The Application of Fertilizer Phosphorus Affected Olsen P and the Phosphorus Fractions of Hedley Method in Black Soil
Abstract
1. Introduction
2. Material and Methods
2.1. Site Description
2.2. Experiment Design
2.3. Soil Sampling and Data
2.4. Formula Calculation and Statistical Analysis
2.5. Statistical Analyses
3. Results
3.1. ΔOlsen P and P Budget
3.2. Fractions of P
3.3. Relation of Olsen P Change with P Fractions
3.4. Relation of Olsen P Change with Other Factors
4. Discussion
4.1. Effects of Fertilization on Olsen P
4.2. Effects of P Fractions and Soil Properties on Olsen P
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, M.; Chen, J.; Sun, F. Agricultural phosphorus flow and its environmental impacts in China. Sci. Total Environ. 2008, 405, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Rowe, H.; Withers, P.J.A.; Baas, P.; Chan, N.I.; Doody, D.; Holiman, J.; Jacobs, B.; Li, H.G.; MacDonald, G.K.; McDowell, R.; et al. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutr. Cycl. Agroecosyst. 2015, 104, 393–412. [Google Scholar] [CrossRef]
- Koopmans, G.F.; Chardon, W.J.; Dolfing, J.; Oenema, O.; van der Meer, P.; van Riemsdijk, W.H. Wet chemical and phosphorus 31 nuclear magnetic resonance analysis of phosphorus speciation in a sandy soil receiving long-term fertilizer or animal manure applications. J. Environ. Qual. 2003, 32, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Ockenden, M.C.; Hollaway, M.J.; Beven, K.J.; Collins, A.L.; Evans, R.; Falloon, P.D.; Forber, K.J.; Hiscock, K.M.; Kahana, R.; Macleod, C.J.A.; et al. Major agricultural changes required to mitigate phosphorus losses under climate change. Nat. Commun. 2017, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Xue, X.G.; Tang, Q.H.; Zhu, Y.; Xiao, L.J.; Yang, Y.; Lin, Q.Q. Phosphorus retention and loss in three types of soils with implications for geographical pattern of eutrophication in China. Water Environ. J. 2019, 34, 9–18. [Google Scholar] [CrossRef]
- Cao, N.; Chen, X.P.; Cui, Z.L.; Zhang, F.S. Change in soil available phosphorus in relation to the phosphorus budget in China. Nutr. Cycl. Agroecosyst. 2012, 94, 161–170. [Google Scholar] [CrossRef]
- Messiga, A.J.; Ziadi, N.; Ple’net, D.; Parent, L.E.; Morel, C. Long-term changes in soil phosphorus status related to P budgets under maize monoculture and mineral P fertilization. Soil Use Manag. 2010, 26, 354–364. [Google Scholar] [CrossRef]
- Shen, P.; Xu, M.G.; Zhang, H.M.; Yang, X.Y.; Huang, S.M.; Zhang, S.X.; He, X.H. Long-term response of soil Olsen P and organic C to the depletion or addition of chemical and organic fertilizers. Catena 2014, 118, 20–27. [Google Scholar] [CrossRef]
- Zhan, X.Y.; Zhang, L.; Zhou, B.K.; Zhu, P.; Zhang, S.X.; Xu, M.G. Changes in Olsen Phosphorus Concentration and Its Response to Phosphorus Balance in Black Soils under Different Long-Term Fertilization Patterns. PLoS ONE 2015, 10, e0131713. [Google Scholar] [CrossRef]
- Zhang, W.W.; Wang, Q.; Wu, Q.H.; Zhang, S.X.; Zhu, P.; Peng, C.; Huang, S.M.; Wang, B.R.; Zhang, H.M. The response of soil Olsen P to the P budgets of three typical cropland soil types under long-term fertilization. PLoS ONE 2020, 15, e0230178. [Google Scholar] [CrossRef] [PubMed]
- Aulakh, M.S.; Garg, A.K.; Kabba, B.S. Phosphorus accumulation, leaching and residual effects on crop yields from long-term application in the subtropics. Soil Use Manag. 2007, 23, 417–427. [Google Scholar] [CrossRef]
- Blake, L.; Mercik, S.; Koerschens, M.; Moskal, S.; Poulton, P.R.; Goulding, K.W.T.; Weige, A.; Powlson, D.S. Phosphorus content in soil, uptake by plants and budget in three European long-term field experiments. Nutr. Cycl. Agroecosyst. 2000, 56, 263–275. [Google Scholar] [CrossRef]
- Tiessen, H.; Moir, J. Characterization of Available P by Sequential Extraction; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. J. Soil Sci. Soc. Am. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Meyer, G.; Bell, M.J.; Doolette, C.L.; Brunetti, G.; Zhang, Y.Q.; Lombi, E.; Kopittke, P.M. Plant-Available Phosphorus in Highly Concentrated Fertilizer Bands: Effects of Soil Type, Phosphorus Form, and Coapplied Potassium. J. Agric. Food Chem. 2020, 68, 29. [Google Scholar] [CrossRef] [PubMed]
- 16 Fang, H.W.; Chen, M.H.; Chen, Z.H.; Zhao, H.M.; He, G.J. Effects of sediment particle morphology on adsorption of phosphorus elements. Int. J. Sediment Res. 2013, 28, 246–253. [Google Scholar] [CrossRef]
- Yan, X.; Wei, Z.Q.; Hong, Q.Q.; Lu, Z.H.; Wu, J.F. Phosphorus fractions and sorption characteristics in a subtropical paddy soil as influenced by fertilizer sources. Geoderma 2017, 295, 80–85. [Google Scholar] [CrossRef]
- Schmiedera, F.; Bergströma, L.; Riddlea, M.; Gustafssona, J.P.; Klysubunb, W.; Zehetnerc, F.; Condrond, L.; Kirchmanna, H. Phosphorus speciation in a long-term manure-amended soil profile-Evidence from wet chemical extraction, 31P-NMR and P K-edge XANES spectroscopy. Geoderma 2018, 322, 19–27. [Google Scholar] [CrossRef]
- Wu, Q.H.; Zhang, S.X.; Zhu, P.; Huang, S.M.; Wang, B.R.; Zhao, L.P.; Xu, M.G. Characterizing differences in the phosphorus activation coefficient of three typical cropland soils and the influencing factors under long-term fertilization. PLoS ONE 2017, 12, e0176437. [Google Scholar] [CrossRef]
- Luo, G.B. FAO World Soil Legend Classification System Revision. Adv. Soil Sci. 1988, 6, 22–32. (In Chinese) [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; Miscellaneous Paper; Institute for Agricultural Research: Samaru, Nigeria, 1954. [Google Scholar]
- Lu, R.K. Analytical Methods of Soil and Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 1999. (In Chinese) [Google Scholar]
- D´iaz, I.; Torrent, J. Changes in Olsen P in Relation to P Balance in Contrasting Agricultural Soils. Pedosphere 2016, 26, 636–642. [Google Scholar] [CrossRef]
- Medinski, T.; Freese, D.; Reitz, T. Changes in soil phosphorus balance and phosphorus-use efficiency under long-term fertilization conducted on agriculturally used Chernozem in Germany. Can. J. Soil Sci. 2018, 98, 650–662. [Google Scholar] [CrossRef]
- Fox, R.L.; Kamprath, E.J. Phosphate Sorption Isotherms for Evaluating the Phosphate Requirements of Soils. Soil Sci. Soc. Am. J. 1970, 34, 902–907. [Google Scholar] [CrossRef]
- Yang, X.Y.; Chen, X.W.; Yang, X.T. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil Tillage Res. 2019, 187, 85–91. [Google Scholar] [CrossRef]
- Luo, L.; Ma, Y.B.; Sanders, R.L.; Xu, C.; Li, J.M.; Myneni, S.C.B. Phosphorus speciation and transformation in long-term fertilized soil: Evidence from chemical fractionation and P K-edge XANES spectroscopy. Nutr. Cycl. Agroecosyst. 2017, 107, 1–12. [Google Scholar] [CrossRef]
- Dou, Z.X.; Ramberg, C.F.; Toth, J.D.; Wang, Y.; Sharpley, A.N.; Boyd, S.E.; Chen, C.R.; Williams, D.; Xu, Z.H. Phosphorus speciation and sorption-desorption characteristics in heavily manured soils. Soil Sci. Soc. Am. J. 2009, 73, 93–101. [Google Scholar] [CrossRef]
- Milića, S.; Ninkova, J.; Zeremskia, T.; Latkovićb, D.; Šeremešićb, S.; Radovanovićc, V.; Žarković, B. Soil fertility and phosphorus fractions in a calcareous chernozem after a long-term field experiment. Geoderma 2019, 339, 9–19. [Google Scholar] [CrossRef]
- Song, K.; Xue, Y.; Zheng, X.Q.; Lv, W.g.; Qiao, H.X.; Qin, Q.; Yang, J.J. Effects of the continuous use of organic manure and chemical fertilizer on soil inorganic phosphorus fractions in calcareous soil. Sci. Rep. 2017, 7, 1164. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Phosphorus-related properties in the profiles of three Italian soils after long-term mineral and manure applications. Agric. Ecosyst. Environ. 2014, 189, 216–228. [Google Scholar] [CrossRef]
- Kang, J.; Hesterberg, D.; Osmond, D.L. Soil organic matter effects on phosphorus sorption: A path analysis. Soil Sci. Soc. Am. J. 2009, 73, 360–366. [Google Scholar] [CrossRef]
- Wang, L.; Luo, X.S.; Liao, H.; Chen, W.; Wei, D.; Cai, P.; Huang, Q.Y. Ureolytic microbial community is modulated by fertilization regimes and particle-size fractions in a Black soil of Northeastern China. Soil Biol. Biochem. 2018, 116, 171–178. [Google Scholar] [CrossRef]
- Heuck, C.; Weig, A.; Spohn, M. Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biol. Biochem. 2015, 85, 119–129. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus dynamics: From soil to plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Zicker, T.; von Tucher, S.; Kavka, M.; Eichler-Lobermann, B. Soil test phosphorus as affected by phosphorus budgets in two long-term field experiments in Germany. Field Crops Res. 2018, 218, 158–170. [Google Scholar] [CrossRef]
Place | Starting Year | Soil Type | Latitude | Longitude | Altitude (m) | MAT (2) (°C) | MAP (3) (mm) | MAE (4) (mm) |
---|---|---|---|---|---|---|---|---|
HRB (1) | 1979 | haplic phaeozems | 45°40′ | 126°35′ | 151 | 4.9 | 538 | 1565 |
GZL | 1990 | haplic phaeozems | 43°30′ | 124°48′ | 220 | 6.6 | 591 | 1409 |
Place | SOC (2) | TN (3) | AN (4) | TP (5) | Olsen-P0 (6) | TK (7) | AK (8) | pH | Bulk Density | CaCO3 | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g kg−1 | g kg−1 | mg kg−1 | g kg−1 | mg kg−1 | g kg−1 | mg kg−1 | - | g cm−3 | % | % | % | % | |
HRB (1) | 15.4 | 1.5 | 151 | 1.07 | 22.2 | 25.5 | 200.0 | 7.2 | 1.4 | 0.01 | 46.1 | 23.8 | 30.1 |
GZL | 13.2 | 1.4 | 114 | 0.61 | 11.8 | 18.4 | 158.3 | 7.6 | 1.2 | 1.68 | 42.0 | 28.7 | 29.3 |
Place | Treatment | Inorganic N-P-K (kg/hm2) | Manure (t ha−1) | Types of Manure | Crop Rotation | ||
---|---|---|---|---|---|---|---|
HRB (1) | CK (2) | W (3)-0-0-0 | C-0-0-0 | S-0-0-0 | 0 | - | Wheat-corn-soybean |
NK | W-150-0-63 | C-150-0-63 | S-75-0-62 | 0 | - | ||
NPK | W-150-33-63 | C-150-33-63 | S-75-65.5-62 | 0 | - | ||
MNPK | W-150-33-63 | C-150-33-63 | S-75-65.5-62 | 18.6 | Horse | ||
GZL | CK | C-0-0-0 | 0 | - | Corn | ||
NK | C-50-0-68 | 0 | - | ||||
NPK | C-50-36-68 | 0 | - | ||||
MNPK | C-50-36-68 | 23.0 | Pig/Cattle |
Treatment | 1995 (Year) | 2000 (Year) | 2005 (Year) | 2010 (Year) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ΔLP (1) | ΔMLP | ΔSP | ΔLP | ΔMLP | ΔSP | ΔLP | ΔMLP | ΔSP | ΔLP | ΔMLP | ΔSP | |
CK (2) | 0.91 ± 0.2 aA | −12.5 ± 0.4 aA | 1.1± 2.5 aA | −10.5 ± 1.9 bA | −7.1 ± 5.9 aA | −1.4 ± 1.5 aA | −17.1 ± 10.9 cA | −16.7 ± 6.9 aA | −19.7 ± 2.9 bA | −22.3 ± 8.7 cA | −15.9 ± 5.5 aA | −17.8 ± 0.4 bA |
NK | −7.3 ± 2.6 aB | −14.5 ± 0.6 aB | −8.4 ± 1.1 aB | −2.1 ± 2.3 bB | −8.8 ± 4.1 bA | −12.7 ± 6.4 aB | −7.5 ± 2.2 aA | −17.3 ± 5.5 abA | −13.3 ± 8.6 aA | −17.8 ± 3.4 cA | −17.3 ± 9.6 a bA | −12.3 ± 8.5 aA |
NPK | 1.24 ± 0.7 aAC | 25.2 ± 6.0 aC | −18.1 ± 1.2 aC | 7.75 ± 4.4 bC | 67.2 ± 13.5 bB | −16.0 ± 9.1 aB | 13.4 ± 7.7 bB | 79.9 ± 13.7 bB | −16.5 ± 1.9 abA | 25.5 ± 2.1 cB | 79.2 ± 4.1 bB | −15.1 ± 2.6 abA |
MNPK | 3.5 ± 2.1 aAC | 29.1 ± 7.6 aC | −13.3 ± 10.5 aAB | 38.1 ± 11.4 bD | 119.9 ± 27.1 bC | 24.3 ± 16.8 bD | 40.8 ± 21.0 bB | 290.6 ± 183.1 bcC | 23.5 ± 5.5 bC | 90.2 ± 22.9 cC | 437.3 ± 71.3 cC | 55.3 ± 4.4 cC |
Treatment | ΔLP % | ΔMLP % | ΔSP % | ΔLP % | ΔMLP% | ΔSP % | ΔLP % | ΔMLP % | ΔSP % | ΔLP % | ΔMLP % | ΔSP % |
CK | −0.28 ± 0.1 aA | −5.9 ± 0.3 aA | 0.5 ± 0.6 aA | −2.5 ± 0.1 bA | −3.3 ± 1.6 bA | −0.9 ± 0.6 bA | −3.9 ± 2.8 bA | −3.1 ± 2.1 bA | −2.9 ± 1.5 cA | −3.1 ± 0.7 bA | −2.6 ± 1.9 bA | −2.2 ± 0.7 cA |
NK | −2.0 ± 0.6 aB | −1.5 ± 0.3 aB | 0.7 ± 0.9 aA | −1.0 ± 0.2 bB | −3.4 ± 1.6 bA | −0.9 ± 0.5 aA | −2.4 ± 0.6 aA | −9.4 ± 6.3 bA | −0.2 ± 0.4 aB | −2.5 ± 0.7 aA | −8.9 ± 6.5 bA | −1.9 ± 1.2 bA |
NPK | 1.3 ± 2.1 aC | 23.0 ± 1.1 aC | −23.4 ± 0.4 aB | 0.4 ± 0.7 bC | 15.8 ± 9.0 aB | 20.0 ± 7.8 aB | 0.6 ± 0.5 abB | 18.3 ± 3.8 aB | 21.8 ± 4.4 aC | 1.8 ± 0.7 abB | 16.1 ± 5.6 bB | 22.7 ± 6.3 aB |
MNPK | 1.2 ± 1.7 aAC | 3.8 ± 1.7 aD | −3.7 ± 1.1 aC | 4.3 ± 1.0 bD | 73.9 ± 20.1 bC | −9.6 ± 5.5 aC | 6.4 ± 1.9 bC | 13.9 ± 5.9 cB | −20.3 ± 3.2 bD | 5.1 ± 2.7 bB | 13.0 ± 6.0 cB | −18.1 ± 0.3 bC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, F.; Sun, N.; Ma, X.; Zhou, B.; Zhu, P.; Gao, H.; Xu, M. The Application of Fertilizer Phosphorus Affected Olsen P and the Phosphorus Fractions of Hedley Method in Black Soil. Agronomy 2022, 12, 3146. https://doi.org/10.3390/agronomy12123146
Sun F, Sun N, Ma X, Zhou B, Zhu P, Gao H, Xu M. The Application of Fertilizer Phosphorus Affected Olsen P and the Phosphorus Fractions of Hedley Method in Black Soil. Agronomy. 2022; 12(12):3146. https://doi.org/10.3390/agronomy12123146
Chicago/Turabian StyleSun, Fengxia, Nan Sun, Xingzhu Ma, Baoku Zhou, Ping Zhu, Hongjun Gao, and Minggang Xu. 2022. "The Application of Fertilizer Phosphorus Affected Olsen P and the Phosphorus Fractions of Hedley Method in Black Soil" Agronomy 12, no. 12: 3146. https://doi.org/10.3390/agronomy12123146
APA StyleSun, F., Sun, N., Ma, X., Zhou, B., Zhu, P., Gao, H., & Xu, M. (2022). The Application of Fertilizer Phosphorus Affected Olsen P and the Phosphorus Fractions of Hedley Method in Black Soil. Agronomy, 12(12), 3146. https://doi.org/10.3390/agronomy12123146