil Characteristics and Greenhouse Gas Emissions. Biomass Bioenergy 2014, 69, 198–210. [Google Scholar] [CrossRef]
- Ding, F.; Hu, Y.L.; Li, L.J.; Li, A.; Shi, S.; Lian, P.Y.; Zeng, D.H. Changes in Soil Organic Carbon and Total Nitrogen Stocks after Conversion of Meadow to Cropland in Northeast China. Plant Soil 2013, 373, 659–672. [Google Scholar] [CrossRef]
- Wienhold, B.J.; Tanaka, D.L. Soil Property Changes during Conversion from Perennial Vegetation to Annual Cropping. Soil Sci. Soc. Am. J. 2001, 65, 1795–1803. [Google Scholar] [CrossRef]
- Wang, Z.P.; Han, X.G.; Li, L.H. Effects of Grassland Conversion to Croplands on Soil Organic Carbon in the Temperate Inner Mongolia. J. Environ. Manag. 2008, 86, 529–534. [Google Scholar] [CrossRef]
- Kahle, P.; Möller, J.; Baum, C.; Gurgel, A. Tillage-Induced Changes in the Distribution of Soil Organic Matter and the Soil Aggregate Stability under a Former Short Rotation Coppice. Soil Tillage Res. 2013, 133, 49–53. [Google Scholar] [CrossRef]
- Rowe, R.L.; Keith, A.M.; Elias, D.M.O.; Mcnamara, N.P. Soil Carbon Stock Impacts Following Reversion of Miscanthus × Giganteus and Short Rotation Coppice Willow Commercial Plantations into Arable Cropping. GCB Bioenergy 2020, 12, 680–693. [Google Scholar] [CrossRef]
- Mangold, A.; Lewandowski, I.; Kiesel, A. How Can Miscanthus Fields Be Reintegrated into a Crop Rotation? GCB Bioenergy 2019, 11, 1348–1360. [Google Scholar] [CrossRef]
- Drewer, J.; Dufossé, K.; Skiba, U.M.; Gabrielle, B. Changes in Isotopic Signatures of Soil Carbon and CO2 Respiration Immediately and One Year after Miscanthus Removal. GCB Bioenergy 2016, 8, 59–65. [Google Scholar] [CrossRef] [Green Version]
- McCalmont, J.P.; Rowe, R.; Elias, D.; Whitaker, J.; McNamara, N.P.; Donnison, I.S. Soil Nitrous Oxide Flux Following Land-Use Reversion from Miscanthus and SRC Willow to Perennial Ryegrass. GCB Bioenergy 2018, 10, 914–929. [Google Scholar] [CrossRef]
- Moore, C.E.; Berardi, D.M.; Blanc-Betes, E.; Dracup, E.C.; Egenriether, S.; Gomez-Casanovas, N.; Hartman, M.D.; Hudiburg, T.; Kantola, I.; Masters, M.D.; et al. The Carbon and Nitrogen Cycle Impacts of Reverting Perennial Bioenergy Switchgrass to an Annual Maize Crop Rotation. GCB Bioenergy 2020, 12, 941–954. [Google Scholar] [CrossRef]
- Beuschel, R.; Piepho, H.P.; Joergensen, R.G.; Wachendorf, C. Effects of Converting a Temperate Short-Rotation Coppice to a Silvo-Arable Alley Cropping Agroforestry System on Soil Quality Indicators. Agrofor. Syst. 2020, 94, 389–400. [Google Scholar] [CrossRef]
- Toenshoff, C.; Stuelpnagel, R.; Joergensen, R.G.; Wachendorf, C. Carbon in Plant Biomass and Soils of Poplar and Willow Plantations-Implications for SOC Distribution in Different Soil Fractions after Re-Conversion to Arable Land. Plant Soil 2013, 367, 407–417. [Google Scholar] [CrossRef]
- Rumpel, C.; Kögel-Knabner, I. Deep Soil Organic Matter-a Key but Poorly Understood Component of Terrestrial C Cycle. Plant Soil 2011, 338, 143–158. [Google Scholar] [CrossRef]
- Ferrarini, A.; Martani, E.; Amaducci, S.; Mondini, C.; Fornasier, F. Short-Term Mineralization of Perennial Energy Crops Belowground-Biomass: Implications for Conversion to Arable Land. Agronomy 2022. submitted. [Google Scholar]
- Berhongaray, G.; Cotrufo, F.M.; Janssens, I.A.; Ceulemans, R. Below-Ground Carbon Inputs Contribute More than above-Ground Inputs to Soil Carbon Accrual in a Bioenergy Poplar Plantation. Plant Soil 2019, 434, 363–378. [Google Scholar] [CrossRef] [Green Version]
- de Graaff, M.-A.; Jastrow, J.D.; Gillette, S.; Johns, A.; Wullschleger, S.D. Differential Priming of Soil Carbon Driven by Soil Depth and Root Impacts on Carbon Availability. Soil Biol. Biochem. 2014, 69, 147–156. [Google Scholar] [CrossRef]
- Christensen, B.T.; Lærke, P.E.; Jørgensen, U.; Kandel, T.P.; Thomsen, I.K. Storage of Miscanthus-Derived Carbon in Rhizomes, Roots, and Soil. Can. J. Soil Sci. 2016, 360, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Holder, A.J.; Clifton-Brown, J.; Rowe, R.; Robson, P.; Elias, D.; Dondini, M.; McNamara, N.P.; Donnison, I.S.; McCalmont, J.P. Measured and Modelled Effect of Land-Use Change from Temperate Grassland to Miscanthus on Soil Carbon Stocks after 12 Years. GCB Bioenergy 2019, 11, 1173–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zatta, A.; Clifton-Brown, J.; Robson, P.; Hastings, A.; Monti, A. Land Use Change from C3 Grassland to C4 Miscanthus: Effects on Soil Carbon Content and Estimated Mitigation Benefit after Six Years. GCB Bioenergy 2014, 6, 360–370. [Google Scholar] [CrossRef] [Green Version]
- Klimešová, J.; Martínková, J. Belowground Plant Functional Ecology: De Towards an Integrated Perspective. Funct. Ecol. 2018, 32, 2115–2126. [Google Scholar] [CrossRef] [Green Version]
- Monti, A.; Zatta, A. Root Distribution and Soil Moisture Retrieval in Perennial and Annual Energy Crops in Northern Italy. Agric. Ecosyst. Environ. 2009, 132, 252–259. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Masters, M.D.; Black, C.K.; Zeri, M.; Hussain, M.Z.; Bernacchi, C.J.; DeLucia, E.H. Altered Belowground Carbon Cycling Following Land-Use Change to Perennial Bioenergy Crops. Ecosystems 2013, 16, 508–520. [Google Scholar] [CrossRef]
- Ma, W.H.; Yang, Y.H.; He, J.S.; Zeng, H.; Fang, J.Y. Above- and Belowground Biomass in Relation to Environmental Factors in Temperate Grasslands, Inner Mongolia. Sci. China Ser. C Life Sci. 2008, 51, 263–270. [Google Scholar] [CrossRef]
- Agostini, F.; Gregory, A.S.; Richter, G.M. Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out? BioEnergy Res. 2015, 8, 1057–1080. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.E.; Follett, R.F.; Pruessner, E.G.; Varvel, G.E.; Vogel, K.P.; Mitchell, R.B. N Fertilizer and Harvest Impacts on Bioenergy Crop Contributions to SOC. GCB Bioenergy 2016, 8, 1201–1211. [Google Scholar] [CrossRef]
- Zimmermann, J.; Dondini, M.; Jones, M.B. Assessing the Impacts of the Establishment of Miscanthus on Soil Organic Carbon on Two Contrasting Land-Use Types in Ireland. Eur. J. Soil Sci. 2013, 64, 747–756. [Google Scholar] [CrossRef]
- Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing Soil Organic Matter into Particulate and Mineral-Associated Forms to Address Global Change in the 21st Century. Glob. Chang. Biol. 2020, 26, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Elliott, E.T.; Paustian, K. Aggregate and Soil Organic Matter Dynamics under Conventional and No-Tillage Systems. Soil Sci. Soc. Am. J. 1999, 63, 1350–1358. [Google Scholar] [CrossRef] [Green Version]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of Mechanisms and Quantification of Priming Effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Ranalli, M.G.; Haddix, M.L.; Six, J.; Lugato, E. Soil Carbon Storage Informed by Particulate and Mineral-Associated Organic Matter. Nat. Geosci. 2019, 12, 989–994. [Google Scholar] [CrossRef]
- Zhu, X.; Jackson, R.D.; DeLucia, E.H.; Tiedje, J.M.; Liang, C. The Soil Microbial Carbon Pump: From Conceptual Insights to Empirical Assessments. Glob. Chang. Biol. 2020, 26, 6032–6039. [Google Scholar] [CrossRef]
- Liang, C.; Zhu, X. The Soil Microbial Carbon Pump as a New Concept for Terrestrial Carbon Sequestration. Sci. China Earth Sci. 2021, 64, 545–558. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Crotty, F.; Elsen, A.; Frac, M.; Kismányoky, T.; Lipiec, J.; Tits, M.; Tóth, Z.; Kätterer, T. The Effect of Crop Residues, Cover Crops, Manures and Nitrogen Fertilization on Soil Organic Carbon Changes in Agroecosystems: A Synthesis of Reviews. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 929–952. [Google Scholar] [CrossRef]
- Kirkby, C.A.; Richardson, A.E.; Wade, L.J.; Conyers, M.; Kirkegaard, J.A. Inorganic Nutrients Increase Humification Efficiency and C-Sequestration in an Annually Cropped Soil. PLoS ONE 2016, 11, e0153698. [Google Scholar] [CrossRef] [Green Version]
- Kirkby, C.A.; Richardson, A.E.; Wade, L.J.; Batten, G.D.; Blanchard, C.; Kirkegaard, J.A. Carbon-Nutrient Stoichiometry to Increase Soil Carbon Sequestration. Soil Biol. Biochem. 2013, 60, 77–86. [Google Scholar] [CrossRef]
- Fang, Y.; Singh, B.P.; Cowie, A.; Wang, W.; Arachchi, M.H.; Wang, H.; Tavakkoli, E. Balancing Nutrient Stoichiometry Facilitates the Fate of Wheat Residue carbon in Physically Defined Soil Organic Matter Fractions. Geoderma 2019, 354, 113883. [Google Scholar] [CrossRef]
- Wang, G.; Luo, Z.; Han, P.; Chen, H.; Xu, J. Critical Carbon Input to Maintain Current Soil Organic Carbon Stocks in Global Wheat Systems. Nat. Publ. Group 2016, 13, 19327. [Google Scholar] [CrossRef] [Green Version]
- Doetterl, S.; Stevens, A.; Six, J.; Merckx, R.; van Oost, K.; Pinto, M.C.; Casanova-katny, A.; Muñoz, C.; Boudin, M.; Venegas, E.Z.; et al. Soil Carbon Storage Controlled by Interactions between Geochemistry and Climate. Nat. Geosci. 2015, 8, 780–783. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; van Wesemael, B.; Schumacher, J.; Gensior, A. Temporal Dynamics of Soil Organic Carbon after Land-Use Change in the Temperate Zone-Carbon Response Functions as a Model Approach. Glob. Chang. Biol. 2011, 17, 2415–2427. [Google Scholar] [CrossRef]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of Tropical Land-Use Change on Soil Organic Carbon Stocks—A Meta-Analysis. Glob. Chang. Biol. 2011, 17, 1658–1670. [Google Scholar] [CrossRef] [Green Version]
- Wiesmeier, M.; von Lützow, M.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; Kögel-Knabner, I. Land Use Effects on Organic Carbon Storage in Soils of Bavaria: The Importance of Soil Types. Soil Tillage Res. 2015, 146, 296–302. [Google Scholar] [CrossRef]
- von Lützow, M.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of Organic Matter in Temperate Soils: Mechanisms and Their Relevance under Different Soil Conditions—A Review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A History of Research on the Link between (Micro)Aggregates, Soil Biota, and Soil Organic Matter Dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
Overall | Element | Effect (%) | Lower CI (%) | Upper CI (%) | p-Value |
---|---|---|---|---|---|
Carbon | −5.03 | −11.58 | +1.53 | ns | |
Nitrogen | +2.56 | −4.62 | +9.75 | ns | |
Depth (cm) | Element | Effect (%) | Lower CI (%) | Upper CI (%) | p-Value |
0–30 | Carbon | −4.79 | −13.59 | +4.02 | ns |
30–100 | Carbon | −5.74 | −15.49 | +4.00 | ns |
0–30 | Nitrogen | 2.35 | −6.90 | +11.59 | ns |
30–100 | Nitrogen | 3.94 | −6.81 | +14.69 | ns |
Time | Element | Effect (%) | Lower CI | Upper CI (%) | p-Value |
1st | Carbon | +15.24 | +3.48 | +27.00 | 0.01 |
2–5th | Carbon | −10.69 | −27.14 | +5.74 | ns |
1st | Nitrogen | +12.28 | +1.59 | +22.96 | 0.002 |
2–5th | Nitrogen | +3.46 | −18.91 | +25.83 | ns |
Variable | Residual Standard Error | Multiple R2 | Adjusted R2 | f-Statistic | p-Value | Significant Predictors (% Relative Importance) * |
---|---|---|---|---|---|---|
Change of SOC stock (Mg ha−1) | 0.279 | 0.48 | 0.35 | 3.681 | 0.015 | Duration (42%) |
Other predictors (% relative importance) | ||||||
MAP (28%), YFR (12%), MAT (9%), Initial C stock (6%), |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martani, E.; Ferrarini, A.; Amaducci, S. Reversion of Perennial Biomass Crops to Conserve C and N: A Meta-Analysis. Agronomy 2022, 12, 232. https://doi.org/10.3390/agronomy12020232
Martani E, Ferrarini A, Amaducci S. Reversion of Perennial Biomass Crops to Conserve C and N: A Meta-Analysis. Agronomy. 2022; 12(2):232. https://doi.org/10.3390/agronomy12020232
Chicago/Turabian StyleMartani, Enrico, Andrea Ferrarini, and Stefano Amaducci. 2022. "Reversion of Perennial Biomass Crops to Conserve C and N: A Meta-Analysis" Agronomy 12, no. 2: 232. https://doi.org/10.3390/agronomy12020232
APA StyleMartani, E., Ferrarini, A., & Amaducci, S. (2022). Reversion of Perennial Biomass Crops to Conserve C and N: A Meta-Analysis. Agronomy, 12(2), 232. https://doi.org/10.3390/agronomy12020232