The Application of Fertilizer Phosphorus Affected Olsen P and the Phosphorus Fractions of Hedley Method in Black Soil
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description
2.2. Experiment Design
2.3. Soil Sampling and Data
2.4. Formula Calculation and Statistical Analysis
2.5. Statistical Analyses
3. Results
3.1. ΔOlsen P and P Budget
3.2. Fractions of P
3.3. Relation of Olsen P Change with P Fractions
3.4. Relation of Olsen P Change with Other Factors
4. Discussion
4.1. Effects of Fertilization on Olsen P
4.2. Effects of P Fractions and Soil Properties on Olsen P
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, M.; Chen, J.; Sun, F. Agricultural phosphorus flow and its environmental impacts in China. Sci. Total Environ. 2008, 405, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Rowe, H.; Withers, P.J.A.; Baas, P.; Chan, N.I.; Doody, D.; Holiman, J.; Jacobs, B.; Li, H.G.; MacDonald, G.K.; McDowell, R.; et al. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutr. Cycl. Agroecosyst. 2015, 104, 393–412. [Google Scholar] [CrossRef]
- Koopmans, G.F.; Chardon, W.J.; Dolfing, J.; Oenema, O.; van der Meer, P.; van Riemsdijk, W.H. Wet chemical and phosphorus 31 nuclear magnetic resonance analysis of phosphorus speciation in a sandy soil receiving long-term fertilizer or animal manure applications. J. Environ. Qual. 2003, 32, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Ockenden, M.C.; Hollaway, M.J.; Beven, K.J.; Collins, A.L.; Evans, R.; Falloon, P.D.; Forber, K.J.; Hiscock, K.M.; Kahana, R.; Macleod, C.J.A.; et al. Major agricultural changes required to mitigate phosphorus losses under climate change. Nat. Commun. 2017, 8, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, L.; Xue, X.G.; Tang, Q.H.; Zhu, Y.; Xiao, L.J.; Yang, Y.; Lin, Q.Q. Phosphorus retention and loss in three types of soils with implications for geographical pattern of eutrophication in China. Water Environ. J. 2019, 34, 9–18. [Google Scholar] [CrossRef]
- Cao, N.; Chen, X.P.; Cui, Z.L.; Zhang, F.S. Change in soil available phosphorus in relation to the phosphorus budget in China. Nutr. Cycl. Agroecosyst. 2012, 94, 161–170. [Google Scholar] [CrossRef]
- Messiga, A.J.; Ziadi, N.; Ple’net, D.; Parent, L.E.; Morel, C. Long-term changes in soil phosphorus status related to P budgets under maize monoculture and mineral P fertilization. Soil Use Manag. 2010, 26, 354–364. [Google Scholar] [CrossRef]
- Shen, P.; Xu, M.G.; Zhang, H.M.; Yang, X.Y.; Huang, S.M.; Zhang, S.X.; He, X.H. Long-term response of soil Olsen P and organic C to the depletion or addition of chemical and organic fertilizers. Catena 2014, 118, 20–27. [Google Scholar] [CrossRef]
- Zhan, X.Y.; Zhang, L.; Zhou, B.K.; Zhu, P.; Zhang, S.X.; Xu, M.G. Changes in Olsen Phosphorus Concentration and Its Response to Phosphorus Balance in Black Soils under Different Long-Term Fertilization Patterns. PLoS ONE 2015, 10, e0131713. [Google Scholar] [CrossRef]
- Zhang, W.W.; Wang, Q.; Wu, Q.H.; Zhang, S.X.; Zhu, P.; Peng, C.; Huang, S.M.; Wang, B.R.; Zhang, H.M. The response of soil Olsen P to the P budgets of three typical cropland soil types under long-term fertilization. PLoS ONE 2020, 15, e0230178. [Google Scholar] [CrossRef] [PubMed]
- Aulakh, M.S.; Garg, A.K.; Kabba, B.S. Phosphorus accumulation, leaching and residual effects on crop yields from long-term application in the subtropics. Soil Use Manag. 2007, 23, 417–427. [Google Scholar] [CrossRef]
- Blake, L.; Mercik, S.; Koerschens, M.; Moskal, S.; Poulton, P.R.; Goulding, K.W.T.; Weige, A.; Powlson, D.S. Phosphorus content in soil, uptake by plants and budget in three European long-term field experiments. Nutr. Cycl. Agroecosyst. 2000, 56, 263–275. [Google Scholar] [CrossRef]
- Tiessen, H.; Moir, J. Characterization of Available P by Sequential Extraction; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. J. Soil Sci. Soc. Am. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Meyer, G.; Bell, M.J.; Doolette, C.L.; Brunetti, G.; Zhang, Y.Q.; Lombi, E.; Kopittke, P.M. Plant-Available Phosphorus in Highly Concentrated Fertilizer Bands: Effects of Soil Type, Phosphorus Form, and Coapplied Potassium. J. Agric. Food Chem. 2020, 68, 29. [Google Scholar] [CrossRef] [PubMed]
- 16 Fang, H.W.; Chen, M.H.; Chen, Z.H.; Zhao, H.M.; He, G.J. Effects of sediment particle morphology on adsorption of phosphorus elements. Int. J. Sediment Res. 2013, 28, 246–253. [Google Scholar] [CrossRef]
- Yan, X.; Wei, Z.Q.; Hong, Q.Q.; Lu, Z.H.; Wu, J.F. Phosphorus fractions and sorption characteristics in a subtropical paddy soil as influenced by fertilizer sources. Geoderma 2017, 295, 80–85. [Google Scholar] [CrossRef]
- Schmiedera, F.; Bergströma, L.; Riddlea, M.; Gustafssona, J.P.; Klysubunb, W.; Zehetnerc, F.; Condrond, L.; Kirchmanna, H. Phosphorus speciation in a long-term manure-amended soil profile-Evidence from wet chemical extraction, 31P-NMR and P K-edge XANES spectroscopy. Geoderma 2018, 322, 19–27. [Google Scholar] [CrossRef]
- Wu, Q.H.; Zhang, S.X.; Zhu, P.; Huang, S.M.; Wang, B.R.; Zhao, L.P.; Xu, M.G. Characterizing differences in the phosphorus activation coefficient of three typical cropland soils and the influencing factors under long-term fertilization. PLoS ONE 2017, 12, e0176437. [Google Scholar] [CrossRef] [Green Version]
- Luo, G.B. FAO World Soil Legend Classification System Revision. Adv. Soil Sci. 1988, 6, 22–32. (In Chinese) [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; Miscellaneous Paper; Institute for Agricultural Research: Samaru, Nigeria, 1954. [Google Scholar]
- Lu, R.K. Analytical Methods of Soil and Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 1999. (In Chinese) [Google Scholar]
- D´iaz, I.; Torrent, J. Changes in Olsen P in Relation to P Balance in Contrasting Agricultural Soils. Pedosphere 2016, 26, 636–642. [Google Scholar] [CrossRef]
- Medinski, T.; Freese, D.; Reitz, T. Changes in soil phosphorus balance and phosphorus-use efficiency under long-term fertilization conducted on agriculturally used Chernozem in Germany. Can. J. Soil Sci. 2018, 98, 650–662. [Google Scholar] [CrossRef]
- Fox, R.L.; Kamprath, E.J. Phosphate Sorption Isotherms for Evaluating the Phosphate Requirements of Soils. Soil Sci. Soc. Am. J. 1970, 34, 902–907. [Google Scholar] [CrossRef]
- Yang, X.Y.; Chen, X.W.; Yang, X.T. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil Tillage Res. 2019, 187, 85–91. [Google Scholar] [CrossRef]
- Luo, L.; Ma, Y.B.; Sanders, R.L.; Xu, C.; Li, J.M.; Myneni, S.C.B. Phosphorus speciation and transformation in long-term fertilized soil: Evidence from chemical fractionation and P K-edge XANES spectroscopy. Nutr. Cycl. Agroecosyst. 2017, 107, 1–12. [Google Scholar] [CrossRef]
- Dou, Z.X.; Ramberg, C.F.; Toth, J.D.; Wang, Y.; Sharpley, A.N.; Boyd, S.E.; Chen, C.R.; Williams, D.; Xu, Z.H. Phosphorus speciation and sorption-desorption characteristics in heavily manured soils. Soil Sci. Soc. Am. J. 2009, 73, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Milića, S.; Ninkova, J.; Zeremskia, T.; Latkovićb, D.; Šeremešićb, S.; Radovanovićc, V.; Žarković, B. Soil fertility and phosphorus fractions in a calcareous chernozem after a long-term field experiment. Geoderma 2019, 339, 9–19. [Google Scholar] [CrossRef]
- Song, K.; Xue, Y.; Zheng, X.Q.; Lv, W.g.; Qiao, H.X.; Qin, Q.; Yang, J.J. Effects of the continuous use of organic manure and chemical fertilizer on soil inorganic phosphorus fractions in calcareous soil. Sci. Rep. 2017, 7, 1164. [Google Scholar] [CrossRef] [Green Version]
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Phosphorus-related properties in the profiles of three Italian soils after long-term mineral and manure applications. Agric. Ecosyst. Environ. 2014, 189, 216–228. [Google Scholar] [CrossRef]
- Kang, J.; Hesterberg, D.; Osmond, D.L. Soil organic matter effects on phosphorus sorption: A path analysis. Soil Sci. Soc. Am. J. 2009, 73, 360–366. [Google Scholar] [CrossRef]
- Wang, L.; Luo, X.S.; Liao, H.; Chen, W.; Wei, D.; Cai, P.; Huang, Q.Y. Ureolytic microbial community is modulated by fertilization regimes and particle-size fractions in a Black soil of Northeastern China. Soil Biol. Biochem. 2018, 116, 171–178. [Google Scholar] [CrossRef]
- Heuck, C.; Weig, A.; Spohn, M. Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biol. Biochem. 2015, 85, 119–129. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus dynamics: From soil to plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zicker, T.; von Tucher, S.; Kavka, M.; Eichler-Lobermann, B. Soil test phosphorus as affected by phosphorus budgets in two long-term field experiments in Germany. Field Crops Res. 2018, 218, 158–170. [Google Scholar] [CrossRef]
Place | Starting Year | Soil Type | Latitude | Longitude | Altitude (m) | MAT (2) (°C) | MAP (3) (mm) | MAE (4) (mm) |
---|---|---|---|---|---|---|---|---|
HRB (1) | 1979 | haplic phaeozems | 45°40′ | 126°35′ | 151 | 4.9 | 538 | 1565 |
GZL | 1990 | haplic phaeozems | 43°30′ | 124°48′ | 220 | 6.6 | 591 | 1409 |
Place | SOC (2) | TN (3) | AN (4) | TP (5) | Olsen-P0 (6) | TK (7) | AK (8) | pH | Bulk Density | CaCO3 | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g kg−1 | g kg−1 | mg kg−1 | g kg−1 | mg kg−1 | g kg−1 | mg kg−1 | - | g cm−3 | % | % | % | % | |
HRB (1) | 15.4 | 1.5 | 151 | 1.07 | 22.2 | 25.5 | 200.0 | 7.2 | 1.4 | 0.01 | 46.1 | 23.8 | 30.1 |
GZL | 13.2 | 1.4 | 114 | 0.61 | 11.8 | 18.4 | 158.3 | 7.6 | 1.2 | 1.68 | 42.0 | 28.7 | 29.3 |
Place | Treatment | Inorganic N-P-K (kg/hm2) | Manure (t ha−1) | Types of Manure | Crop Rotation | ||
---|---|---|---|---|---|---|---|
HRB (1) | CK (2) | W (3)-0-0-0 | C-0-0-0 | S-0-0-0 | 0 | - | Wheat-corn-soybean |
NK | W-150-0-63 | C-150-0-63 | S-75-0-62 | 0 | - | ||
NPK | W-150-33-63 | C-150-33-63 | S-75-65.5-62 | 0 | - | ||
MNPK | W-150-33-63 | C-150-33-63 | S-75-65.5-62 | 18.6 | Horse | ||
GZL | CK | C-0-0-0 | 0 | - | Corn | ||
NK | C-50-0-68 | 0 | - | ||||
NPK | C-50-36-68 | 0 | - | ||||
MNPK | C-50-36-68 | 23.0 | Pig/Cattle |
Treatment | 1995 (Year) | 2000 (Year) | 2005 (Year) | 2010 (Year) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ΔLP (1) | ΔMLP | ΔSP | ΔLP | ΔMLP | ΔSP | ΔLP | ΔMLP | ΔSP | ΔLP | ΔMLP | ΔSP | |
CK (2) | 0.91 ± 0.2 aA | −12.5 ± 0.4 aA | 1.1± 2.5 aA | −10.5 ± 1.9 bA | −7.1 ± 5.9 aA | −1.4 ± 1.5 aA | −17.1 ± 10.9 cA | −16.7 ± 6.9 aA | −19.7 ± 2.9 bA | −22.3 ± 8.7 cA | −15.9 ± 5.5 aA | −17.8 ± 0.4 bA |
NK | −7.3 ± 2.6 aB | −14.5 ± 0.6 aB | −8.4 ± 1.1 aB | −2.1 ± 2.3 bB | −8.8 ± 4.1 bA | −12.7 ± 6.4 aB | −7.5 ± 2.2 aA | −17.3 ± 5.5 abA | −13.3 ± 8.6 aA | −17.8 ± 3.4 cA | −17.3 ± 9.6 a bA | −12.3 ± 8.5 aA |
NPK | 1.24 ± 0.7 aAC | 25.2 ± 6.0 aC | −18.1 ± 1.2 aC | 7.75 ± 4.4 bC | 67.2 ± 13.5 bB | −16.0 ± 9.1 aB | 13.4 ± 7.7 bB | 79.9 ± 13.7 bB | −16.5 ± 1.9 abA | 25.5 ± 2.1 cB | 79.2 ± 4.1 bB | −15.1 ± 2.6 abA |
MNPK | 3.5 ± 2.1 aAC | 29.1 ± 7.6 aC | −13.3 ± 10.5 aAB | 38.1 ± 11.4 bD | 119.9 ± 27.1 bC | 24.3 ± 16.8 bD | 40.8 ± 21.0 bB | 290.6 ± 183.1 bcC | 23.5 ± 5.5 bC | 90.2 ± 22.9 cC | 437.3 ± 71.3 cC | 55.3 ± 4.4 cC |
Treatment | ΔLP % | ΔMLP % | ΔSP % | ΔLP % | ΔMLP% | ΔSP % | ΔLP % | ΔMLP % | ΔSP % | ΔLP % | ΔMLP % | ΔSP % |
CK | −0.28 ± 0.1 aA | −5.9 ± 0.3 aA | 0.5 ± 0.6 aA | −2.5 ± 0.1 bA | −3.3 ± 1.6 bA | −0.9 ± 0.6 bA | −3.9 ± 2.8 bA | −3.1 ± 2.1 bA | −2.9 ± 1.5 cA | −3.1 ± 0.7 bA | −2.6 ± 1.9 bA | −2.2 ± 0.7 cA |
NK | −2.0 ± 0.6 aB | −1.5 ± 0.3 aB | 0.7 ± 0.9 aA | −1.0 ± 0.2 bB | −3.4 ± 1.6 bA | −0.9 ± 0.5 aA | −2.4 ± 0.6 aA | −9.4 ± 6.3 bA | −0.2 ± 0.4 aB | −2.5 ± 0.7 aA | −8.9 ± 6.5 bA | −1.9 ± 1.2 bA |
NPK | 1.3 ± 2.1 aC | 23.0 ± 1.1 aC | −23.4 ± 0.4 aB | 0.4 ± 0.7 bC | 15.8 ± 9.0 aB | 20.0 ± 7.8 aB | 0.6 ± 0.5 abB | 18.3 ± 3.8 aB | 21.8 ± 4.4 aC | 1.8 ± 0.7 abB | 16.1 ± 5.6 bB | 22.7 ± 6.3 aB |
MNPK | 1.2 ± 1.7 aAC | 3.8 ± 1.7 aD | −3.7 ± 1.1 aC | 4.3 ± 1.0 bD | 73.9 ± 20.1 bC | −9.6 ± 5.5 aC | 6.4 ± 1.9 bC | 13.9 ± 5.9 cB | −20.3 ± 3.2 bD | 5.1 ± 2.7 bB | 13.0 ± 6.0 cB | −18.1 ± 0.3 bC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, F.; Sun, N.; Ma, X.; Zhou, B.; Zhu, P.; Gao, H.; Xu, M. The Application of Fertilizer Phosphorus Affected Olsen P and the Phosphorus Fractions of Hedley Method in Black Soil. Agronomy 2022, 12, 3146. https://doi.org/10.3390/agronomy12123146
Sun F, Sun N, Ma X, Zhou B, Zhu P, Gao H, Xu M. The Application of Fertilizer Phosphorus Affected Olsen P and the Phosphorus Fractions of Hedley Method in Black Soil. Agronomy. 2022; 12(12):3146. https://doi.org/10.3390/agronomy12123146
Chicago/Turabian StyleSun, Fengxia, Nan Sun, Xingzhu Ma, Baoku Zhou, Ping Zhu, Hongjun Gao, and Minggang Xu. 2022. "The Application of Fertilizer Phosphorus Affected Olsen P and the Phosphorus Fractions of Hedley Method in Black Soil" Agronomy 12, no. 12: 3146. https://doi.org/10.3390/agronomy12123146
APA StyleSun, F., Sun, N., Ma, X., Zhou, B., Zhu, P., Gao, H., & Xu, M. (2022). The Application of Fertilizer Phosphorus Affected Olsen P and the Phosphorus Fractions of Hedley Method in Black Soil. Agronomy, 12(12), 3146. https://doi.org/10.3390/agronomy12123146