The True Costs and Benefits of Miscanthus Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope
2.2. Production Costs
2.3. Monetization of Ecosystem Services
2.4. Assessment and Monetization of the Environmental Impacts of Miscanthus Cultivation
3. Results
3.1. Monetary Values of the ESs Provided by Miscanthus Cultivation
3.2. Environmental and Economic Costs of Miscanthus Production
4. Discussion
4.1. Discussion of the Data Used and the Methodologies Applied
4.2. Discussion of the Results and Applicability in Practice
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; Defries, R.S.; Díaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Statistisches Bundesamt. Land-und Forstwirtschaft, Fischerei: Bodenfläche nach Art der tatsächlichen Nutzung. Fachserie 3 Reihe 5.1. 2022, pp. 191–192. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Flaechennutzung/Publikationen/Downloads-Flaechennutzung/bodenflaechennutzung-2030510217005.html (accessed on 21 October 2022).
- von Cossel, M.; Amarysti, C.; Wilhelm, H.; Priya, N.; Winkler, B.; Hoerner, L. The replacement of maize (Zea mays L.) by cup plant (Silphium perfoliatum L.) as biogas substrate and its implications for the energy and material flows of a large biogas plant. Biofuels Bioprod. Biorefining 2020, 14, 152–179. [Google Scholar] [CrossRef] [Green Version]
- Emmerling, C.; Pude, R. Introducing Miscanthus to the greening measures of the EU Common Agricultural Policy. GCB Bioenergy 2017, 9, 274–279. [Google Scholar] [CrossRef]
- Asbjornsen, H.; Hernandez-Santana, V.; Liebman, M.; Bayala, J.; Chen, J.; Helmers, M.; Ong, C.K.; Schulte, L.A. Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services. Renew. Agric. Food Syst. 2014, 29, 101–125. [Google Scholar] [CrossRef] [Green Version]
- Weißhuhn, P.; Reckling, M.; Stachow, U.; Wiggering, H. Supporting Agricultural Ecosystem Services through the Integration of Perennial Polycultures into Crop Rotations. Sustainability 2017, 9, 2267. [Google Scholar] [CrossRef] [Green Version]
- von Cossel, M.; Winkler, B.; Mangold, A.; Lask, J.; Wagner, M.; Lewandowski, I.; Elbersen, B.; Eupen, M.; Mantel, S.; Kiesel, A. Bridging the Gap Between Biofuels and Biodiversity Through Monetizing Environmental Services of Miscanthus Cultivation. Earth’s Future 2020, 8, e2020EF001478. [Google Scholar] [CrossRef]
- Anderson, E.; Arundale, R.; Maughan, M.; Oladeinde, A.; Wycislo, A.; Voigt, T. Growth and agronomy of Miscanthus x giganteus for biomass production. Biofuels 2011, 2, 71–87. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.; Trindade, L.M.; van der Linden, G.C.; Schwarz, K.-U.; Müller-Sämann, K.; Anisimov, A.; Chen, C.-L.; Dolstra, O.; Donnison, I.S.; et al. Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC. Front. Plant Sci. 2016, 7, 1620. [Google Scholar] [CrossRef] [Green Version]
- Bethwell, C.; Burkhard, B.; Daedlow, K.; Sattler, C.; Reckling, M.; Zander, P. Towards an enhanced indication of provisioning ecosystem services in agro-ecosystems. Environ. Monit. Assess. 2021, 193, 269. [Google Scholar] [CrossRef]
- Gascon, C.; Brooks, T.M.; Contreras-MacBeath, T.; Heard, N.; Konstant, W.; Lamoreux, J.; Launay, F.; Maunder, M.; Mittermeier, R.A.; Molur, S.; et al. The importance and benefits of species. Curr. Biol. 2015, 25, R431–R438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Groot, R.; Moolenaar, S.; de Vente, J.; de Leijster, V.; Ramos, M.E.; Robles, A.B.; Schoonhoven, Y.; Verweij, P. Framework for integrated Ecosystem Services assessment of the costs and benefits of large scale landscape restoration illustrated with a case study in Mediterranean Spain. Ecosyst. Serv. 2022, 53, 101383. [Google Scholar] [CrossRef]
- Wagner, M.; Lewandowski, I. Relevance of environmental impact categories for perennial biomass production. GCB Bioenergy 2017, 9, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Pieper, M.; Michalke, A.; Gaugler, T. Calculation of external climate costs for food highlights inadequate pricing of animal products. Nat. Commun. 2020, 11, 6117. [Google Scholar] [CrossRef] [PubMed]
- Arendt, R.; Bachmann, T.M.; Motoshita, M.; Bach, V.; Finkbeiner, M. Comparison of Different Monetization Methods in LCA: A Review. Sustainability 2020, 12, 10493. [Google Scholar] [CrossRef]
- Pizzol, M.; Weidema, B.; Brandão, M.; Osset, P. Monetary valuation in Life Cycle Assessment: A review. J. Clean. Prod. 2015, 86, 170–179. [Google Scholar] [CrossRef]
- Winkler, B.; Mangold, A.; von Cossel, M.; Clifton-Brown, J.; Pogrzeba, M.; Lewandowski, I.; Iqbal, Y.; Kiesel, A. Implementing miscanthus into farming systems: A review of agronomic practices, capital and labour demand. Renew. Sustain. Energy Rev. 2020, 132, 110053. [Google Scholar] [CrossRef]
- Iqbal, Y.; Lewandowski, I. Inter-annual variation in biomass combustion quality traits over five years in fifteen Miscanthus genotypes in south Germany. Fuel Process. Technol. 2014, 121, 47–55. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.; Kiesel, A.; Hastings, A.; Iqbal, Y. Miscanthus. In Perennial Grasses for Bioenergy and Bioproducts; Academic Press: London, UK, 2018. [Google Scholar]
- Trinomics. External Costs: Energy Costs, Taxes and the Impact of Government Interventions on Investments: Final Report; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-23128-8. [Google Scholar]
- Kiesel, A.; Wagner, M.; Lewandowski, I. Environmental Performance of Miscanthus, Switchgrass and Maize: Can C4 Perennials Increase the Sustainability of Biogas Production? Sustainability 2017, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.; Kiesel, A.; Hastings, A.; Iqbal, Y.; Lewandowski, I. Novel Miscanthus Germplasm-Based Value Chains: A Life Cycle Assessment. Front. Plant Sci. 2017, 8, 990. [Google Scholar] [CrossRef]
- Liu, Y.; Ludewig, U. Nitrogen-dependent bacterial community shifts in root, rhizome and rhizosphere of nutrient-efficient Miscanthus x giganteus from long-term field trials. GCB Bioenergy 2019, 11, 1334–1347. [Google Scholar] [CrossRef] [Green Version]
- Ruf, T.; Schmidt, A.; Delfosse, P.; Emmerling, C. Harvest date of Miscanthus x giganteus affects nutrient cycling, biomass development and soil quality. Biomass Bioenergy 2017, 100, 62–73. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: International Organization for Standardization: Geneva, Switzerland, 2006.
- Pant, R.; Zampori, L. Suggestions for Updating the Organisation Environmental Footprint (OEF) Method; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-00654-1. [Google Scholar]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventorie; IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 21 October 2022).
- Lask, J.; Kam, J.; Weik, J.; Kiesel, A.; Wagner, M.; Lewandowski, I. A parsimonious model for calculating the greenhouse gas emissions of miscanthus cultivation using current commercial practice in the United Kingdom. GCB Bioenergy 2021, 13, 1087–1098. [Google Scholar] [CrossRef]
- Freiermuth, R. Modell zur Berechnung der Schwermetallflüsse in der Landwirtschaftlichen Ökobilanz: SALCA-Schwermetall. 2006. Available online: https://www.agroscope.admin.ch/dam/agroscope/en/dokumente/themen/umwelt-ressourcen/produktionssysteme/salca-schwermetall.pdf.download.pdf/SALCA-Schwermetall.pdf (accessed on 21 October 2022).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Amadei, A.M.; de Laurentiis, V.; Sala, S. A review of monetary valuation in life cycle assessment: State of the art and future needs. J. Clean. Prod. 2021, 329, 129668. [Google Scholar] [CrossRef]
- Degieter, M.; Gellynck, X.; Goyal, S.; Ott, D.; de Steur, H. Life cycle cost analysis of agri-food products: A systematic review. Sci. Total Environ. 2022, 850, 158012. [Google Scholar] [CrossRef]
- CE Delft. Environmental Prices Handbook: EU28 version. 2018. Available online: https://cedelft.eu/publications/environmental-prices-handbook-eu28-version/ (accessed on 21 October 2022).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Hastings, A.; Clifton-Brown, J.; Wattenbach, M.; Mitchell, C.P.; Stampfl, P.; Smith, P. Future energy potential of Miscanthus in Europe. GCB Bioenergy 2009, 1, 180–196. [Google Scholar] [CrossRef]
- Teuling, A.J. A hot future for European droughts. Nat. Clim. Change 2018, 8, 364–365. [Google Scholar] [CrossRef]
- Von Cossel, M.; Wagner, M.; Lask, J.; Magenau, E.; Bauerle, A.; Von Cossel, V.; Warrach-Sagi, K.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; et al. Prospects of Bioenergy Cropping Systems for A More Social-Ecologically Sound Bioeconomy. Agronomy 2019, 9, 605. [Google Scholar] [CrossRef]
- Farrell, A.D.; Clifton-Brown, J.C.; Lewandowski, I.; Jones, M.B. Genotypic variation in cold tolerance influences the yield of Miscanthus. Ann. Appl. Biol. 2006, 149, 337–345. [Google Scholar] [CrossRef]
- Mazur, A.; Kowalczyk-Juśko, A. The Assessment of the Usefulness of Miscanthus x giganteus to Water and Soil Protection against Erosive Degradation. Resources 2021, 10, 66. [Google Scholar] [CrossRef]
- Kohli, L.; Daniel, O.; Schönholzer, F.; Hahn, D.; Zeyer, J. Miscanthus sinensis and wild flowers as food resources of Lumbricus terrestris L. Appl. Soil Ecol. 1999, 11, 189–197. [Google Scholar] [CrossRef]
- Zimmermann, J.; Styles, D.; Hastings, A.; Dauber, J.; Jones, M.B. Assessing the impact of within crop heterogeneity (‘patchiness’) in young Miscanthus × giganteus fields on economic feasibility and soil carbon sequestration. GCB Bioenergy 2014, 6, 566–576. [Google Scholar] [CrossRef]
- Nayak, A.K.; Rahman, M.M.; Naidu, R.; Dhal, B.; Swain, C.K.; Nayak, A.D.; Tripathi, R.; Shahid, M.; Islam, M.R.; Pathak, H. Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. Sci. Total Environ. 2019, 665, 890–912. [Google Scholar] [CrossRef]
- de Laurentiis, V.; Secchi, M.; Bos, U.; Horn, R.; Laurent, A.; Sala, S. Soil quality index: Exploring options for a comprehensive assessment of land use impacts in LCA. J. Clean. Prod. 2019, 215, 63–74. [Google Scholar] [CrossRef]
- Alejandre, E.M.; van Bodegom, P.M.; Guinée, J.B. Towards an optimal coverage of ecosystem services in LCA. J. Clean. Prod. 2019, 231, 714–722. [Google Scholar] [CrossRef] [Green Version]
- de Adelhart Toorop, R.; Yates, J.; Watkins, M.; Bernard, J.; de Groot Ruiz, A. Methodologies for true cost accounting in the food sector. Nat. Food 2021, 2, 655–663. [Google Scholar] [CrossRef]
- Goglio, P.; Brankatschk, G.; Knudsen, M.T.; Williams, A.G.; Nemecek, T. Addressing crop interactions within cropping systems in LCA. Int. J. Life Cycle Assess. 2018, 23, 1735–1743. [Google Scholar] [CrossRef] [Green Version]
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D.; et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain 2020, 3, 809–820. [Google Scholar] [CrossRef]
- Grima, N.; Singh, S.J.; Smetschka, B.; Ringhofer, L. Payment for Ecosystem Services (PES) in Latin America: Analysing the performance of 40 case studies. Ecosyst. Serv. 2016, 17, 24–32. [Google Scholar] [CrossRef]
- European Commission. Commission Delegated Regulation—Amending Delegated Regulation (EU) No 639/2014 as regards certain provisions on the greening practices established by Regulation (EU) No 1307/2013 of the European Parliament and of the Council; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
Agricultural Operation | Frequency per Cultivation Period |
---|---|
Plowing | 2 |
Rotary harrowing | 1 |
Planting | 1 |
Mulching—first year | 1 |
Herbicide spraying | 2 |
Fertilizing | 18 |
Harvesting | 19 |
Input/Output | Amount | Unit |
---|---|---|
N | 47 | kg ha−1 yr−1 |
P | 5 | kg ha−1 yr−1 |
K | 82 | kg ha−1 yr−1 |
Herbicides | 0.34 | kg ha−1 yr−1 |
Biomass dry matter yield | 15 | Mg ha−1 yr−1 |
Environmental Impact Category | Unit | Monetization Factor [EUR2018 per Unit Impact] |
---|---|---|
Acidification | mol H+ eq. | 0.344 |
Climate change | kg CO2 eq. | 0.1025 |
Ecotoxicity, freshwater | CTUe | 0.0000382 |
Eutrophication, freshwater | kg P eq. | 1.92 |
Eutrophication, marine | kg N eq. | 3.21 |
Eutrophication, terrestrial | mol N eq. | - |
Human toxicity, cancer | CTUh | 902,616 |
Human toxicity, non-cancer | CTUh | 163,447 |
Ionizing radiation | kBq U-235 eq. | 0.0012 |
Land use | Pt | 0.000175 |
Ozone depletion | kg CFC11 eq. | 31.4 |
Particulate matter | disease inc. | 784,126 |
Photochemical ozone formation | kg NMVOC eq. | 1.19 |
Resource use, fossils | MJ | 0.0013 |
Resource use, minerals and metals | kg Sb eq. | 1.64 |
Water use | m3 water eq. | 0.00499 |
ES Category | ES | Value (EUR ha−1 yr−1) |
---|---|---|
Provisioning services | Raw material | 1200 |
Genetic resources | 18 | |
Fresh water/groundwater | 56 | |
Ornamental resources | 17 | |
Regulating services | Air quality regulation | 64 |
Climate regulation | 828 | |
Improvement of soil fertility | 23 | |
Erosion prevention | 22 | |
Moderation of extreme events | 386 | |
Habitat services | Pollination and biocontrol | 50 |
Cultural services | Aesthetic information | 429 |
Recreation and tourism | 27 | |
Total | - | 3118 |
Environmental Impact Category | Impact Result | Unit |
---|---|---|
Acidification | 22.98 | mol H+ eq. |
Climate change | 1248.01 | kg CO2 eq. |
Ecotoxicity, freshwater | 3.11 × 104 | CTUe |
Eutrophication, freshwater | 0.42 | kg P eq. |
Eutrophication, marine | 16.24 | kg N eq. |
Eutrophication, terrestrial | 94.00 | mol N eq. |
Human toxicity, cancer | 1.51 × 10−6 | CTUh |
Human toxicity, non-cancer | 3.49 × 10−5 | CTUh |
Ionizing radiation | 42.79 | kBq U-235 eq. |
Land use | 5.10 × 105 | Pt |
Ozone depletion | 8.82 × 10−5 | kg CFC11 eq. |
Particulate matter | 0.00015 | disease inc. |
Photochemical ozone formation | 4.98 | kg NMVOC eq. |
Resource use, fossils | 9949.30 | MJ |
Resource use, minerals and metals | 0.02 | kg Sb eq. |
Water use | 394.86 | m3 water eq. |
Environmental Impact Categories | Monetized Environmental Impacts (EUR2018) | ||
---|---|---|---|
Low | Central | High | |
Acidification | 4.04 | 7.90 | 37.16 |
Climate change | 76.75 | 127.92 | 241.61 |
Ecotoxicity, freshwater | 7.44 × 10−20 | 1.19 | 5.85 |
Eutrophication, freshwater | 0.11 | 0.81 | 0.92 |
Eutrophication, marine | 52.13 | 52.13 | 52.13 |
Eutrophication, terrestrial | 0 | 0 | 0 |
Human toxicity, cancer | 0.26 | 1.36 | 4.21 |
Human toxicity, non-cancer | 1.05 | 5.70 | 26.36 |
Ionizing radiation | 0.03 | 0.05 | 1.97 |
Land use | 44.39 | 89.29 | 178.07 |
Ozone depletion | 2.01 × 10−3 | 2.77 × 10−3 | 0.01 |
Particulate matter | 99.30 | 117.62 | 180.69 |
Photochemical ozone formation | 4.34 | 5.93 | 9.47 |
Resource use, fossils | 0 | 12.93 | 67.66 |
Resource use, minerals and metals | 0 | 0.03 | 0.11 |
Water use | 1.65 | 1.97 | 93.15 |
Total (EUR ha−1 yr−1) | 284.06 | 424.84 | 899.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, M.; Winkler, B.; Lask, J.; Weik, J.; Kiesel, A.; Koch, M.; Clifton-Brown, J.; von Cossel, M. The True Costs and Benefits of Miscanthus Cultivation. Agronomy 2022, 12, 3071. https://doi.org/10.3390/agronomy12123071
Wagner M, Winkler B, Lask J, Weik J, Kiesel A, Koch M, Clifton-Brown J, von Cossel M. The True Costs and Benefits of Miscanthus Cultivation. Agronomy. 2022; 12(12):3071. https://doi.org/10.3390/agronomy12123071
Chicago/Turabian StyleWagner, Moritz, Bastian Winkler, Jan Lask, Jan Weik, Andreas Kiesel, Mirjam Koch, John Clifton-Brown, and Moritz von Cossel. 2022. "The True Costs and Benefits of Miscanthus Cultivation" Agronomy 12, no. 12: 3071. https://doi.org/10.3390/agronomy12123071
APA StyleWagner, M., Winkler, B., Lask, J., Weik, J., Kiesel, A., Koch, M., Clifton-Brown, J., & von Cossel, M. (2022). The True Costs and Benefits of Miscanthus Cultivation. Agronomy, 12(12), 3071. https://doi.org/10.3390/agronomy12123071