Genotype × Environment Interaction in the Coffee Outturn Index of Amazonian Robusta Cultivars
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Trials
2.2. Experimental Design
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Davis, A.P.; Govaerts, R.; Bridson, D.M.; Stoffelen, P. An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Bot. J. Linn. Soc. 2006, 152, 465–512. [Google Scholar] [CrossRef]
- Akpertey, A.; Anim-Kwapong, E.; Adu-Gyamfi, P.K.K.; Ofori, A. Genetic variability for vigor and yield of robusta coffee (Coffea canephora) clones in Ghana. Heliyon 2022, 8, e10192. [Google Scholar] [CrossRef]
- Rocha, R.B.; Teixeira, A.L.; Ramalho, A.R.; Espindula, M.C.; Lunz, A.M.P.; Souza, F.F. Coffea canephora breeding: Estimated and achieved gains from selection in the Western Amazon, Brazil. Ciência Rural 2021, 51, 1–11. [Google Scholar] [CrossRef]
- Ferrão, M.A.G.; de Mendonça, R.F.; Fonseca, A.F.A.; Ferrão, R.G.; Senra, J.F.B.; Volpi, P.S.; Verdin Filho, A.C.; Comério, M. Characterization and genetic diversity of Coffea canephora accessions in a germplasm bank in Espírito Santo, Brazil. Crop Breed. Appl. Biotechnol. 2021, 21, 1–10. [Google Scholar] [CrossRef]
- Montagnon, C.; Leroy, T.; Cilas, C.; Legnaté, H.; Charrier, A. Heterozygous genotypes are efficient testers for assessing between-population combining ability in the reciprocal recurrent selection of Coffea canephora. Euphytica 2008, 160, 101–110. [Google Scholar] [CrossRef]
- Oliveira, S.J.M.; Araújo, L.V. Aspectos econômicos da cafeicultura. In Café na Amazônia; Marcolan, A.L., Espindula, M.C., Eds.; Embrapa: Brasília, Brazil, 2015; Volume 1, pp. 27–37. [Google Scholar]
- Bergo, C.; Popim Miqueloni, D.; Maria Pereira Lunz, A.; Mariano Lessa de Assis, G. Estimation of genetic parameters and selection of Coffea canephora progenies evaluated in Brazilian Western Amazon. Coffee Sci. 2020, 15, e151663. [Google Scholar] [CrossRef]
- Moraes, M.S.; Teixeira, A.L.; Ramalho, A.R.; Espindula, M.C.; Ferrao, M.A.G.; Rocha, R.B. Characterization of gametophytic self-incompatibility of superior clones of Coffea canephora. Genet. Mol. Res. 2018, 17, 1–11. [Google Scholar] [CrossRef]
- CONAB: Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Café. In Primeiro Levantamento—Safra 2022; CONAB: Brazil, 2022; Volume 1, pp. 1–60. Available online: https://www.conab.gov.br/info-agro/safras/cafe (accessed on 10 October 2022).
- Fialho, G.S.; da Fonseca, A.F.A.; Ferrão, M.A.G.; Ferrão, R.G.; Olivoto, T.; Nardino, M.; Reis, E.F.; Sakiyama, N.S. Conilon coffee outturn index: A precise alternative for estimating grain yield. Acta Scientiarum. Agron. 2022, 44, e54249. [Google Scholar] [CrossRef]
- Oliveira, L.N.L.; Rocha, R.B.; Ferreira, F.M.; Spinelli, V.M.; Ramalho, A.R.; Teixeira, A.L. Selection of Coffea canephora parents from the botanical varieties Conilon and Robusta for the production of intervarietal hybrids. Ciência Rural 2018, 48, 1–7. [Google Scholar] [CrossRef]
- Gaspari-Pezzopane, C.; Medina Filho, H.P.; Bordignon, R. Variabilidade genética do rendimento intrínseco de grãos em germoplasma de Coffea. Bragantia 2004, 63, 39–54. [Google Scholar] [CrossRef][Green Version]
- Petek, M.R.; Sera, T.; Fonseca, I.C.d.B. Exigências climáticas para o desenvolvimento e maturação dos frutos de cultivares de Coffea arabica. Bragantia 2009, 68, 169–181. [Google Scholar] [CrossRef]
- De Morais, J.A.; Rocha, R.B.; Alves, E.A.; Espindula, M.C.; Teixeira, A.L.; Souza, C.A. Beverage quality of Coffea canephora genotypes in the western Amazon, Brazil. Acta Scientiarum. Agron. 2021, 43, e52095. [Google Scholar] [CrossRef]
- Cruz, C.D.; Regazzi, A.J.; Carneiro, P.C. Modelos Biométricos Aplicados ao Melhoramento Genético; Universidade Federal de Viçosa: Viçosa, Brazil, 2012; Volume 1. [Google Scholar]
- Ramalho, A.R.; Rocha, R.B.; Souza, F.F.; Veneziano, W.; Teixeira, A.L. Progresso genético da produtividade de café beneficiado com a seleção de clones de cafeeiro Conilon. Rev. Ciência Agronômica 2016, 47, 516–523. [Google Scholar] [CrossRef]
- Rocha, R.B.; Muro-Abad, J.I.; Araújo, E.F.; Cruz, C.D. Avaliação do método centroide para estudo de adaptabilidade ao ambiente de clones de Eucalyptus grandi. Ciência Florest. 2005, 15, 255–266. [Google Scholar] [CrossRef][Green Version]
- Teixeira, A.L.; Rocha, R.B.; Espindula, M.C.; Ramalho, A.R.; Vieira Júnior, J.R.; Alves, E.A.; Lunz, A.M.P.; Souza, F.d.F.; Costa, J.N.M.; Fernandes, C.F. Amazonian Robustas—New Coffea canephora coffee cultivars for the Western Brazilian Amazon. Crop Breed. Appl. Biotechnol. 2020, 20, 1–5. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Marcolan, A.L. Cultivo dos cafeeiros Conilon e Robusta para Rondônia. In Sistema de Produção; Embrapa: Brasília, Brazil, 2009; Volume 1, pp. 1–61. [Google Scholar]
- Cruz, C.D. GENES—A software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy 2013, 35, 271–276. [Google Scholar] [CrossRef]
- Brasil Ministério da Agricultura, Pecuária e Abastecimento. Regras Para Análise de Sementes. 2017; pp. 1–395. Available online: https://www.gov.br/agricultura/pt-br/assuntos/laboratorios/arquivos-publicacoes-laboratorio/regras-para-analise-de-sementes.pdf/view (accessed on 10 October 2022).
- Nascimento, M.; Cruz, C.D.; Campana, A.C.M.; Tomaz, R.S.; Salgado, C.C.; Ferreira, R.d.P. Alteração no método centroide de avaliação da adaptabilidade genotípica. Pesqui. Agropecuária Bras. 2009, 44, 263–269. [Google Scholar] [CrossRef]
- Lin, C.S.; Binns, M.R. A superiority measure of cultivar performance for cultivar x location data. Can. J. Plant Sci. 1988, 68, 193–198. [Google Scholar] [CrossRef]
- R Core Team. R: A language and environment for statistical computing. In R Foundation for Statistical Computing; Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 10 October 2022).
- Partelli, F.L.; Oliosi, G.; Dalazen, J.R.; da Silva, C.A.; Vieira, H.D.; Espindula, M.C. Proportion of ripe fruit weight and volume to green coffee: Differences in 43 genotypes of Coffea canephora. Agron. J. 2021, 113, 1050–1057. [Google Scholar] [CrossRef]
- Gaspari-Pezzopane, C.; Medina Filho, H.P.; Bordignon, R.; Siqueira, W.J.; Ambrósio, L.A.; Mazzafera, P. Influências ambientais no rendimento intrínseco do café. Bragantia 2005, 64, 39–50. [Google Scholar] [CrossRef]
- INPI—Instituto Nacional de Propriedade Industrial: Revista da Propriedade Industrial. Comunicados Seção 1 . Volume 2630, pp. 1–30. Available online: http://ld2.ldsoft.com.br/siteld/arq_avisos/Comunicados_2630.pdf (accessed on 10 October 2022).
- Vieira, J.; Pimenta, J.; Gomes, A.; Laia, J.; Rocha, S.; Heitzler, P.; Vieira, C.P. The identification of the Rosa S-locus and implications on the evolution of the Rosaceae gametophytic self-incompatibility systems. Sci. Rep. 2021, 11, 3710. [Google Scholar] [CrossRef]
Environments | Depth Layer | pH | P | K | Ca | Mg | Al+H | Al | OM | V |
---|---|---|---|---|---|---|---|---|---|---|
(cm) | mg dm−3 | cmolc dm−3 | g kg−1 | % | ||||||
Porto Velho, RO (E1) | 0–20 | 5.4 | 2.00 | 0.09 | 1.48 | 1.02 | 13.53 | 0.87 | 51 | 16 |
20–40 | 4.9 | 2.00 | 0.05 | 0.39 | 0.37 | 13.37 | 1.65 | 41 | 6 | |
Ouro Preto do Oeste, RO (E2, E3) | 0–20 | 5.2 | 15.00 | 0.23 | 2.42 | 0.66 | 4.95 | 0.10 | 18 | 40 |
20–40 | 5.4 | 8.00 | 0.32 | 2.71 | 0.88 | 5.94 | 0.00 | 17 | 40 |
Clone | Maturation Cycle | Compatibility Group | Genealogy |
---|---|---|---|
BRS 1216 | Medium | I | EMCAPA03 × IAC1675 |
BRS 2299 | Medium | II | Open pollination |
BRS 2314 | Late | II | EMCAPA03 × IAC640 |
BRS 2336 | Late | II | Open pollination |
BRS 2357 | Late | II | Open pollination |
BRS 3137 | Early | III | Open pollination |
BRS 3193 | Early | III | Open pollination |
BRS 3210 | Medium | III | EMCAPA03 × IAC2258 |
BRS 3213 | Medium | III | EMCAPA03 × IAC2258 |
BRS 3220 | Medium | III | EMCAPA03 × IAC1675 |
SV | DF | Drying | Pulping | Outturn |
---|---|---|---|---|
Clones (G) | 9 | 3.86 ** | 6.54 ** | 7.86 ** |
Environments (E) | 2 | 537.38 ** | 45.84 ** | 133.29 ** |
G×E | 18 | 28.31 ** | 20.19 ** | 11.31 ** |
Residue | 150 | |||
Total | 179 | |||
Overall mean | 46.12 | 53.01 | 24.44 | |
Mean E1 | 43.68 a | 53.97 a | 23.57 a | |
Mean E2 | 46.47 b | 52.70 a | 24.47 b | |
Mean E3 | 48.23 c | 52.49 a | 25.29 c | |
CVe | 1.65 | 1.72 | 2.37 | |
H2 | 74.13 | 84.72 | 87.29 | |
CVg | 3.52 | 4.29 | 4.92 |
Clone | Weight after Drying (%) | Pi | ||
E1 | E2 | E3 | ||
BRS 1216 | 44.10 c | 46.83 b | 50.50 b | 3 |
BRS 2299 | 43.50 d | 46.67 b | 48.83 c | 5 |
BRS 2314 | 44.70 b | 45.00 c | 47.17 d | 6 |
BRS 2336 | 41.80 e | 46.00 b | 48.00 c | 8 |
BRS 2357 | 42.30 e | 44.33 c | 42.83 f | 9 |
BRS 3137 | 46.60 a | 48.83 a | 51.03 a | 1 |
BRS 3193 | 43.80 c | 47.17 b | 51.01 a | 2 |
BRS 3210 | 43.00 d | 47.33 b | 45.83 e | 7 |
BRS 3213 | 41.70 e | 42.83 d | 44.00 d | 10 |
BRS 3220 | 45.20 b | 48.00 a | 47.00 d | 4 |
Clone | Weight after Pulping (%) | Pi | ||
E1 | E2 | E3 | ||
BRS 1216 | 58.50 a | 58.67 a | 56.00 a | 1 |
BRS 2299 | 53.50 c | 51.83 e | 51.17 e | 7 |
BRS 2314 | 49.83 e | 50.33 f | 47.67 g | 10 |
BRS 2336 | 54.33 c | 53.00 d | 51.17 e | 6 |
BRS 2357 | 57.67 a | 54.00 c | 54.83 b | 3 |
BRS 3137 | 50.33 e | 50.83 f | 52.00 e | 8 |
BRS 3193 | 52.67 d | 50.50 f | 49.17 f | 9 |
BRS 3210 | 52.50 d | 52.83 d | 54.17 c | 5 |
BRS 3213 | 54.00 c | 55.50 b | 52.83 d | 4 |
BRS 3220 | 56.33 b | 55.00 f | 56.17 a | 2 |
Clone | Outturn (%) | Pi | ||
E1 | E2 | E3 | ||
BRS 1216 | 25.96 a | 27.45 a | 28.43 a | 1 |
BRS 2299 | 23.32 c | 24.07 c | 24.88 d | 5 |
BRS 2314 | 22.23 d | 22.67 d | 22.52 f | 10 |
BRS 2336 | 22.70 d | 24.40 b | 24.58 d | 8 |
BRS 2357 | 24.33 b | 23.95 c | 23.50 e | 7 |
BRS 3137 | 23.43 c | 24.73 b | 26.52 b | 3 |
BRS 3193 | 23.11 c | 23.95 c | 25.00 c | 6 |
BRS 3210 | 22.67 d | 25.08 b | 24.70 d | 4 |
BRS 3213 | 22.47 d | 23.65 c | 23.32 d | 9 |
BRS 3220 | 25.44 a | 26.40 b | 26.20 c | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lourenço, J.L.R.; Rocha, R.B.; Espindula, M.C.; Alves, E.A.; Teixeira, A.L.; Ferreira, F.M. Genotype × Environment Interaction in the Coffee Outturn Index of Amazonian Robusta Cultivars. Agronomy 2022, 12, 2874. https://doi.org/10.3390/agronomy12112874
Lourenço JLR, Rocha RB, Espindula MC, Alves EA, Teixeira AL, Ferreira FM. Genotype × Environment Interaction in the Coffee Outturn Index of Amazonian Robusta Cultivars. Agronomy. 2022; 12(11):2874. https://doi.org/10.3390/agronomy12112874
Chicago/Turabian StyleLourenço, João Luiz Resende, Rodrigo Barros Rocha, Marcelo Curitiba Espindula, Enrique Anastácio Alves, Alexsandro Lara Teixeira, and Fábio Medeiros Ferreira. 2022. "Genotype × Environment Interaction in the Coffee Outturn Index of Amazonian Robusta Cultivars" Agronomy 12, no. 11: 2874. https://doi.org/10.3390/agronomy12112874
APA StyleLourenço, J. L. R., Rocha, R. B., Espindula, M. C., Alves, E. A., Teixeira, A. L., & Ferreira, F. M. (2022). Genotype × Environment Interaction in the Coffee Outturn Index of Amazonian Robusta Cultivars. Agronomy, 12(11), 2874. https://doi.org/10.3390/agronomy12112874